1．9A Fixed Frequency White LED Driver

＊GENERAL DESCRIPTION

The AX2012 is a step－up converter designed for driving up to 8 series white LEDs for backlighting application．The AX2012 uses current mode， 1.2 MHz fixed frequency architecture to regulate the LED current，which is set through an external current sense resistor．Its low 300 mV feedback voltage reduces power loss and improves efficiency．The OV pin monitors the output voltage and turns off the converter if an over－voltage condition is present due to an open circuit condition．The AX2012 includes under－voltage lockout，current limiting and thermal shutdown protection preventing damage in the event of an output overload．The driver is available in small 6 －pin TSOT－23 and 8－pin TDFN（ $2 \mathrm{~mm} \times 2 \mathrm{~mm}$ ） packages．

＊FEATURES

－$\quad 2.5 \mathrm{~V}$ to 5.5 V operating input voltage range
－Drives up to 8 series White LEDs
－$\quad 1.2 \mathrm{MHz}$ Fixed Switching Frequency
－Wide range for PWM dimming（ 200 Hz to 200 KHz ）
－Internal 1．9A switching current limit
－Over Voltage Protection（OVP）
－Internal Soft－start Function
－Current limit and Thermal shutdown protection
－Under voltage Lockout
－Available in the 6－pin TSOT－23 and 8－pin TDFN Packages

* BLOCK DIAGRAM

PIN ASSIGNMENT

The packages of AX2012 are TSOT-23-6L and TDFN-8L; the pin assignment is given by:

Name	Description
GND	Ground Pin
VCC	Power Input Pin
OV	OVP Sense Pin
EN	Enable with Dimming Pin; Internal Pull-Low; Logic High Active
FB	Feedback Pin; Put a Resistor to GND to Setting the Current
NC	No Connect Pin
SW	Switch Output Pin

亞瑟萊特科技股份有限公司 AXElite Technology Co．，Ltd
－ORDER／MARKING INFORMATION

Order Information	
AX2012XX X Package Type Packing CT：TSOT－23－6L Blank：Bag Z8：TDFN－8L（2＊2）A ：Taping	
Top Marking（TSOT－23－6L）	Top Marking（TDFN－8L）

＊ABSOLUTE MAXIMUM RATINGS（at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ）

Characteristics		Symbol	Rating	Unit
Vcc Pin Voltage		Vcc	GND－ 0.3 to GND＋ 6	V
EN，FB，OV Pin Voltage			GND－0．3 to V $\mathrm{CC}+0.3$	V
SW，OV Pin Voltage		$V_{\text {SW }}$	30	V
Power Dissipation		PD	$\left(T_{J}-T_{A}\right) / \theta_{J A}$	mW
Storage Temperature Range		Tst	－65 to＋150	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature Range		Top	-40 to +125	${ }^{\circ} \mathrm{C}$
Thermal Resistance from Junction to case	TSOT－23－6L	$\theta_{\text {Jc }}$	180	C／W
	TDFN－8L		25	
Thermal Resistance from Junction to ambient	TSOT－23－6L	θ_{JA}	250	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	TDFN－8L		120	

Note：θ_{JA} is measured with the PCB copper area of approximately $1 \mathrm{in}^{2}$（Multi－layer）．

* ELECTRICAL CHARACTERUSTICS

Characteristics	Symbol	Conditions	Min	Typ	Max	Units
Input Voltage Range	Vcc		2.5	-	5.5	V
Step-Up Voltage Range	Vout		3	-	27	V
OV Sense Voltage	Vov		27.5	29	30.5	V
Under Voltage Lockout	UvLo	Rising	-	2.25	2.45	V
UVLO Hysteresis			-	100	-	mV
Feedback Voltage	$V_{\text {FB }}$		285	300	315	mV
Logic-High Voltage	V_{IH}		1.4	-	-	V
Logic-Low Voltage	VIL		-	-	0.4	V
EN Hysteresis			-	200	-	mV
Operating Quiescent Current	Icco	lout $=0 \mathrm{~mA}, \mathrm{~V}_{\text {FB }}=0.5 \mathrm{~V}$	-	170	-	$\mu \mathrm{A}$
Shutdown Current	ISD	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}, \mathrm{ten}>20 \mathrm{~ms}$	-	-	1	$\mu \mathrm{A}$
N-Channel MOSFET Current Limit (Note1)	ILIM	Duty=50\%	-	1.9	-	A
MOSFET On-Resistance (Note1)	RDS(on)	$\mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}, \mathrm{Isw}=1 \mathrm{~A}$	-	0.6	-	Ω
		$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \mathrm{I}_{\text {sw }}=1 \mathrm{~A}$	-	0.45	-	
Maximum Duty Cycle	$\mathrm{D}_{\text {max }}$		85	90	-	\%
Line Regulation		$\mathrm{V}_{\text {cc }}=3 \mathrm{~V}$ to 5 V	-	1	-	\%
Switching Frequency	Fosc		0.9	1.2	1.5	MHz
Dimming Clock Rate	FDIM		0.2	-	200	KHz
FB Input Leakage Current	Ifb-Lkg	$\mathrm{V}_{\mathrm{FB}}=0.5 \mathrm{~V}$	-	0.01	100	nA
SW Leakage Current	IswL	$\mathrm{V}_{\text {SW }}=27 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0.5 \mathrm{~V}$	-	-	1	$\mu \mathrm{A}$
EN Input Leakage Current	Ien-Lkg1	$\mathrm{V}_{\text {EN }}=\mathrm{V}_{\text {CC }}$	-	1.5	3	$\mu \mathrm{A}$
	Ien-lkg2	$\mathrm{V}_{\mathrm{EN}}=\mathrm{GND}$	-	0.01	0.1	$\mu \mathrm{A}$
Shutdown Delay	TSHDN		-	10	-	mS
Thermal Shutdown	TsD		-	150	-	
Thermal Shutdown Hysteresis	TSH		-	30	-	\bigcirc

Note1: Guaranteed by design.

