
 2009-2015 Microchip Technology Inc. DS40001369CB

PICDEM™ Lab
Development Board

User’s Guide

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,
FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer,

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.

MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

== ISO/TS 16949 ==
DS40001369CB-page 2
LANCheck, MediaLB, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC,
SST, SST Logo, SuperFlash and UNI/O are registered
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are
registered trademarks of Microchip Technology Incorporated
in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo,
CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit
Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet,
KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo,
MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code
Generation, PICDEM, PICDEM.net, PICkit, PICtail,
RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total
Endurance, TSHARC, USBCheck, VariSense, ViewSpan,
WiperLock, Wireless DNA, and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

Silicon Storage Technology is a registered trademark of
Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology
Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their
respective companies.

© 2009-2015, Microchip Technology Incorporated, Printed in
the U.S.A., All Rights Reserved.

ISBN: 978-1-63277-261-9

Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
 2009-2015 Microchip Technology Inc.

and manufacture of development systems is ISO 9001:2000 certified.

PICDEMTM LAB DEVELOPMENT

BOARD USER’S GUIDE

Table of Contents
Preface ... 7

Chapter 1. Overview
1.1 Introduction ... 11
1.2 Highlights .. 11
1.3 PICDEM™ Lab Development Kit Contents .. 11
1.4 PICDEM™ Lab Development Board Construction and Layout 12
1.5 Target Power .. 14
1.6 Connecting the PICkit™ 3 Programmer/Debugger 14
1.7 Solderless Prototyping Area Strip Configuration .. 15

Chapter 2. Getting Started
2.1 Introduction ... 17
2.2 Prerequisites .. 17
2.3 The Software Control Loop .. 17
2.4 MPLAB® X IDE and XC Compiler Download Instructions 19
2.5 Installing the Included Lab Files ... 20

Chapter 3. General Purpose Input/Output Labs
3.1 Introduction ... 21
3.2 General Purpose Input/Output Labs ... 21
3.3 GPIO Output Labs .. 22

3.3.1 Reference Documentation ... 22
3.3.2 Equipment Required for GPIO Output Labs .. 22
3.3.3 PICDEM Lab Development Board Setup for GPIO Output Labs 22
3.3.4 Lab 1: Light LEDs .. 23

3.3.4.1 New Registers Used in This Lab ... 23
3.3.4.2 Overview .. 23
3.3.4.3 Procedure .. 24
3.3.4.4 Testing the Application .. 31

3.3.5 Lab 2: Flash LEDs (Delay Loop) ... 31
3.3.5.1 Overview .. 31
3.3.5.2 Procedure .. 32
3.3.5.3 Testing the Application .. 34

3.3.6 Lab 3: Simple Delays Using Timer0 .. 34
3.3.6.1 New Registers Used in This Lab ... 34
3.3.6.2 Overview .. 35
3.3.6.3 Procedure .. 38
3.3.6.4 Testing the Application .. 39

3.3.7 Lab 4: Rotate LEDs ... 40
3.3.7.1 Overview .. 40
3.3.7.2 Procedure .. 42
3.3.7.3 Testing the Application .. 44
 2009-2015 Microchip Technology Inc. DS40001369C-page 3

PICDEMTM Lab Development Board User’s Guide
3.4 GPIO Input Labs ... 44
3.4.1 Reference Documentation ...44
3.4.2 Equipment Required for GPIO Input Labs ...44
3.4.3 PICDEM Lab Development Board Setup for GPIO Input Labs44
3.4.4 Lab 5: Adding a Push Button ...45

3.4.4.1 New Registers Used in This Lab ..45
3.4.4.2 Overview ..45
3.4.4.3 Procedure ..49
3.4.4.4 Testing the Application ...53

3.4.5 Lab 6: Push Button Interrupt ..54
3.4.5.1 New Registers Used in This Lab ..54
3.4.5.2 Overview ..54
3.4.5.3 Procedure ...56
3.4.5.4 Testing the Application ...59

3.4.6 Lab 7: Push Button Interrupt-on-Change ...59
3.4.6.1 New Registers Used in This Lab ..59
3.4.6.2 Overview ..59
3.4.6.3 Procedure ..61
3.4.6.4 Testing the Application ...64

3.4.7 Lab 8: Using Weak Pull-Ups ..64
3.4.7.1 New Registers Used in This Lab ..64
3.4.7.2 Overview ..64
3.4.7.3 Procedure ..64
3.4.7.4 Testing the Application ...66

Chapter 4. Comparator Peripheral Labs
4.1 Introduction ... 67
4.2 Comparator Labs .. 67

4.2.1 Reference Documentation ...67
4.2.2 Comparator Labs ...67
4.2.3 Equipment Required ..67
4.2.4 Lab 1: Simple Compare ...68

4.2.4.1 New Registers Used in This Lab ..68
4.2.4.2 Overview ..68
4.2.4.3 Procedure ..69
4.2.4.4 Testing the Application ...70

4.2.5 Lab 2: Using the Comparator Voltage Reference70
4.2.5.1 New Registers Used in This Lab ..70
4.2.5.2 Overview ..70
4.2.5.3 Procedure ..72
4.2.5.4 Testing the Application ...73

4.2.6 Lab 3: Higher Resolution Sensor Readings Using a Single Comparator ...74
4.2.6.1 New Registers Used in This Lab ..74
4.2.6.2 Overview ..74
4.2.6.3 Procedure ..77
4.2.6.4 Testing the Application ...80

Chapter 5. Analog-to-Digital Converter Peripheral Labs
5.1 Introduction ... 81
5.2 ADC Labs ... 81

5.2.1 Reference Documentation ...81
5.2.2 Equipment Required ..81
DS40001369C-page 4  2009-2015 Microchip Technology Inc.

5.2.3 Lab 1: Simple ADC .. 82
5.2.3.1 New Registers Used in This Lab ... 82
5.2.3.2 Overview .. 82
5.2.3.3 Procedure .. 85
5.2.3.4 Testing the Application .. 89

5.2.4 Lab 2: Audible Temperature Sensor ... 91
5.2.4.1 Overview .. 91
5.2.4.2 Procedure .. 93
5.2.4.3 Testing the Application .. 96

Chapter 6. PICDEM™ Lab Motor Control
6.1 Overview .. 97
6.2 Procedure ... 97

6.2.1 Motor Use and Programming .. 97
6.2.2 PWM Period .. 98

6.2.2.1 PWM Period .. 98

Appendix A. Schematic
A.1 PICDEM™ Lab Development Kit Schematic ... 101

Worldwide Sales and Service .. 103
 2009-2015 Microchip Technology Inc. DS40001369C-page 5

PICDEMTM Lab Development Board User’s Guide
NOTES:
DS40001369C-page 6  2009-2015 Microchip Technology Inc.

PICDEMTM LAB DEVELOPMENT

BOARD USER’S GUIDE

Preface
INTRODUCTION

This chapter contains general information that will be useful to know before using the
PICDEMTM Lab Development Board. Items discussed in this chapter include:

• Document Layout

• Conventions Used in this Guide

• Recommended Reading

• The Microchip Web Site

• Customer Support

• Document Revision History

DOCUMENT LAYOUT

This document describes how to use the PICDEMTM Lab Development Board as a
development tool to emulate and debug firmware on a target board. The manual layout
is as follows:

• Chapter 1. “Overview”

• Chapter 2. “Getting Started”

• Chapter 3. “General Purpose Input/Output Labs”

• Chapter 4. “Comparator Peripheral Labs”

• Chapter 5. “Analog-to-Digital Converter Peripheral Labs”

• Chapter 6. “PICDEM™ Lab Motor Control”

• Appendix A. “Schematic”

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and
documentation are constantly evolving to meet customer needs, so some actual dialogs
and/or tool descriptions may differ from those in this document. Please refer to our web site
(www.microchip.com) to obtain the latest documentation available.

Documents are identified with a “DS” number. This number is located on the bottom of each
page, in front of the page number. The numbering convention for the DS number is
“DSXXXXXA”, where “XXXXX” is the document number and “A” is the revision level of the
document.

For the most up-to-date information on development tools, see the MPLAB® X IDE online help.
Select the Help menu, and then Topics to open a list of available online help files.
 2009-2015 Microchip Technology Inc. DS40001369C-page 7

PICDEMTM Lab Development Board User’s Guide
CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

DOCUMENTATION CONVENTIONS

Description Represents Examples

Arial font:

Italic characters Referenced books MPLAB® IDE User’s Guide

Emphasized text ...is the only compiler...

Initial caps A window the Output window

A dialog the Settings dialog

A menu selection select Enable Programmer

Quotes A field name in a window or
dialog

“Save project before build”

Underlined, italic text with
right angle bracket

A menu path File>Save

Bold characters A dialog button Click OK

A tab Click the Power tab

N‘Rnnnn A number in verilog format,
where N is the total number of
digits, R is the radix and n is a
digit.

4‘b0010, 2‘hF1

Text in angle brackets < > A key on the keyboard Press <Enter>, <F1>

Courier New font:

Plain Courier New Sample source code #define START

Filenames autoexec.bat

File paths c:\mcc18\h

Keywords _asm, _endasm, static

Command-line options -Opa+, -Opa-

Bit values 0, 1

Constants 0xFF, ‘A’

Italic Courier New A variable argument file.o, where file can be
any valid filename

Square brackets [] Optional arguments mcc18 [options] file
[options]

Curly brackets and pipe
character: { | }

Choice of mutually exclusive
arguments; an OR selection

errorlevel {0|1}

Ellipses... Replaces repeated text var_name [,
var_name...]

Represents code supplied by
user

void main (void)
{ ...
}

DS40001369C-page 8  2009-2015 Microchip Technology Inc.

Preface
RECOMMENDED READING

This user’s guide describes how to use the PICDEM™ Lab Development Kit. Other
useful documents are listed below. The following Microchip documents are available
and recommended as supplemental reference resources.

Readme Files

For the latest information on using other tools, read the tool-specific Readme files in
the Readme subdirectory of the MPLAB® X IDE installation directory. The Readme files
contain update information and known issues that may not be included in this user’s
guide.

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web
site is used as a means to make files and information easily available to customers.
Accessible by using your favorite Internet browser, the web site contains the following
information:

• Product Support – Data sheets and errata, application notes and sample
programs, design resources, user’s guides and hardware support documents,
latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQs), technical
support requests, online discussion groups, Microchip consultant program
member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip
press releases, listing of seminars and events, listings of Microchip sales offices,
distributors and factory representatives.

DEVELOPMENT SYSTEMS CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip
products. Subscribers will receive e-mail notification whenever there are changes,
updates, revisions or errata related to a specified product family or development tool of
interest.

To register, access the Microchip web site at www.microchip.com, click on Customer
Change Notification and follow the registration instructions.

The Development Systems product group categories are:

• Compilers – The latest information on Microchip C compilers, assemblers, linkers
and other language tools. These include all MPLAB C compilers; all MPLAB
assemblers (including MPASM assembler); all MPLAB linkers (including MPLINK
object linker); and all MPLAB librarians (including MPLIB object librarian).

• Emulators – The latest information on Microchip in-circuit emulators.This
includes the MPLAB REAL ICE and MPLAB ICE 2000 in-circuit emulators.

• In-Circuit Debuggers – The latest information on the Microchip in-circuit
debuggers. This includes MPLAB ICD 3 in-circuit debuggers and PICkit™ 3
debug express.

