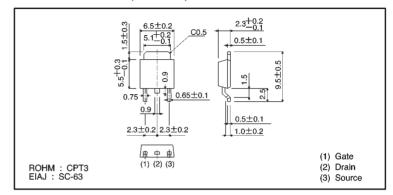
Small switching (60V, 5A) 25K2503

Features


- 1) Low on-resistance.
- 2) Fast switching speed.
- 3) Wide SOA (safe operating area).
- 4) Low-voltage drive (4V).
- 5) Easily designed drive circuits.
- 6) Easy to use in parallel.

Structure

Silicon N-channel

MOSFET

External dimensions (Units: mm)

●Absolute maximum ratings (Ta = 25°C)

Paramete	Parameter Sy		Limits	Unit
Drain-source voltage		Voss	60	٧
Gate-source voltage		Vgss	±20	V
Drain current	Continuous	ΙD	5	А
	Pulsed	lop*	20	А
Reverse drain	Continuous	IDR	5	А
current	Pulsed	IDRP*	20	А
Total power dissipation (Tc=25°C)		Po	20	W
Channel temperature		Tch	150	°C
Storage temperature		Tstg	-55~ + 150	°C

^{*} Pw≦10 μs, Duty cycle≦1%

Packaging specifications

	Package	Taping
Type	Code	TL
	Basic ordering unit (pieces)	2500
2SK2503		0

Transistors 2SK2503

●Electrical characteristics (Ta = 25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Gate-source leakage	lgss	_	_	±100	nA	V _{GS} =±20V, V _{DS} =0V
Drain-source breakdown voltage	V(BR)DSS	60	_	_	٧	In=1mA, VGS=0V
Zero gate voltage drain current	loss	_	_	10	μΑ	V _{DS} =60V, V _{GS} =0V
Gate threshold voltage	VGS(th)	1.0	_	2.5	V	V _{DS} =10V, I _D =1mA
Static drain-source on-state resistance	RDS(on)	_	0.11	0.135	Ω	In=2.5A, Vgs=10V
		_	0.17	0.20		In=2.5A, Vgs=4V
Forward transfer admittance	Yfs *	4.0	_	_	S	ID=2.5A, VDS=10V
Input capacitance	Ciss	_	520	_	pF	V _{DS} =10V
Output capacitance	Coss	_	240	_	рF	V _{GS} =0V
Reverse transfer capacitance	Crss	_	100	_	рF	f=1MHz
Turn-on delay time	td(on)	_	5.0	_	ns	ID=2.5A, VDD≒30V
Rise time	tr	_	20	_	ns	V _{GS} =10V
Turn-off delay time	td(off)	_	50	_	ns	RL=12Ω
Fall time	tf	_	20	_	ns	R _G =10 Ω

^{*} Pw \leq 300 μ s, Duty cycle \leq 1%

Electrical characteristic curves

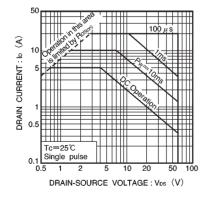


Fig.1 Maximum safe operating area

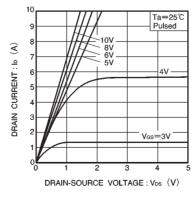


Fig.2 Typical output characteristics

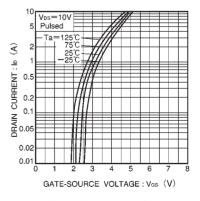


Fig.3 Typical transfer characteristics

Transistors 2SK2503

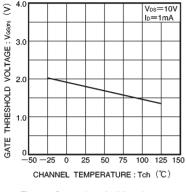


Fig.4 Gate threshold voltage vs. channel temperature

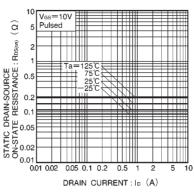


Fig.5 Static drain-source on-state resistance vs. drain current (I)

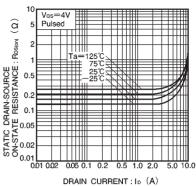


Fig.6 Static drain-source on-state resistance vs. drain current (II)

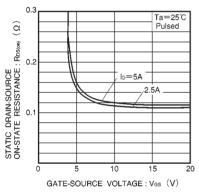


Fig.7 Static drain-source on-state resistance vs. gate-source voltage

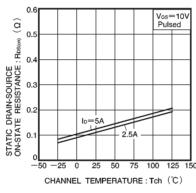


Fig.8 Static drain-source on-state resistance vs. channel temperature

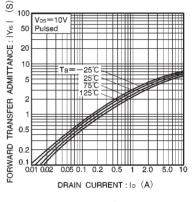


Fig.9 Forward transfer admittance vs. drain current

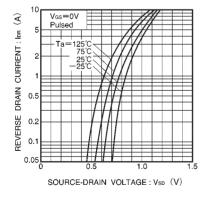


Fig.10 Reverse drain current vs. source-drain voltage (I)



Fig.11 Reverse drain current vs. source-drain voltage (I)

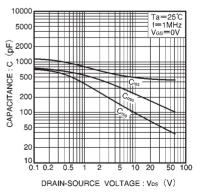


Fig.12 Typical capacitance vs. drain-source voltage

Transistors 2SK2503

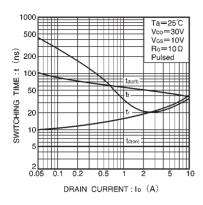


Fig.13 Switching characteristics (See Figures 16 and 17 for the measurement circuit and resultant waveforms)

Fig.14 Reverse recovery time vs. reverse drain current

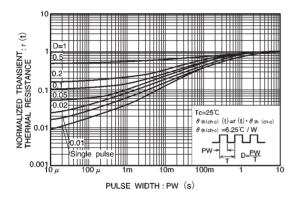


Fig.15 Normalized transient thermal resistance vs. pulse width

 Switching characteristics measurement circuit

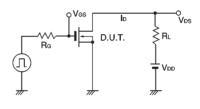


Fig.16 Switching time measurement circuit

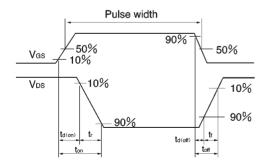


Fig.17 Switching time waveforms