* APPLICATION CIRCUIT

(1) 8 series LED application

When L1 inductance is greater than 4.7 uH please increase $\mathrm{C} 3, \mathrm{R} 4$ and R 5 fine-tune output stability.
(2) LED Dimming application

When L1 inductance is greater than 4.7 uH please increase $\mathrm{C} 3, \mathrm{R} 4$ and R5 fine-tune output stability.

APPLICATION INFORMATION

Setting the ILed Current

Application circuit item shows the basic application circuit with AX2012 adjustable output version. The external resistor sets the LED output current according to the following equation:

$$
\mathrm{I}_{\mathrm{LED}}=\left(\frac{300 \mathrm{mV}}{\mathrm{R} 3}\right)
$$

ILED	R3	
20 mA	15Ω	6 mW
350 mA	0.857Ω	105 mW

Over Voltage Protection

OV measure the output voltage for open circuit protection. Connect OV pin to the output at the top of the LED string. If Vout above 29V, the OVP protection is happened that stops the internal driver until Vout below 29V.

Under Voltage Lockout (UVLO)

To avoid mis-operation of the device at low input voltages an under voltage lockout is included that disables the device, if the input voltage falls below $(2.25 \mathrm{~V}-100 \mathrm{mV})$.

Input Capacitor Selection

The input capacitor reduces the surge current drawn from the input and switching noise from the device. The input capacitor impedance at the switching frequency shall be less than input source impedance to prevent high frequency switching current passing to the input. A low ESR input capacitor sized for maximum RMS current must be used. Ceramic capacitors with X5R or X7R dielectrics are highly recommended because of their low ESR and small temperature coefficients. A $4.7 \mu \mathrm{~F}$ ceramic capacitor for most applications is sufficient. For a lower output power requirement application, this value can be decreased.

Output Capacitor Selection

The output capacitor is required to keep the output voltage ripple small and to ensure regulation loop stability. The output capacitor must have low impedance at the switching frequency. Ceramic capacitors with X5R or X7R dielectrics are recommended due to their low ESR and high ripple current. A 1uF ceramic capacitors works for most of the applications. Higher capacitor values can be used to improve the load transient response.
＊TYPICAL CHARACTERISTICS

＊TYPICAL CHARACTERISTICS（CONTINUOUS）

Reference Voltage vs．Input Voltage

LED Current vs．Duty

Reference Voltage vs．Temperature

Enable Threshold vs．Input Voltage

* TYPICAL CHARACTERISTICS (CONTINUOUS)

Power ON from EN

Normal Operation into OVP

PWM Dimming from EN (20KHz)

PACKAGE OUTLINES

（1）TSOT－23－6L

Symbol	Dimensions in Millimeters			Dimensions in Inches		
	Min．	Nom．	Max．	Min．	Nom．	Max．
A	－	－	1.10	－	－	0.043
A1	0.00	－	0.10	0	－	0.004
A2	0.70	0.90	1.00	0.028	0.035	0.039
b	0.30	0.40	0.50	0.012	0.016	0.020
C	0.08	0.14	0.20	0.003	0.006	0.008
D	2.80	2.90	3.00	0.110	0.114	0.118
E	2.60	2.80	3.00	0.102	0.110	0.118
E1	1.50	1.60	1.70	0.059	0.063	0.067
e	0.95 BSC．			0.037 BSC．		
e1	1.90 BSC．			0.075 BSC．		
L	0.30	0.45	0.60	0.012	0.018	0.024
L1	0．60 REF．			0.024 REF．		
L2	0.25 BSC．			0.010 BSC．		
y	－	－	0.10	－	－	0.004
R	0.10	－	－	0.004	－	－
θ	00	－	80	$0{ }^{\circ}$	－	$8{ }^{\circ}$

JEDEC outline：MO－193 AA
（2）TDFN－8L（2＊2 0.75 mm$)$

Symbol	Dimensions in Millimeters		Dimensions in Inches			
	Min．	Nom．	Max．	Min．	Nom．	Max．
A	0.70	0.75	0.80	0.028	0.030	0.031
A1	0.00	0.02	0.05	0	0.001	0.002
b	0.15	0.20	0.25	0.006	0.008	0.010
C	0.19	0.20	0.25	0.007	0.008	0.010
D	1.90	2.00	2.10	0.075	0.079	0.082
D2	1.55	1.60	1.65	0.061	0.063	0.065
E	1.90	2.00	2.10	0.075	0.079	0.082
E2	0.85	0.90	0.95	0.033	0.035	0.037
e	-	0.50	-	-	0.020	-
L	0.30	0.35	0.40	0.012	0.014	0.016
y	0.00	-	0.075	0	-	0.003