• MPLAB IDE – The latest information on Microchip MPLAB IDE, the Windows
Integrated Development Environment for development systems tools. This list is
focused on the MPLAB IDE, MPLAB IDE Project Manager, MPLAB Editor and
MPLAB SIM simulator, as well as general editing and debugging features.
 2009-2015 Microchip Technology Inc. DS40001369C-page 9

http://www.microchip.com

PICDEMTM Lab Development Board User’s Guide
• Programmers – The latest information on Microchip programmers. These include
production programmers such as MPLAB REAL ICE in-circuit emulator, MPLAB
ICD 3 in-circuit debugger and MPLAB PM3 device programmers. Also included
are nonproduction development programmers such as PICSTART® Plus and
PICkit 2 and 3.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative

• Local Sales Office

• Field Application Engineer (FAE)

• Technical Support

Customers should contact their distributor, representative or field application engineer
(FAE) for support. Local sales offices are also available to help customers. A listing of
sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

DOCUMENT REVISION HISTORY

Revision A (February 2009)

• Initial Release of this Document.

Revision B (January 2011)

• Updated for PICkit™ 3.

Revision C (April 2015)

• Updated for MPLAB® X IDE.

• Added Chapter 6 for PICDEM™ Lab Motor Control.
DS40001369C-page 10  2009-2015 Microchip Technology Inc.

PICDEMTM LAB DEVELOPMENT

BOARD USER’S GUIDE

Chapter 1. Overview
1.1 INTRODUCTION

The PICDEM™ Lab Development Board supports Microchip’s 8, 14, 18 and 20-pin
8-bit MCUs including accommodation for PIC10F products in the 8-pin PDIP package.
Dual-row expansion headers on either side of each socket provide connectivity to all
pins on the connected PIC® MCU. A solderless prototyping area allows the user to
explore a relatively large number of application examples without making permanent
modifications to the board. Components permanently mounted to the board are
interfaced using expansion headers to the user’s application via jumper wires. A
variable supply voltage allows user’s to supply voltages between 1.2V to 5V to each of
the PIC MCU connection sockets.

1.2 HIGHLIGHTS

This chapter discusses:

• PICDEM™ Lab Development Kit Contents

• PICDEM™ Lab Development Board Construction and Layout

• Target Power

• Connecting the PICkit™ 3 Programmer/Debugger

• Solderless Prototyping Area Strip Configuration

1.3 PICDEM™ LAB DEVELOPMENT KIT CONTENTS

The PICDEM™ Development Kit contains the following items:

1. The PICDEM™ Lab Development Board

2. Lab component kit including:

• (1) PIC16F616 DIP

• (1) PIC12F615 DIP

• (4) 10 kΩ Resistors

• (4) 1 kΩ Resistors

• (8) 470Ω Resistors

• (4) 220Ω Resistors

• (4) 100Ω Resistors

• (1) 10 kΩ NTC Thermistor

• (4) Green LEDs

• (4) Red LEDs

• (4) 1N4148 Diodes

• (2) 0.1 µF Capacitors

• (2) 1 µF Capacitors

• (2) 10 µF Capacitors

• (4) Push buttons

• (10) 5" Jumper Wires

• (10) 3" Jumper Wires
 2009-2015 Microchip Technology Inc. DS40001369C-page 11

PICDEMTM Lab Development Board User’s Guide
• (10) 1" Jumper Wires

• (4) IRFD9020 P-CH MOSFETs

• (4) IRFD010 N-CH MOSFETs

• (2) 100 kΩ Potentiometers

3. PICkit™ 3 Programmer/Debugger with USB Cable

1.4 PICDEM™ LAB DEVELOPMENT BOARD CONSTRUCTION AND LAYOUT

The Low Pin Count USB Development Board and populated components are shown in
Figure 1-1.

FIGURE 1-1: PICDEM™ LAB DEVELOPMENT BOARD

1. PICkit™ 3 Programmer/Debugger Connection Headers (J13, J12 and J6)

a) J13 dedicated to PIC microcontroller socket U5

b) J12 dedicated to PIC microcontroller socket U3

c) J6 dedicated to PIC microcontroller socket U2

2. PICkit™ Serial Analyzer Connection Header (J11) and Receptacle (J15)
To use the PICkit™ Serial Analyzer, connect to appropriate PIC MCU expansion
header using jumper wires from receptacle.

1
2

3
4

5 6 7

8

9

10 11

12

13 14

15

16
DS40001369C-page 12  2009-2015 Microchip Technology Inc.

Overview
3. 32 kHz Crystal Oscillator (Y1) and Connection Header (J7)

4. VDD Connect/Disconnect Jumpers (J3, J4, J5)

a) J3 jumper connects/disconnects VDD1 supply to PIC16F690 MCU in socket
U2

b) J4 jumper connects/disconnects VDD2 supply to PIC16F819 MCU in socket
U3

c) J5 jumper connects/disconnects VDD3 supply to PIC10F206 MCU in socket
U5

5. Battery Clip Connection (BT1) for 9V Battery and Jumpers (J14)
J14 jumpers connect/disconnect battery terminals for use in future lab on battery
chargers.

6. 9 VDC Supply Connector (J1) and Connect/Disconnect Jumper (J2)

7. Power ON Switch (SW1)

8. 8-Pin PDIP PIC10F MCU Socket (U5) and Bilateral Dual-Row Expansion
Headers (J10 and J18)
Dual-row expansion headers provide connectivity to each pin on the PIC10F206
MCU populating socket U5.

9. 5V Brushed DC Motor

10. 18-Pin PDIP PIC MCU Socket (U3) and Bilateral Dual-Row Expansion
Headers (J17 and J16)
Dual-row expansion headers provide connectivity to each pin on the PIC16F819
MCU populating socket U3.

11. 8, 14, 20-Pin PDIP PIC MCU Socket (U2) and Bilateral Dual-Row Expansion
Headers (J8 and J9)
Dual-row expansion headers provide connectivity to each pin on the PIC16F690
MCU populating socket U2.

12. Solderless Prototyping Area

13. Bilateral Dual-Row Supply Headers (J22 and J23)
Provide both VDD and VSS connectivity bilaterally to the solderless prototyping
area.

14. 0.2 Watt, 8-Ohm Speaker (LS1) with Connection Header (J19)
J19 connector used to connect speaker LS1 to user application using jumper
wires.

15. Battery Positive (CP+) and Negative (CP-) Connection Header (J26)
Provides connectivity of positive and negative battery terminals to the user
application using jumper wires.

16. Variable VDD Potentiometer (R1)
Potentiometer used to vary PIC MCU supply voltage from approximately 1.3V to
approximately 5V.
 2009-2015 Microchip Technology Inc. DS40001369C-page 13

PICDEMTM Lab Development Board User’s Guide
1.5 TARGET POWER

The PICDEM™ Lab Development Board can be powered in one of the following ways:

1. Using a 9–12 VDC power supply connected to connector J1
(Microchip part #AC162039 recommended)
Ensure that connect/disconnect jumper J2 is in place.

2. Using a 9V battery connected to connector BT1
Ensure that connect/disconnect jumpers J14 are in place.

3. A PICkit™ 3 Programmer/Debugger connected to any one of the three PICkit
Programmer/Debugger connectors J13, J12 and J6 (recommended for
low-power applications only).

When using methods 1 or 2, each PIC microcontroller has an associated
connect/disconnect jumper that, when in place, enables the positive supply voltage to
the respective VDD pins. The VDD jumpers connect to the following PIC microcontroller
sockets:

1. VDD1 (J3) connects/disconnects supply voltage to the PIC microcontroller
populating U2.

2. VDD2 (J4) connects/disconnects supply voltage to the PIC microcontroller
populating U3.

3. VDD3 (J5) connects/disconnects supply voltage to the PIC microcontroller
populating U5.

Using methods 1 or 2 enables the use of the variable VDD potentiometer (R1) to control
supply voltages from approximately 1.3 to 5V. Rotating the potentiometer clockwise will
raise the supply voltage while rotating the potentiometer counterclockwise will
decrease the supply voltage.

1.6 CONNECTING THE PICKIT™ 3 PROGRAMMER/DEBUGGER

The three PIC microcontrollers populating sockets U5, U3 and U2 have their own PICkit
Programmer/Debugger (ICSP™) connectors so that each can be programmed or
debugged individually. The ICSP connect to the following PIC microcontroller sockets:

1. ICSP1 (J6) connects to the PIC microcontroller populating U2.

2. ICSP2 (J12) connects to the PIC microcontroller populating U3.

3. ICSP3 (J13) connects to the PIC microcontroller populating U5.

The PICkit Programmer/Debugger connects to the ICSP connector as shown in
Figure 1-2.

Note: When using the PICkit™ 3 Programmer/Debugger as the power source,
the variable VDD potentiometer (R1) will not vary the supply voltage.
DS40001369C-page 14  2009-2015 Microchip Technology Inc.

Overview
FIGURE 1-2: CONNECTING THE PICkit™ 3 PROGRAMMER/DEBUGGER
TO AN ICSP™ CONNECTOR

The PICkit™ 3 Programmer/Debugger is then connected to an available USB port on
the PC using the included USB cable.

1.7 SOLDERLESS PROTOTYPING AREA STRIP CONFIGURATION

The solderless prototyping area contains a variety of strips under the perforated plastic
block. These strips “short” vertical rows of holes together as shown in Figure 1-3.

FIGURE 1-3: SOLDERLESS PROTOTYPING AREA STRIP
CONFIGURATION

ICSP™ CONNECTOR

PICkit™ Programmer/Debugger

Denotes Pin 1

Solderless Prototyping Area

Solderless Prototyping Area
Showing Strip Connections
 2009-2015 Microchip Technology Inc. DS40001369C-page 15

PICDEMTM Lab Development Board User’s Guide
NOTES:
DS40001369C-page 16  2009-2015 Microchip Technology Inc.

PICDEMTM LAB DEVELOPMENT

BOARD USER’S GUIDE

Chapter 2. Getting Started
2.1 INTRODUCTION

This chapter is intended to prepare the reader to complete the labs in the remaining
chapters of this user’s guide.

2.2 PREREQUISITES

The labs contained within this lab manual assumes the user:

1. Has a basic understanding of the C programming language.

2. Understands basic circuit analysis.

2.3 THE SOFTWARE CONTROL LOOP

The labs used in this user’s guide implement a software control loop in various
configurations, but always in the same sequence as shown in Example 2-1.

FIGURE 2-1: MAIN() SOFTWARE CONTROL LOOP FLOWCHART FOR
USED IN LABS

main()

Loop Forever

Timing()

Initialize()

Get_Inputs()

Decide()

Do_Outputs()
 2009-2015 Microchip Technology Inc. DS40001369C-page 17

PICDEMTM Lab Development Board User’s Guide
Each block of the software control loop represents a function that organizes tasks into
logical, organized groupings that are called from the main function (main()). Notice
the Initialize() is called only once while the remaining functions are executed
repeatedly. This method organizes the embedded firmware application into a logic
sequence of events:

1. Initalize():

- Initializes the microcontroller, the peripherals used in the application and any
global variables used by multiple functions.

2. Get_Inputs():

- Obtains any input information either on-chip (from internal registers, etc...) or
off-chip (pin voltage levels).

3. Decide():

- Makes decisions based on the input information gathered in the previous
function to manipulate global variables.

4. Do_Outputs():

- Based on the decisions made in the previous function, this function outputs
data onto the pins of the microcontroller or to registers within the device.

5. Timing():

- This function determines how fast the software control loop executes.

Example 2-1 shows a typical main() calling the various functions that make up the
software control loop.

EXAMPLE 2-1: TYPICAL SOFTWARE CONTROL LOOP MAIN() USED IN
LABS

An infinity loop will be used by all labs in this user’s guide created using a while
loop that repeatedly call the functions within the curly braces as long as there is power
to the microcontroller.

Global variables are used wherever needed in lieu of passing variables between
functions.

void main(void)
{

Initialize(); //Initialize the relevant registers

while(1)
{

Decide();//Make any decisions
Do_Outputs(); //Perform any outputs
Timing();//Sets execution rate of the

//Software Control Loop
}

}

DS40001369C-page 18  2009-2015 Microchip Technology Inc.

Getting Started
2.4 MPLAB® X IDE AND XC COMPILER DOWNLOAD INSTRUCTIONS

1. The following steps outline how to download the latest version of the MPLAB® X
IDE and XC compiler. It is strongly recommended that all open programs and
applications are closed to expedite the installation process.

2. Using a PC that is connected to the Internet, navigate to the MPLAB X IDE
download page at the following url: www.microchip.com/mplabx.

3. This page outlines the MPLAB X IDE and also features plug-ins that can be
downloaded, User’s Guides and other useful information.

4. Scroll down to the Downloads section of the page and select the latest full
release zip file for MPLAB X IDE vX.XX.

5. When prompted, select Run and the .exe file will download.

FIGURE 2-2: RUN .EXE TO DOWNLOAD FILE

6. Once downloaded, the MPLAB X IDE Installation window should open. Click
Next to proceed with the installation.

7. In the next window, read through the MPLAB X IDE License Agreement and
ensure that the I accept the terms of the license agreement radio button is
selected. Click Next to continue with the installation.

8. In the Installation Directory window it is recommended to use the default
directory. Click Next to continue.

9. In the Select Programs window, choose which MPLAB X programs to install.
(Only MPLAB X IDE is required for the labs).

10. Click Next in the Ready to Install window to start the installation (this may take
several minutes to complete).

11. After installation is complete, the user will be reminded that the XC compilers are
not installed. It is recommended that the user install the compilers at this point.
Check the box and click Finish to continue.

FIGURE 2-3: COMPLETE THE MPLAB® X IDE V2.30 SETUP WIZARD

12. The MPLAB® XC Compilers web page should open. If not, go to:
www.microchip.com/mplabxc.

13. This page outlines the MPLAB XC compilers’ features and other useful
information.

 2009-2015 Microchip Technology Inc. DS40001369C-page 19

http://www.microchip.com/pagehandler/en-us/family/mplabx/
http://www.microchip.com/mplabx
http://www.microchip.com/mplabx
http://www.microchip.com/pagehandler/en_us/devtools/mplabxc/

PICDEMTM Lab Development Board User’s Guide
14. Scroll down to the Downloads section of the page and select the latest release
file for MPLAB XC Compiler vX.XX.

15. Click Run to download and run the .exe file.

FIGURE 2-4: RUN AND DOWNLOAD .exe FILE

16. Click Next in the MPLAB XC Compiler setup window.

17. In the next window, read through the License Agreement and ensure that the I
accept the terms of the license agreement radio button is selected. Click Next
to continue with the installation.

18. Select the Install compiler radio button in the Choose Installer window. Click
Next.

19. Ensure the “Configure MPLAB XC8 Compiler as a network client” box is
unchecked and click Next.

20. In the Installation Directory window it is recommended to use the default
directory. Click Next to continue.

21. In the Compiler Settings window, ensure all boxes are checked.

22. Click Next in the Ready to Install window.

23. In the Licensing Information window, click Next.

24. Click Finish to finish installation.

2.5 INSTALLING THE INCLUDED LAB FILES

The PICDEM™ Lab Development Kit product page
http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=dm163045
has a .zip file called PICDEM Lab Development Kit Lab Directory and
Solutions under Documents. This file provides a location for the user to save any

projects created while completing the labs in this user's guide and contains solutions for
each lab in a folder labeled solution. To install this folder, simply extract the contents of

the .zip file to the C:\ directory.

Note: Lab folders must be installed to C:\ to be used by the MPLAB® X IDE.
DS40001369C-page 20  2009-2015 Microchip Technology Inc.

http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=dm163045

PICDEMTM LAB DEVELOPMENT

BOARD USER’S GUIDE

Chapter 3. General Purpose Input/Output Labs
3.1 INTRODUCTION

The following labs cover some of the fundamental features of the General Purpose
Input/Output (GPIO) peripherals available on the PIC16F690. As the name implies,
these peripherals are used for general purpose applications that can monitor and
control other off-chip devices. Some PIC® microcontrollers have multiple GPIO
peripherals on-chip including the PIC16F690 used in the following labs. Therefore, the
PORTx naming convention is used. Available ports on the PIC16F690 are:

• PORTA

• PORTB

• PORTC

Reading through the data sheet highlights some of the unique characteristics
associated with each port and the reader is encouraged to explore these in greater
detail once comfortable with the labs in this user’s guide. The labs will focus on two of
the port peripherals: PORTC and PORTA. Labs will be naturally divided into two
sections since these are General Purpose Input/Output peripherals:

• Output Labs

• Input Labs

Output labs will introduce the reader to concepts necessary to configuring these
peripherals for output to off-chip devices using applicable registers by lighting eight
LEDs connected to the PORTC pins

The Input labs will then add a push button interfacing to one of the PORTA pins to
highlight concepts necessary for configuring these peripherals to receive information
from off-chip devices. Finally, interrupts will be used to optimize the application for
different purposes.

3.2 GENERAL PURPOSE INPUT/OUTPUT LABS

• Output Labs:

- Lab 1: Light LEDs

- Lab 2: Flash LEDs (Delay Loop)

- Lab 3: Simple Delays Using Timer0

- Lab 4: Rotate LEDs

• Input Labs:

- Lab 5: Adding a Push Button

- Lab 6: Push Button Interrupt

- Lab 7: Push Button Interrupt-on-Change

- Lab 8: Using Weak Pull-ups
 2009-2015 Microchip Technology Inc. DS40001369C-page 21

PICDEMTM Lab Development Board User’s Guide
3.3 GPIO OUTPUT LABS

3.3.1 Reference Documentation

All documentation on the PICDEM™ Lab Development Kit is available on the product’s
page at www.microchip.com.

• PIC16F690 Data Sheet (DS41262)

- Section 2.2.2.2: Option Register

- Section 2.2.2.3: Interrupt Control Register INTCON

- Section 4: I/O Ports

- Section 5: Timer0 Module

• Timers: Timer0 Tutorial (Part 1) (DS51682)

• Timers: Timer0 Tutorial (Part 2) (DS51702)

3.3.2 Equipment Required for GPIO Output Labs

To complete the labs in this section, the following components are required:

1. 8 – Light Emitting Diodes

2. 8 – 470 resistors

3. PIC16F690 populating socket U2

4. Assorted jumper wires

3.3.3 PICDEM Lab Development Board Setup for GPIO Output Labs

The GPIO output labs will require that the PICDEM Lab Development Board be
configured as shown in Figure 3-1 using the components listed in the previous section.

FIGURE 3-1: PICDEM LAB SCHEMATIC FOR GPIO OUTPUT LABS

U2
1
2
3
4
5
6
7
8
9
10

20
19
18
17
16
15
14
13
12
11

RC0
RC1
RC2RC3

RC4
RC5

RC6
RC7

J9J8

R8

470Ω

R4

470Ω

R7

470Ω

R6

470Ω

R5

470Ω

R3

470Ω

R2

470Ω

R1

470Ω

LED8 LED7 LED6 LED4 LED3 LED2 LED1LED5

VSS
DS40001369C-page 22  2009-2015 Microchip Technology Inc.

http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=dm163045

General Purpose Input/Output Labs
Special care should be observed when connecting the LED jumper wires to the
expansion headers surrounding the PIC16F690, as the PORTC pins are not in
sequential order. The 470resistors are used to limit the current across the LEDs to
manufacturer specifications. Furthermore, the PIC16F690 Data Sheet electrical
specifications (see Section 17.0) stipulate that each port pin should not source/sink
more than 25 mA. The maximum output current sourced/sunk by all port pins combined
should not exceed 200 mA. The 470 resistors keep all source current well within
these specifications.

3.3.4 Lab 1: Light LEDs

3.3.4.1 NEW REGISTERS USED IN THIS LAB

To configure the peripherals used in this lab, the following registers are used:

1. PORTC Register: PORTC (Register 4-11 in Section 4 of the PIC16F690 Data
Sheet).

- 8-bit bidirectional port.

2. PORTC Tri-State Register: TRISC (Register 4-12 in Section 4 of the PIC16F690
Data Sheet).

- Configures corresponding bits in PORTC as either input or output.

3. Analog Select Register High and Analog Select Register Low: ANSELH and
ANSEL (Registers 4-4 and 4-3 in Section 4 of the PIC16F690 Data Sheet).

- Configure associated pins for analog or digital input signals.

3.3.4.2 OVERVIEW

This first lab demonstrates how to output data from the PORTC peripheral on the
PIC16F690 to its associated pins. LEDs connected to PORTC pins will light when the
associated pin is driven high (approx. VDD) or turn the LED OFF when driven low
(approx. VSS). The port peripherals will all default to input on start-up and will therefore
need to be configured as output using the TRISC register. Also, PORTC pins RC0,
RC1, RC2, RC3, RC6 and RC7 are configurable for both analog and digital signals. On
start-up, any analog/digital functional pin is defaulted to analog. Therefore, this
application will require that these pins be configured as digital by configuring the
associated bits in the ANSEL and ANSELH analog select registers.

FIGURE 3-2: MAIN() SOFTWARE CONTROL LOOP FLOWCHART FOR
LAB 1

main()

Initialize()

Do_Outputs()

Loop Forever
 2009-2015 Microchip Technology Inc. DS40001369C-page 23

PICDEMTM Lab Development Board User’s Guide
Figure 3-2 shows the software control loop that will be implemented in this lab. At
device power-up, the first functional block called from the main() is Initialize().
This function will initialize the PORTC peripheral as follows:

• Clear the PORTC register data

• Configure the ANSEL and ANSELH bits so that all associated PORTC pins are
digital

• Configure the associated PORTC pins as all output using the TRISC register

The next function called from main() is Do_Outputs(). This function will assign
values to the PORTC register that will drive the associated pins high or low to light the
LEDs connected.

3.3.4.3 PROCEDURE

The following steps will demonstrate how to create a new project in MPLAB® IDE.

1. Open MPLAB X IDE by selecting Start > Program Files > Microchip > MPLAB X
IDE > MPLAB X IDE vX.XX.

2. In the MPLAB X IDE Toolbar, select File >New Project.

FIGURE 3-3: NEW MPLAB IDE PROJECT SELECTION

Note: The PORT register should always be initialized to a known value before
configuring the associated TRIS bit. This avoids unexpected voltage levels
on the associated pins since at start-up port bit values are unknown.
DS40001369C-page 24  2009-2015 Microchip Technology Inc.

General Purpose Input/Output Labs
3. In the Step One window click “Choose Project”, and then select Microchip
Embedded and Standalone Project and click Next.

FIGURE 3-4: STEP ONE

4. In the Step One window, select “PIC16F690” from the Device drop-down menu
and select Next to continue.

5. In the Step Two window, select Device window, select “Mid-Range 8-bit MCUs
(PIC10/12/16/MCP)” from the Family drop-down menu and select “PIC16F690”
from the Device drop-down menu. Select Next to continue.

FIGURE 3-5: DEVICE SELECTION
 2009-2015 Microchip Technology Inc. DS40001369C-page 25

PICDEMTM Lab Development Board User’s Guide
6. In the Select Header window, select None from the Supported Debug Header
drop-down menu and select Next to continue.

FIGURE 3-6: HEADER SELECTION

7. In the Select Tool window, select “PICkit3” and click Next to continue.

FIGURE 3-7: TOOL SELECTION
DS40001369C-page 26  2009-2015 Microchip Technology Inc.

General Purpose Input/Output Labs
8. In the Select Compiler window, select “XC8 (vX.XX)” and click Next to continue.

FIGURE 3-8: COMPILER SELECTION

9. In the Select Project Name and Folder window, type a name for the project into
“Project Name”. It is recommended to use the default location for “Project
Location” and “Project Folder”. Choose the option “Set as main project” and
select Finish to continue.

FIGURE 3-9: SELECT PROJECT NAME AND FOLDER
 2009-2015 Microchip Technology Inc. DS40001369C-page 27

PICDEMTM Lab Development Board User’s Guide
10. In the left pane of the MPLAB X window under the Projects tab, right-click on
“Source Files” and select “Add Existing Item”.

FIGURE 3-10: SELECT PROJECT SOURCE

11. Browse to the GPIO_Lab1.c file, select it and click Select to add it to the project.
Then double click GPIO_Lab1.c to open the file.

12. The MPLAB® IDE workspace should now be open. If the Project window is not
visible, it can be opened by selecting View > Project.
DS40001369C-page 28  2009-2015 Microchip Technology Inc.

General Purpose Input/Output Labs
FIGURE 3-11: PROJECT WINDOW

13. Double click on the GPIO_Lab1.c source file in the Project window to open.

14. Copy/paste the code in Example 3-1 into the Initialize() section labeled:
//ADD INITIALIZE CODE HERE.

EXAMPLE 3-1: INITIALIZE() CODE FOR LAB 1

//Clear PORTC to a known state
PORTC = 0b00000000;

//Configure PORTC's ANALOG/DIGITAL pins as all Digital
ANS4 = 0;//Associated with RC0
ANS5 = 0;//Associated with RC1
ANS6 = 0;//Associated with RC2
ANS7 = 0;//Associated with RC3
ANS8 = 0;//Associated with RC6
ANS9 = 0;//Associated with RC7

//Configure PORTC pins as all output
//i.e. 1 = Input, 0 = Output
TRISC0 = 0;//Make RC0 (pin 16) output
TRISC1 = 0;//Make RC1 (pin 15) output
TRISC2 = 0;//Make RC2 (pin 14) output
TRISC3 = 0;//Make RC3 (pin 7) output
TRISC4 = 0;//Make RC4 (pin 6) output
TRISC5 = 0;//Make RC5 (pin 5) output
TRISC6 = 0;//Make RC6 (pin 8) output
TRISC7 = 0;//Make RC7 (pin 9) output
 2009-2015 Microchip Technology Inc. DS40001369C-page 29

PICDEMTM Lab Development Board User’s Guide
15. Copy and paste the code in Example 3-2 into the Do_Outputs() section
labeled: //ADD DO_OUTPUTS CODE HERE.

EXAMPLE 3-2: DO_OUTPUT() CODE FOR LAB 1

16. Copy and paste the code in Example 3-3 into the main() section labeled:
//ADD MAIN CODE HERE.

EXAMPLE 3-3: MAIN() CODE FOR LAB 1

The project is now ready to compile and download to the PIC16F690.

17. In the MPLAB X™ IDE toolbar, the following symbols should be visible:

FIGURE 3-12: TOOLBAR BUTTONS

18. Press Clean and Build Main Project to compile the code.

19. Provided no errors occur, press Make and Program Device to program the
PIC16F690 device.

RC0 = 1;//Make RC0 (pin 16) HIGH (approx. Vdd)
RC1 = 0;//Make RC1 (pin 15) LOW (approx. Vss)
RC2 = 1;//Make RC2 (pin 14) HIGH (approx. Vdd)
RC3 = 1;//Make RC3 (pin 7) HIGH (approx. Vdd)
RC4 = 0;//Make RC4 (pin 6) LOW (approx. Vss)
RC5 = 1;//Make RC5 (pin 5) HIGH (approx. Vdd)
RC6 = 0;//Make RC6 (pin 8) LOW (approx. Vss)
RC7 = 1;//Make RC7 (pin 9) HIGH (approx. Vdd)

Initialize(); //Initialize the relevant registers

while(1) //Code within curly braces will loop forever
{

Do_Outputs(); //Perform any outputs

}

21

Clean and Build
 Main Project

Make and
Program
Device
DS40001369C-page 30  2009-2015 Microchip Technology Inc.

General Purpose Input/Output Labs
3.3.4.4 TESTING THE APPLICATION

Once programmed, the LEDs connected to the individual PORTC pins should now
resemble the output shown in Figure 3-13.

FIGURE 3-13: LAB 1 LED OUTPUT

The solution for this project is located in the
C:\PICDEM_Lab\GPIO_Labs\GPIO_Lab1\solution directory.

3.3.5 Lab 2: Flash LEDs (Delay Loop)

3.3.5.1 OVERVIEW

This lab implements a software delay to flash the LEDs connected to the PORTC pins
on/off in one second intervals. As configured, the PIC16F690 executes 1 million
instructions per second. At this rate, the software loop execution needs to be slowed
down so that the LED flashing is visible to the eye. This is done using a delay routine
within the Timing() functional block called from the main() software control loop as
shown in Figure 3-14.

FIGURE 3-14: MAIN() SOFTWARE CONTROL LOOP FLOWCHART FOR
LAB 2

The Timing() delay routine is shown in Figure 3-15.

R8

470Ω

R4

470Ω

R7

470Ω

R6

470Ω

R5

470Ω

R3

470Ω

R2

470Ω

R1

470Ω

LED8 LED7 LED6 LED4 LED3 LED2 LED1LED5

VSSLED ON LED OFF

main()

Initialize()

Do_Outputs()

Loop Forever

Timing()
 2009-2015 Microchip Technology Inc. DS40001369C-page 31

PICDEMTM Lab Development Board User’s Guide
FIGURE 3-15: TIMING() DELAY ROUTINE FLOWCHART FOR LAB 2

Two variables are used, delay_var1 and delay_var2. The delay_var2 is
decremented by 1 each time delay_var1 is decremented from 45571 to 0. These
values have been determined through trial and error using a test procedure detailed in
the “Timers: Timer0 Tutorial (Part 1)” (DS51682) included on the PICDEM™ Lab
Development Kit CD. This delay ties up the processor for one second when using the
4 MHz internal oscillator.

The Initialize() configures the PORTC as follows:

• PORTC

- Set all bits in the PORTC register HIGH

- Configure all PORTC pins as digital outputs

The Do_Outputs() changes somewhat from the previous lab by implementing the
XOR operator to toggle the value in each PORTC bit location each time through the
software loop. The XOR operator is implemented in code as follows:
RCx ^= 1;
This translates to: “Make RCx equal to the current value in RCx XOR’d with 1”

When a value is XOR’d with itself, the result is ‘0’ (i.e., 1 XOR’d with 1 = 0, 0 XOR’d
with 0 = 0). When a value is XOR’d with a value different than itself, the result is ‘1’ (i.e.,
1 XOR’d with 0 = 1). Therefore, each time through the loop PORTC bits will toggle from
1-to-0 or 0-to-1, depending on its current value.

3.3.5.2 PROCEDURE

Using the code developed in the previous lab, make the following changes:

1. Copy and paste the code in Example 3-4 over the Initialize() code from the
previous lab.

TIMING()

Create two 8-bit variables:

• delay_var1 = 45571
• delay_var2 = 3

delay_var2 - 1 = 0

?

delay_var1 - 1 = 0

?

END

delay_var1 = 45571

YES

YES

NO

NO

Note: The reader may wish to create a new project as per the previous lab called
GPIO_Lab2.mcp
DS40001369C-page 32  2009-2015 Microchip Technology Inc.

General Purpose Input/Output Labs
EXAMPLE 3-4: INITIALIZE() CODE FOR LAB 2

The only change from the previous lab is that the PORTC bits are all set high to 1.

2. Copy and paste the code in Example 3-5 over the Do_Outputs() code from the
previous lab to accommodate the XOR bit toggle.

EXAMPLE 3-5: DO_OUTPUT() CODE FOR LAB 2

3. Copy and paste the code in Example 3-6 into the Timing() section labeled:
//ADD TIMING CODE HERE

//Set all PORTC bits HIGH (to a known state)
PORTC = 0b11111111;

//Configure PORTC's ANALOG/DIGITAL pins as all Digital
ANS4 = 0;//Associated with RC0
ANS5 = 0;//Associated with RC1
ANS6 = 0;//Associated with RC2
ANS7 = 0;//Associated with RC3
ANS8 = 0;//Associated with RC6
ANS9 = 0;//Associated with RC7

//Configure PORTC pins as all output
//i.e. 1 = Input, 0 = Output
TRISC0 = 0;//Make RC0 (pin 16) output
TRISC1 = 0;//Make RC1 (pin 15) output
TRISC2 = 0;//Make RC2 (pin 14) output
TRISC3 = 0;//Make RC3 (pin 7) output
TRISC4 = 0;//Make RC4 (pin 6) output
TRISC5 = 0;//Make RC5 (pin 5) output
TRISC6 = 0;//Make RC6 (pin 8) output
TRISC7 = 0;//Make RC7 (pin 9) output

RC0 ^= 1;//XOR current RC0 value with 1
RC1 ^= 1;//XOR current RC1 value with 1
RC2 ^= 1;//XOR current RC2 value with 1
RC3 ^= 1;//XOR current RC3 value with 1
RC4 ^= 1;//XOR current RC4 value with 1
RC5 ^= 1;//XOR current RC5 value with 1
RC6 ^= 1;//XOR current RC6 value with 1
RC7 ^= 1;//XOR current RC7 value with 1
 2009-2015 Microchip Technology Inc. DS40001369C-page 33

PICDEMTM Lab Development Board User’s Guide
EXAMPLE 3-6: TIMING() FOR LAB 2

4. Copy and paste the code in Example 3-7 over the main() code from the
previous lab to incorporate the Timing().

EXAMPLE 3-7: MAIN() CODE FOR LAB 2

Compile the project. There should be no errors.

3.3.5.3 TESTING THE APPLICATION

Program the PIC16F690. The LEDs connected to the individual PORTC pins should
now all flash on/off in 1-second intervals.

The solution for this project is located in the
C:\PICDEM_Lab\GPIO_Labs\GPIO_Lab2\solution directory.

3.3.6 Lab 3: Simple Delays Using Timer0

3.3.6.1 NEW REGISTERS USED IN THIS LAB

To configure the peripherals used in this lab, the following registers are used:

1. Timer0 Module Register: TMR0

- Holds a count value of the number of selected edge transition of a clock
source.

2. OPTION Register: OPTION_REG (Register 5-1 in Section 5 of the PIC16F690
Data Sheet).

- Selects clock source used to increment TMR0 result register.

- Selects clock source edge transition to increment TMR0.

3. Software configurable prescaler to determine the number of clock source edge
transitions before incrementing TMR0 register value.

//--------DELAY 1second-------------------------
//Variable used in delay loop
unsigned int delay_var1 = 45571;
unsigned char delay_var2 = 3;
//Nested while loops to implement a 1 second delay
//Decrement delay_var2, if 0 jump out of loop
while(--delay_var2)
{

//Decrement delay_var1, if 0 jump out of loop
while(--delay_var1);

}

Initialize(); //Initialize the relevant registers

while(1)
{

Do_Outputs(); //Perform any outputs

Timing();//Sets execution rate of the
//Software Control Loop

}

DS40001369C-page 34  2009-2015 Microchip Technology Inc.

General Purpose Input/Output Labs
4. Interrupt Control Register: INTCON (Register 2-3 in Section 2 of the PIC16F690
Data Sheet).

- Contains a flag that when 1, indicates a TMR0 register overflow has occurred.

3.3.6.2 OVERVIEW

To implement a more accurate delay, the Timer0 peripheral can be used. Timer0 is an
8-bit timer/counter that uses a clock source to increment an 8-bit register called TMR0.
Since this register is 8 bits, it can increment up 28 = 256 times or 010 - 25510
(000000002 - 111111112) inclusive then rollover or overflow back to ‘0’. Whenever
TMR0 overflows, a Timer0 Overflow Flag (T0IF) in the ITCON register is set to ‘1’. The
OPTION register also features a prescaler that determines how many clock source
cycles it takes to increment TMR0 by ‘1’. In this way, simply by tracking the T0IF, very
accurate delays can be implemented. In this lab, the TMR0 register is configured to
increment on the low-to-high transition of an available internal instruction clock on the
PIC16F690. This internal instruction clock runs at the rate of the internal oscillator
frequency FOSC divided by 4. Therefore, when the PIC16F690 is configured to operate
using the internal 4 MHz oscillator, this internal instruction clock runs at a rate of
FOSC/4 = 4MHz/4 = 1MHz. This is a period of 1/1MHz = 1 S. If it is known that TMR0
increments every 1 S, and it takes 256 internal instruction clock cycles to cause a
TMR0 overflow (i.e., 0-255 inclusive), then Equation 3-1 can be derived:

EQUATION 3-1: TMR0 OVERFLOW PERIOD USING FOSC/4

As mentioned, Timer0 also features a prescaler that can be configured to increment the
value in TMR0 every 2, 4, 8, 16, 32, 64, 128, or 256 clock source transitions. Therefore,
this feature can be added to Equation 3-1 to create Equation 3-2.

EQUATION 3-2: TMR0 OVERFLOW PERIOD WHEN INCLUDING THE
PRESCALER

Finally, TMR0 is a writable register. Meaning that a value can be added to the register
to offset the number of counts it takes for the overflow to occur. Equation 3-3
demonstrates how to calculate the value to preload the TMR0 register with to create a
10 mS overflow period.

TMR0 Overflow Period = (4/FOSC) x 256 = 1 Second x 256 = 256 Seconds

TMR0 Overflow Period = (4/FOSC) x 256 x prescaler

Using a 1:32 prescaler setting as an example and a 4 MHz internal oscillator

TMR0 Overflow Period = 1 S x 256 x 32 = 8.192mS
 2009-2015 Microchip Technology Inc. DS40001369C-page 35

PICDEMTM Lab Development Board User’s Guide
EQUATION 3-3: CALCULATING A TMR0 PRELOAD VALUE TO GENERATE A
10MS OVERFLOW PERIOD

The software flowchart to implement a 10 mS delay is shown in Figure 3-16.

FIGURE 3-16: DELAY_10MS() USING TIMER0

 The maximum overflow period that can be achieved using Timer0 only utilizes a 1:256
prescaler is as shown in Equation 3-4.

EQUATION 3-4: MAXIMUM TMR0 OVERFLOW PERIOD

Desired TMR0 Overflow Period = (4/FOSC) x (256 - Preload Value) x prescaler

Using a 1:64 prescaler setting, a 4 MHz internal oscillator and requiring a 10 mS
overflow period:

10mS = 1 Second x (256 - Preload Value) x 64

10mS/(1 Second x 64) = 256 - Preload Value

Preload Value = 256 - [10mS/(1 Second x 64)]

Preload Value = 99.75 rounded up becomes 100

Note: Therefore, to produce a 10 mS overflow period, using the internal
instruction clock with a 4 MHz internal oscillator and a TMR0 prescaler
value of 1:64 requires that TMR0 be preloaded with a value of 100.

Delay_10mS()

END

YES

NO

Preload TMR0 register with 100

Clear the TMR0 overflow flag

(T0IF)

T0IF = 0?

TMR0 Overflow Period = (4/FOSC) x 256 x prescaler

using a maximum prescaler setting of 1:256 and the 4 MHz internal oscillator

TMR0 Overflow Period = 1 S x 256 x 256 = 65.5mS
DS40001369C-page 36  2009-2015 Microchip Technology Inc.

General Purpose Input/Output Labs
Therefore, to implement delays greater than 65.5 mS, a counter variable is
implemented as shown in the flowchart of Figure 3-17 for a 1-second delay.

FIGURE 3-17: DELAY_1S() USING TIMER0

Delay_1S()

END

YES

NO

counter variable value determined as follows:

1 second/65.5mS = 15.25 or rounded down to 15

Create an 8-bit variable counter and
initialize to 0

Clear the TMR0 register

Clear the TMR0 overflow flag

(T0IF)

T0IF = 0?

counter < or = 15?

Increment counter value by 1

NO

YES
 2009-2015 Microchip Technology Inc. DS40001369C-page 37

PICDEMTM Lab Development Board User’s Guide
 The Initialize() now configures the PIC16F690 peripherals as follows:

• PORTC

- Set all bits in PORTC high

- Make all PORTC pins digital output

• Timer0

- Use the internal instruction clock (FOSC/4) as the TMR0 register clock source

- Increment TMR0 register on low-to-high transition of FOSC/4

- Assign the prescaler to Timer0 and configure to increment on every 256th
transition of FOSC/4

3.3.6.3 PROCEDURE

Using the firmware developed in the previous lab, make the following changes:

1. Copy and paste the code in Example 3-8 at the top of the main firmware source
file under the heading labeled:
/**SUPPORT ROUTINES**********************************/

EXAMPLE 3-8: DELAY_1S() CODE FOR LAB 3

2. Copy and paste the code in Example 3-9 into the Initialize() over the code
from the previous lab.

/*---
Subroutine: Delay_1S
Parameters: none
Returns:nothing
Synopsis:Creates a 1S delay when called

---*/
void Delay_1S(void)
{

//Create an 8-bit variable called counter
//and initialize it to 0
unsigned char counter = 0;

while(counter <= 15)
{
//Make sure the T0IF is cleared
T0IF = 0;

//Clear the TMR0 register
TMR0 = 0;
//Sit here and wait for Timer0 to overflow

while (T0IF == 0);
++counter;

}

}

DS40001369C-page 38  2009-2015 Microchip Technology Inc.

General Purpose Input/Output Labs
EXAMPLE 3-9: INITIALIZE() CODE FOR LAB 3

3. Finally, copy and paste the code in Example 3-10 into the Timing() over the
code from the previous lab

EXAMPLE 3-10: TIMING() CODE FOR LAB 3

4. The remaining code from the previous lab remains the same. Compile the
project. There should be no errors.

3.3.6.4 TESTING THE APPLICATION

Program the PIC16F690. The application should behave exactly as it did in the
previous lab. Using an oscilloscope to test individual PORTC pin level transitions would
be useful to analyze the accuracy of the delay.

The solution for this project is located in the
C:\PICDEM_Lab\GPIO_Labs\GPIO_Lab3\solution directory.

//Set all PORTC bits HIGH (to a known state)
PORTC = 0b11111111;

//Configure PORTC's ANALOG/DIGITAL pins as all Digital
ANS4 = 0;//Associated with RC0
ANS5 = 0;//Associated with RC1
ANS6 = 0;//Associated with RC2
ANS7 = 0;//Associated with RC3
ANS8 = 0;//Associated with RC6
ANS9 = 0;//Associated with RC7

//Configure PORTC pins as all output
//i.e. 1 = Input, 0 = Output
TRISC0 = 0;//Make RC0 (pin 16) output
TRISC1 = 0;//Make RC1 (pin 15) output
TRISC2 = 0;//Make RC2 (pin 14) output
TRISC3 = 0;//Make RC3 (pin 7) output
TRISC4 = 0;//Make RC4 (pin 6) output
TRISC5 = 0;//Make RC5 (pin 5) output
TRISC6 = 0;//Make RC6 (pin 8) output
TRISC7 = 0;//Make RC7 (pin 9) output

//Configure Timer0 as follows:
T0CS = 0; //Use the internal instruction clock

//FOSC/4 as the clock source
T0SE = 0;//Increment TMR0 on low-to-high

//FOSC/4 transition
PSA = 0;//Assign the prescaler to

//Timer0

//Configure Timer0 prescaler to increment
//TMR0 every 256 FOSC/4 clock transitions
PS0 = 1;
PS1 = 1;
PS2 = 1;

Delay_1S(); //Call the 1 second delay

Note: More in-depth tutorials on the Timer0 peripheral are covered in “Timers:
Timer0 Tutorial (Part 1)” (DS5162) and “Timers: Timer0 Tutorial (Part 2)”
(DS51702) files included on the PICDEM™ Lab Development Kit CD.
 2009-2015 Microchip Technology Inc. DS40001369C-page 39

PICDEMTM Lab Development Board User’s Guide
3.3.7 Lab 4: Rotate LEDs

3.3.7.1 OVERVIEW

This lab shifts a high bit in the PORTC register from right-to-left each time through the
software loop sequentially lighting the LEDs connected to the PORTC pins in 1-second
intervals as dictated by the Timing(). This lab adds some new functional blocks to
the main() software control loop as shown in Figure 3-18.

FIGURE 3-18: MAIN() SOFTWARE CONTROL LOOP FLOWCHART FOR
LAB 4

The addition of an 8-bit global variable (can be manipulated by any function) called
LED_Output is used. This variable will be acted upon by the new Decide() by
shifting a high bit in LED_Output from right-to-left each time this function is called. The
flowchart for the Decide() is shown in Figure 3-19.

FIGURE 3-19: DECIDE() FLOWCHART FOR LAB 4

main()

Initialize()

Do_Outputs()

Loop Forever

Timing()

Decide()

Global Variables:

• 8-bit LED_Output

Decide()

LED_Output = 0b10000000

or

LED_Output = 0b00000000

?

END

Shift contents of LED_Output
variable left by 1 bit position

YES

NO

LED_Output = 0b00000001

LED_Output variable initialize to 0b00000001
in Initialize()
DS40001369C-page 40  2009-2015 Microchip Technology Inc.

General Purpose Input/Output Labs
The Decide() first checks the current value in LED_Output for two specific
conditions:

• Is the Most Significant bit ‘1’? This means that on the next shift, the contents will
be all ‘0’s.

• Is the value currently a ‘0’?

If either condition exists, the function re-initializes LED_Output to set the Least
Significant bit. Otherwise, there will be a period when none of the LEDs are lit.

The shift is implemented in code as follows:

LED_Output <<= 1;

This translates to: “LED_Output is equal to the current contents of LED_Output
shifted to the left by 1 bit position”

Conversely, to shift the bit to the right the code would be as follows:

LED_Output >>= 1;

The Do_Outputs() will then assign the contents of the LED_Output variable to the
PORTC register and whichever bit is high will light the connected LED. (See
Figure 3-20.)

FIGURE 3-20: RESULTS OF DO_OUTPUT()

The Initialize() now configures the PIC16F690 peripherals as follows:

• PORTC

- Initialize PORTC so that the seven Most Significant bits are ‘0’ and the Least
Significant bit is ‘1’

- Make all PORTC pins digital output

• Timer0

- Use the internal instruction clock (FOSC/4) as the TMR0 register clock source

- Increment TMR0 register on low-to-high transition of FOSC/4

- Assign the prescaler to Timer0 and configure to increment on every 256th
transition of FOSC/4

• Initialize the LED_Output variable to ‘0’

Do_Outputs()
assigns LED_Out-
put to PORTC

LED_Output variable

1000000 0 1000000 0
PORTC

Do_Outputs()
assigns LED_Out-
put to PORTC

0100000 0 0100000 0
LED_Output variable PORTC

Decide() shifts contents of
LED_Output Left by 1 bit position

Corresponding LED lights

Corresponding LED lights

First time through main():

Next time through main():

Initialize() determines initial
contents of LED_Output
 2009-2015 Microchip Technology Inc. DS40001369C-page 41

PICDEMTM Lab Development Board User’s Guide
3.3.7.2 PROCEDURE

 Using the code developed in the previous lab, make the following changes:

1. The LED_Output variable will need to be declared before it can be used.
Copy/paste the code in Example 3-11 to the beginning of the source file under
the section marked:
//-----------------DATA MEMORY------------------------

EXAMPLE 3-11: LED_OUTPUT VARIABLE DECLARATION FOR LAB 4

2. Copy and paste the code in Example 3-12 over the Initialize() code from
the previous lab.

EXAMPLE 3-12: INITIALIZE() CODE FOR LAB 4

unsigned char LED_Output;//Variable used to set/clear PORTC bits

//Clear PORTC to a known state
PORTC = 0b00000001;

//Configure PORTC's ANALOG/DIGITAL pins as all Digital
ANS4 = 0;//Associated with RC0
ANS5 = 0;//Associated with RC1
ANS6 = 0;//Associated with RC2
ANS7 = 0;//Associated with RC3
ANS8 = 0;//Associated with RC6
ANS9 = 0;//Associated with RC7

//Configure PORTC pins as all output
//i.e. 1 = Input, 0 = Output
TRISC0 = 0;//Associated with RC0
TRISC1 = 0;//Associated with RC1
TRISC2 = 0;//Associated with RC2
TRISC3 = 0;//Associated with RC3
TRISC4 = 0;//Associated with RC4
TRISC5 = 0;//Associated with RC5
TRISC6 = 0;//Associated with RC6
TRISC7 = 0;//Associated with RC7

//Configure Timer0 as follows:
T0CS = 0; //Use the internal instruction clock

//FOSC/4 as the clock source
T0SE = 0;//Increment TMR0 on low-to-high

//FOSC/4 transition
PSA = 0;//Assign the prescaler to

//Timer0

//Configure Timer0 prescaler to increment
//TMR0 every 256 FOSC/4 clock transitions
PS0 = 1;
PS1 = 1;
PS2 = 1;
//Initialize LED_Output to all zeros
LED_Output = 0b00000000;
DS40001369C-page 42  2009-2015 Microchip Technology Inc.

General Purpose Input/Output Labs
Changes from the previous lab include PORTC initialization so that all bits are ‘0’
except for the Least Significant bit (LSb) and the initialization of the LED_Output
variable.

3. Copy and paste the code in Example 3-13 into the Decide() section labeled:
//ADD DECISION CODE HERE

EXAMPLE 3-13: DECIDE()CODE FOR LAB 4

4. Copy and paste the code in Example 3-14 over the Do_Outputs() code from
the previous lab.

EXAMPLE 3-14: DO_OUTPUTS() CODE FOR LAB 4

This code simply assigns the contents of the LED_Output variable to the PORTC
register.

5. Copy and paste the code in Example 3-15 over the main() code from the
previous lab to incorporate the Decide().

EXAMPLE 3-15: MAIN() CODE FOR LAB 4

Compile the project. There should be no errors.

//First check if LED_Output variable has most significant bit
//set to 1 or if LED_Output variable is all 0's.
//If so, re initialize the LED_Output variable so that the
//least significant bit is set to 1 and all other bits are
//cleared to 0

if((LED_Output == 0b10000000) || (LED_Output == 0b00000000))
LED_Output = 0b00000001;

//If neither of these conditions are true, simply shift
//the LED_Output variable's contents to the Left by 1 bit
//position

else LED_Output <<=1;

//Assign the manipulated contents of the
//LED_Output variable to the PORTC register

PORTC = LED_Output;

Initialize(); //Initialize the relevant registers

while(1)
{

Decide(); //Make any decisions

Do_Outputs(); //Perform any outputs

Timing();//Sets execution rate of the
//Software Control Loop

}

 2009-2015 Microchip Technology Inc. DS40001369C-page 43

PICDEMTM Lab Development Board User’s Guide
3.3.7.3 TESTING THE APPLICATION

Program the PIC16F690. The LEDs connected to the individual PORTC pins should
now all flash on/off sequentially from right-to-left in 1-second intervals.

The solution for this project is located in the
C:\PICDEM_Lab\GPIO_Labs\GPIO_Lab4\solution directory.

3.4 GPIO INPUT LABS

3.4.1 Reference Documentation

PIC16F690 Data Sheet

• Section 2: Memory Organization

• Section 4: I/O Ports

• Section 5: Timer0 Module

3.4.2 Equipment Required for GPIO Input Labs

To complete the labs in this section, the following components are required:

1. 1 – push button

2. 8 – Light Emitting Diodes

3. 1 – 10 k
4. 8 – 470 resistors

5. PIC16F690 populating socket U2

6. Assorted jumper wires

3.4.3 PICDEM Lab Development Board Setup for GPIO Input Labs

The GPIO input labs will require that the PICDEM Lab Development Board be
configured as shown in Figure 3-12 using the components listed in the previous
section.
DS40001369C-page 44  2009-2015 Microchip Technology Inc.

General Purpose Input/Output Labs
FIGURE 3-21: PICDEM LAB SCHEMATIC FOR GPIO INPUT LABS

The only change from the previous section is the inclusion of a push button connected
to RA2 with associated pull-up resistor.

3.4.4 Lab 5: Adding a Push Button

3.4.4.1 NEW REGISTERS USED IN THIS LAB

To configure the peripherals used in this lab, the following registers are used:

1. PORTA Register: PORTA (Register 4-1 in Section 4 of the PIC16F690 Data
Sheet)

- 8-bit bidirectional port

2. PORTA Tri-State Register: TRISA (Register 4-2 in Section 4 of the PIC16F690
Data Sheet)

- Configures corresponding bits in PORTA as either input or output

3.4.4.2 OVERVIEW

This lab expands upon Lab 4 by adding a push button interface to change the direction
of the sequential shift in the PORTC register.

U2
1
2
3
4
5
6
7
8
9
10

20
19
18
17
16
15
14
13
12
11

RC0
RC1
RC2RC3

RC4
RC5

RC6
RC7

J9J8

R8

470Ω

R4

470Ω

R7

470Ω

R6

470Ω

R5

470Ω

R3

470Ω

R2

470Ω

R1

470Ω

LED8 LED7 LED6 LED4 LED3 LED2 LED1LED5

VSS

VSS

VDD

R9

10 kΩ

SW1
RA2
 2009-2015 Microchip Technology Inc. DS40001369C-page 45

PICDEMTM Lab Development Board User’s Guide
Mechanical switches play an important and extensive role in practically every
computer, microprocessor and microcontroller application. Mechanical switches are
inexpensive, simple and reliable. However, switches can be very noisy electrically. The
apparent noise is caused by the closing and opening action that seldom results in a
clean electrical transition. The connection makes and breaks several, perhaps even
hundreds, of times before the final switch state settles. The problem is known as switch
bounce. Some of the intermittent activity is due to the switch contacts actually bouncing
off each other. Also, switch contacts are not perfectly smooth. As the contacts move
against each other, the imperfections and impurities on the surfaces cause the
electrical connection to be interrupted. The result is switch bounce. The consequences
of uncorrected switch bounce can range from being just annoying to catastrophic. The
classic solution involves filtering, such as through a resistor-capacitor circuit, or through
resettable shift registers. These methods are still effective but they involve additional
cost in material, installation and board real estate. Debouncing in software eliminates
these additional costs.

One of the simplest ways to switch debounce is to sample the switch until the signal is
stable or continue to sample the signal until no more bounces are detected. How long
to continue sampling requires some investigation. However, 5mS is usually adequate,
while still reacting fast enough that the user will not notice it.

The software flowchart for this application is shown in Figure 3-22.

FIGURE 3-22: MAIN() SOFTWARE CONTROL LOOP FLOWCHART FOR
LAB 5

The Initialize() now configures the following:

• PORTC

- Configure PORTC pins as per the previous labs

• PORTA

- Clear PORTA register.

- Configure RA2 as a digital input pin
(see Registers 4-1 and 4-2 in Section 4.1 of the PIC16F690 Data Sheet).

main()

Initialize()

Do_Outputs()
Loop Forever

Timing()

Decide()

Global Variables:

• 8-bit variable LED_Output will be used to
light the LEDs connected to PORTC

• 1-bit variable direction used to deter-
mine the direction of the sequential LED
flashing
0 = shift PORTC bits right-to-left
1 = shift PORTC bits left-to-right

Get_Inputs()
DS40001369C-page 46  2009-2015 Microchip Technology Inc.

General Purpose Input/Output Labs
• Timer0 will be configured to implement the 5mS delay as follows:

- Use the internal instruction clock FOSC/4 as the TMR0 clock source.

- Increment TMR0 on the low-to-high transition of FOSC/4.

- Assign the prescaler to TMR0 and configure 1:64.

• Initialize the LED_Output variable to ‘0’

• Initialize the direction bit variable to ‘0’

- This is a global variable that will be manipulated by the new Get_Inputs()
and used to determine PORTC shift direction by the Decide().

A new function called Get_Inputs() is used to check the RA2 pin voltage. Referring
to Figure 3-12, the RA2 pin connected to the push button (SW1) is pulled to VDD using
a 10 k resistor. This pull-up resistor eliminates noise on the pin that could trigger
“false” push button presses. The second terminal of the push button is connected to
VSS. In this way, when a user presses the push button the voltage present on RA2 will
transition from VDD (high or ‘1’) to VSS (low or ‘0’). The software flowchart for the
Get_Inputs() is shown in Figure 3-23.

FIGURE 3-23: GET_INPUTS() SOFTWARE FLOWCHART FOR LAB 5

Referring to the flowchart in Figure 3-23, the Get_Inputs() first checks the voltage
level on the RA2 pin. If the voltage is logic low (= 0 or VSS), a 5mS delay is implemented
using a new support routine called Delay_5mS() to allow any switch bouncing to
settle. The Delay_5mS() is based off of the Timer0 peripheral as discussed in Lab 3.
The software flowchart for Delay_5mS() is shown in Figure 3-24.

Get_Inputs()

RA0 = 0

?

END

Contents of direction
remain unchanged

YES

NO

Delay_5mS()

RA0 = 0

?

Toggle contents of
direction

YES

NO

Debounces signal
on RA2
 2009-2015 Microchip Technology Inc. DS40001369C-page 47

PICDEMTM Lab Development Board User’s Guide
FIGURE 3-24: DELAY_5MS() SOFTWARE FLOWCHART FOR LAB 5

The RA2 pin voltage is then checked again. If still low, a push button press is indicated
and the direction bit variable is toggled. Otherwise, the direction value stays the
same.

The Decide() then uses the current direction value to determine which direction
to shift the contents of the LED_Output global variable. The Decide() software
flowchart is shown in Figure 3-25.

Delay_5mS()

T0IF = 1

(i.e., TMR0 overflow)

?

END

Clear the Timer0 overflow
flag (T0IF)

YES

NO

Preload the Timer0 result
register (TMR0) with 100

Timer0 configured in the Initialize() as
follows:

• Using the internal FOSC/4 (4MHz/4) clock
source

• TMR0 increments on low-to-high transition
of FOSC/4

• Prescaler configured for 1:32

Desired Timer0 Overflow Rate = (4/FOSC) x number of counts to overflow x prescaler

5mS = 1Seconds x (256 – TMR0 preload value) x 32

TMR0 preload value = 256 – 5mS = 99.75 rounded to 100

1Seconds x 32

TMR0 preload value determined as follows:
DS40001369C-page 48  2009-2015 Microchip Technology Inc.

General Purpose Input/Output Labs
FIGURE 3-25: DECIDE() SOFTWARE FLOWCHART FOR LAB 5

Similar to the previous lab, Decide() checks the LED_Output variable value before
executing the shift to ensure that the variable is not all 0’s or that the Most Significant
bit, for a left shift, or Least Significant bit, for a right shift, are not ‘1’, indicating that the
shift that follows will fill the LED_Output variable with 0’s.

The Do_Outputs() simply assigns the contents of the LED_Output variable to the
PORTC register lighting the connected LEDs accordingly.

3.4.4.3 PROCEDURE

Using the firmware developed in the previous lab, make the following changes:

Copy/paste the code in Example 3-16 into the top of the firmware source template under the
section marked:
//--------------------DATA MEMORY----------------------

EXAMPLE 3-16: VARIABLE DECLARATIONS FOR LAB 5

Decide()

direction = 0

?

END

LED_Output =
0b00000001

YES

NO

Shift contents of
LED_Output left
by 1 bit position

NO

YES
LED_Output = 0b10000000

or

LED_Output = 0b00000000

?

YES

NO

LED_Output = 0b10000000

Shift contents of
LED_Output right

by 1 bit position

LED_Output = 0b00000001

or

LED_Output = 0b00000000

?

unsigned char LED_Output;//Variable used to set/clear PORTC bits

bit direction;//Variable to select direction of shifting LEDs
 2009-2015 Microchip Technology Inc. DS40001369C-page 49

PICDEMTM Lab Development Board User’s Guide
1. Copy and paste the function code in Example 3-17 into the top of the firmware
source template under the section marked:
/**SUPPORT ROUTINES*************************************

EXAMPLE 3-17: DELAY_5MS() CODE FOR LAB 5

2. Copy and paste the code in Example 3-18 into the Initialize() over the
code from the previous lab.

/*---
Subroutine: Delay_5mS
Parameters: none
Returns:nothing
Synopsis:Creates a 5mS delay when called

---*/
void Delay_5mS(void)
{

//Make sure the T0IF is cleared
T0IF = 0;

//preload the TMR0 register
TMR0 = 100;

//Sit here and wait for Timer0 to overflow
while (T0IF == 0);

}

DS40001369C-page 50  2009-2015 Microchip Technology Inc.

General Purpose Input/Output Labs
EXAMPLE 3-18: INITIALIZE() FOR GPIO LAB 5

//Clear PORTC to a known state
//Set the least significant bit to 1 so that it can be
//shifted through
PORTC = 0b00000001;

//Clear the PORTA register to a known state
PORTA = 0b00000000;

//Configure PORTC's ANALOG/DIGITAL pins as all Digital
ANS4 = 0;//Associated with RC0
ANS5 = 0;//Associated with RC1
ANS6 = 0;//Associated with RC2
ANS7 = 0;//Associated with RC3
ANS8 = 0;//Associated with RC6
ANS9 = 0;//Associated with RC7

//Configure PORTC pins as all output
//i.e. 1 = Input, 0 = Output
TRISC0 = 0;//Associated with RC0
TRISC1 = 0;//Associated with RC1
TRISC2 = 0;//Associated with RC2
TRISC3 = 0;//Associated with RC3
TRISC4 = 0;//Associated with RC4
TRISC5 = 0;//Associated with RC5
TRISC6 = 0;//Associated with RC6
TRISC7 = 0;//Associated with RC7

//Configure PORTA bit RA0 as Digital input
ANS2 = 0;
TRISA2 = 1;

//Configure Timer0 to overflow every 5mS
T0CS = 0; //Select FOSC/4 as Timer0 clock source
T0SE = 0; //Increment TMR0 on rising clock edge
PSA = 0; //Assign prescaler to Timer0
//Select a 1:32 prescaler
PS0 = 0;
PS1 = 0;
PS2 = 1;

//Initialize the direction flag to shift bits from
//right-to-left
//(i.e. 0 = Shift PORTC bits from right-to-left
// 1 = Shift PORTC bits from left-to-right
direction = 0;

//Initialize LED_Output to all zeros
LED_Output = 0b00000000;
 2009-2015 Microchip Technology Inc. DS40001369C-page 51

PICDEMTM Lab Development Board User’s Guide
3. Copy and paste the code in Example 3-19 into the Get_Inputs() at the section
labeled:
//ADD GET_INPUTS CODE HERE

EXAMPLE 3-19: GET_INPUTS() CODE FOR GPIO LAB 5

4. Copy and paste the code in Example 3-20 into the Decide() over the code from
the previous lab.

EXAMPLE 3-20: DECIDE() CODE FOR GPIO LAB 5

//Check for a push button press (i.e. RA2 = 0)
if (RA2 == 0)
{

Delay_5mS(); //Delay to debounce

//Check if push button is still pressed
if(RA2 == 0) direction ^= 1; //If so, toggle the

//direction bit
}
//Otherwise keep direction the same as it was
else direction = direction;

if(direction == 0)
{
//First check if LED_Output variable has most
//significant bit set to 1 or if LED_Output variable is
//all 0's.
//If so, re initialize the LED_Output variable so that
//the most significant bit is set to 1 and all other
//bits are 0

if((LED_Output == 0b00000001) || (LED_Output ==
0b00000000)) LED_Output = 0b10000000;

//If neither of these conditions are true, simply shift
//the LED_Output variable's contents to the Left by 1
//bit position

else LED_Output >>=1;
}

else
{
//First check if LED_Output variable has the least
//significant bit set
//to 1 or if LED_Output variable is all 0's.
//If so, re initialize the LED_Output variable so that
//the least significant bit is set to 1 and all other
//bits are 0

if((LED_Output == 0b10000000) || (LED_Output ==
0b00000000)) LED_Output = 0b00000001;

//If neither of these conditions are true, simply shift
//the LED_Output variable's contents to the Right by 1
//bit position

else LED_Output <<=1;
}

DS40001369C-page 52  2009-2015 Microchip Technology Inc.

General Purpose Input/Output Labs
5. The Do_Outputs() code from the previous lab stays the same.

6. Copy and paste the code in Example 3-21 into the Timing() over the code from
the previous lab.

EXAMPLE 3-21: TIMING() CODE FOR GPIO LAB 5

7. Copy and paste the code in Example 3-22 over the main() code from the
previous lab.

EXAMPLE 3-22: MAIN() CODE FOR LAB 5

8. Compile the project, there should be no errors.

3.4.4.4 TESTING THE APPLICATION

Program the PIC16F690. Once programmed, the LEDs connected to PORTC should
sequentially light from left-to-right in 10 mS intervals. When the push button is pressed,
the LEDs should change directions and sequentially light from right-to-left.
Continuously pressing the push button will change the direction each time.

It should be noted that the push button press inconsistently changes the direction of
sequential flashing. The problem here is that the firmware performs a technique called
“Polling” to check the state of the RA0 pin that connects to the push button. Therefore,
the state of RA0 is checked only once each time through the software control loop when
the Get_Inputs() is called. This polling is subject to the timing of the software
control loop and will lead to push button presses being missed. If the Timing()
remained at the 1-second delay as implemented in the previous lab, this would have
made matters worse. The next labs will remedy these issues through the use of
interrupts.

The solution for this project is located in the
C:\PICDEM_Lab\GPIO_Labs\GPIO_Lab5\solution directory.

unsigned int delay_var = 9997;

//Keep looping until the delay_var is
// equal to zero (should take 10mS)
while(--delay_var);

Note: This lab now utilizes a 10 mS delay to time the software control loop.

Initialize(); //Initialize the relevant registers

while(1)
{

Get_Inputs();//Evaluate inputs
Decide();//Make any decisions
Do_Outputs(); //Perform any outputs
Timing();//Sets execution rate of the

//Software Control Loop
}

 2009-2015 Microchip Technology Inc. DS40001369C-page 53

PICDEMTM Lab Development Board User’s Guide
3.4.5 Lab 6: Push Button Interrupt

3.4.5.1 NEW REGISTERS USED IN THIS LAB

To configure the peripherals used in this lab, the following registers are used:

1. OPTION Register: OPTION (Register 2-2 in Section 2 of the PIC16F690 Data
Sheet)

- Selects the edge transition on RA2/INT that will trigger an interrupt.

2. Interrupt Control Register: INTCON (Register 2-3 in Section 2 of the PIC16F690
Data Sheet)

- Enable interrupt functionality on the PIC16F690.

- Enables the RA2/INT external interrupt.

- Contains a flag that indicates the external interrupt has occurred.

3.4.5.2 OVERVIEW

This lab expands upon Lab 5 by adding an interrupt that will occur each time the push
button connected to the RA2 pin is pressed.

As mentioned, polling a bit is heavily reliant on a number of factors such as the size of
the firmware and the timing of the software control loop. Polling does have its uses.
However, there may be times when an event, such as pressing a push button, requires
immediate attention. This is where the interrupt comes in. As the name implies, an
interrupt acts as a sort of alarm. When the Central Processing Unit receives an
interrupt, it immediately stops what it is doing, saves where in the code it was before
the interrupt, performs code or firmware defined by the user in the event of an interrupt
called an Interrupt Service Routine (ISR), and then returns to the previous task it was
performing prior to the interrupt.

So, why not use interrupts all the time? The answer is mainly cost. In order to
implement an interrupt for a specific function, the user may need to purchase a
microcontroller with a peripheral that accommodates the interrupt. This increases the
cost of the application. In some cases, polling a bit may be the way to go. Other cases
may require the interrupt thereby justifying the added cost of a particular peripheral.

The RA2 pin associated with the PORTA register features an external edge-triggered
interrupt capability (note the INT designation on the PIC16F690 Pin Diagram in Table
5 of the data sheet). The interrupt is configurable to occur on either the rising-edge (i.e.,
signal on RA2 pin transitions from low-to-high) or the falling-edge (i.e., signal on RA2
pin transitions from high-to-low) of the voltage on the RA2 pin. If the selected edge
transition is detected on RA2, the CPU then services the interrupt before returning to
the code it was executing prior to the interrupt. Referring again to Figure 3-12, the push
button connected to the RA2 pin is pulled high when not pressed. Therefore, the
interrupt will be configured to trigger on the high-to-low transition indicating a push
button press.

The INTCON register contains the enable (INTE) and flag (INTF) bits for the RA2
external interrupt. These bits indicate to firmware the condition that caused an interrupt
to occur. The other bits and accompanying registers are used for other peripheral
features on the microcontroller. The Global Interrupt Enable bit (GIE) is a sort of master
switch that allows interrupts, if individually enabled, to be used by the microcontroller.

The OPTION register features the Interrupt Edge Select (INTEDG) bit that will be used
to indicate the edge transition that will trigger an interrupt.

The software flowchart for this lab is shown in Figure 3-26.
DS40001369C-page 54  2009-2015 Microchip Technology Inc.

General Purpose Input/Output Labs
FIGURE 3-26: MAIN() SOFTWARE CONTROL LOOP FLOWCHART FOR
GPIO LAB 6

Note the removal of the Get_Inputs() from the previous lab. This code will now be
handled by an Interrupt Service Routine (ISR) whenever the push button is pressed.
The PB_PressISR() flowchart is shown in Figure 3-27.

FIGURE 3-27: PB_PRESSISR() FOR LAB 6 SHOWING SWITCH DEBOUNCE

main()

Initialize()

Do_Outputs()
Loop Forever

Timing()

Decide()

Global Variables:

• 8-bit variable LED_Output will be used to light
the LEDs connected to PORTC

• 1-bit variable direction used to determine the
direction of the sequential LED flashing
0 = shift PORTC bits right-to-left
1 = shift PORTC bits left-to-right

PB_PressISR()

INTE and INTF

bits set

?

RETURN

NO

Clear INTF flag

YES

RA2 pin = 0

?

direction = direction

Delay for 5mS
YES

RA2 pin = 0

?

Toggle direction

YES

NO

NO
 2009-2015 Microchip Technology Inc. DS40001369C-page 55

PICDEMTM Lab Development Board User’s Guide
Referring to the flowchart in Figure 3-27, the PB_PressISR() replaces the
Get_Inputs() used in Lab 4 with a few additions. At the beginning of the ISR, the
INTE and INTF bits are first checked to ensure that the RA2/INT external interrupt is
indeed enabled and that the flag is set indicating that an RA2/INT external interrupt has
occurred. Determining the source of an interrupt becomes especially important if
multiple peripherals are configured to cause an interrupt. The ISR then clears the
RA2/INT external interrupt flag so that subsequent interrupts will be registered. The
ISR then performs the RA2 check along with the debounce routine that was discussed
in the previous lab.

3.4.5.3 PROCEDURE

Using the firmware developed in the previous lab, make the following changes:

1. Copy and paste the Interrupt Service Routine in Figure 3-23 at the top of the
firmware source file under the section labeled:
/**INTERRUPT CODE***************************************/

EXAMPLE 3-23: PB_PRESSISR() CODE FOR GPIO LAB 6

/*---
-

Subroutine: Interrupt Service Routine
Parameters: none
Returns:nothing
Synopsis:Execute this code on any interrupt

---*/

void interrupt PB_PressISR(void)
{

//Check to see if the interrupt was caused by
//the external interrupt on RA2
//If so, clear the external interrupt flag
//to allow subsequent interrupts to be detected
if(INTE && INTF) INTF = 0;

//Check to see if the RA2 pin is 0
//(i.e. push button pressed)
if(RA2 == 0)
{

//If RA2 is 0 delay for 5mS to filter
//any switch bounce
Delay_5mS();

//Check to see if RA2 is still 0
//If so, toggle the direction bit
if(RA2 == 0) direction ^= 1;

}

//If RA2 is not 0, keep direction value
//the same as it was
else direction = direction;

}

DS40001369C-page 56  2009-2015 Microchip Technology Inc.

General Purpose Input/Output Labs

2. Copy and paste the code in Example 3-24 into the Initialize() over the
code from the previous lab.

Note: To indicate a function that should be used whenever an interrupt occurs, the
interrupt function qualifier is needed. This qualifier is specific to the
HI-TECH C Compiler.
 2009-2015 Microchip Technology Inc. DS40001369C-page 57

PICDEMTM Lab Development Board User’s Guide
EXAMPLE 3-24: INITIALIZE() CODE FOR GPIO LAB 6

It should be noted that the Global Interrupt Enable bit (GIE) is set last in the
Example 3-24. This ensures that interrupts will not occur during the Initialize(),
having adverse consequences on code operation.

//Clear PORTC to a known state
//Set the least significant bit to 1 so that it can be
//shifted through

PORTC = 0b00000001;
//Clear the PORTA register to a known state

PORTA = 0b00000000;
//Configure PORTC's ANALOG/DIGITAL pins as all Digital

ANS4 = 0;//Associated with RC0
ANS5 = 0;//Associated with RC1
ANS6 = 0;//Associated with RC2
ANS7 = 0;//Associated with RC3
ANS8 = 0;//Associated with RC6
ANS9 = 0;//Associated with RC7

//Configure PORTC pins as all output
//i.e. 1 = Input, 0 = Output

TRISC0 = 0;//Associated with RC0
TRISC1 = 0;//Associated with RC1
TRISC2 = 0;//Associated with RC2
TRISC3 = 0;//Associated with RC3
TRISC4 = 0;//Associated with RC4
TRISC5 = 0;//Associated with RC5
TRISC6 = 0;//Associated with RC6
TRISC7 = 0;//Associated with RC7

//Configure PORTA bit RA0 as Digital input
ANS2 = 0;
TRISA2 = 1;

//Configure Timer0 to overflow every 5mS
T0CS = 0; //Select FOSC/4 as Timer0 clock source
T0SE = 0; //Increment TMR0 on rising clock edge
PSA = 0; //Assign prescaler to Timer0

//Select a 1:32 prescaler
PS0 = 0;
PS1 = 0;
PS2 = 1;

//Initialize the direction flag to shift bits from
//right-to-left
//(i.e. 0 = Shift PORTC bits from right-to-left
// 1 = Shift PORTC bits from left-to-right

direction = 0;
//Initialize LED_Output to all zeros

LED_Output = 0b00000000;

//Configure for external interrupts on RA2
INTEDG = 0; //Interrupt to occur on High-to-LOW

//transition of RA2 voltage
INTE = 1; //Enable the external interrupt
INTF = 0; //Clear the external interrupt flag
GIE = 1;//Enable interrupt capability on the

//PIC16F690 ***ALWAYS DONE LAST*****
DS40001369C-page 58  2009-2015 Microchip Technology Inc.

General Purpose Input/Output Labs
3. Copy and paste the code in Example 3-25 into the main() over the code from
the previous lab to remove the Get_Inputs().

EXAMPLE 3-25: MAIN() CODE FOR GPIO LAB 6

4. The remaining code remains unchanged from the previous lab. Compile the
project. There should be no errors.

3.4.5.4 TESTING THE APPLICATION

Program the PIC16F690. The application should behave as it did in the previous lab.
Only this time, the change in LED flashing direction should now be more responsive to
push button presses due to the interrupt added.

The solution for this project is located in the
C:\PICDEM_Lab\GPIO_Labs\GPIO_Lab6\solution directory.

3.4.6 Lab 7: Push Button Interrupt-on-Change

3.4.6.1 NEW REGISTERS USED IN THIS LAB

To configure the peripherals used in this lab, the following registers are used:

1. Interrupt-on-Change PORTA Register: IOCA (Register 4-6 in Section 4 of the
PIC16F690 Data Sheet).

- Configures PORTA associated pins that will generate an interrupt when a
change in voltage level is detected.

2. Interrupt Control Register: INTCON (Register 2-3 in Section 2 of the PIC16F690
Data Sheet)

- Enable interrupt functionality on the PIC16F690.

- Enables PORTA/PORTB change interrupts.

- Contains a flag that indicates that a PORTA or PORTB change interrupt has
occurred.

3.4.6.2 OVERVIEW

This lab adds a different kind of interrupt associated with the General Purpose
Input/Output peripheral called interrupt-on-change. Rather than simply interrupting the
CPU on a single edge transition on the RA2 pin, an interrupt will now occur on any edge
transition. Therefore, when the push button is pressed and/or released, an interrupt will
occur. This lab will use these concepts to shift the flashing LEDs from left-to-right while
the push button is pressed and from right-to-left when the push button is released.

Each PORTA and PORTB pin is individually configurable as an interrupt-on-change
pin. Control bits in the Interrupt-on-Change PORTA register (IOCA) enable or disable
the interrupt function for each pin.

Initialize(); //Initialize the relevant registers

while(1)
{

Decide();//Make any decisions
Do_Outputs(); //Perform any outputs
Timing();//Sets execution rate of the

//Software Control Loop
}

 2009-2015 Microchip Technology Inc. DS40001369C-page 59

PICDEMTM Lab Development Board User’s Guide
The INTCON register is needed as well to implement the interrupt-on-change feature.
Again the GIE bit needs to be set to enable any interrupts used on the microcontroller.
To configure for an interrupt-on-change, the PORTA/PORTB Change Interrupt Enable
bit (RABIE) must be set along with the individual enable bits in the IOCA register. On
an interrupt-on-change for configured pins, the PORTA/PORTB Change Interrupt Flag
bit (RABIF) will be set. To detect a logic change on a port pin, the firmware needs to
know what has changed. Therefore, PORTA must be read before an
interrupt-on-change can occur. Reading PORTA retains, or latches, the current value
on the RA2 pin for later reference. In the event that the signal on the RA2 pin changes
and a mismatch with the reference value occurs, an interrupt will result.

The main() software flowchart for this lab remains the same as that in Figure 3-27 of
the previous lab. The Interrupt Service Routine changes since it now must determine
whether the interrupt occurred due to a high-to-low or low-to-high transition on pin RA2.
The ISR flowchart is shown in Figure 3-28.

FIGURE 3-28: PB_PRESSISR FLOWCHART FOR LAB 7

pb_pressISR()

RABIE and RABIF

bits set

?

RETURN

Clear RABIF flag
YES RA2 pin = 0

?

direction = 1

Delay for 5mS

NORA2 pin = 0

?

RA2 pin = 1

?

Delay for 5mS

RA2 pin = 1

?

direction = 1

Read PORTA

YES

YES

NO

NO

NO
DS40001369C-page 60  2009-2015 Microchip Technology Inc.

General Purpose Input/Output Labs
The PB_PressISR() now checks to see if the voltage level on RA2 has changed
state from a 1-to-0 or from 0-to-1. Each condition will change the direction that the
LEDs flash sequentially. Note that the direction bit toggle used in previous labs has
been replaced by assigning either a ‘1’ for the left-to-right direction or ‘0’ for the
right-to-left direction. As discussed earlier, the PORTA register must be read before the
first interrupt can occur and at the end of each subsequent ISR execution to ensure that
the microcontroller has an up-to-date reference to measure the current state of the RA2
pin.

The Initialize() for this lab configures the peripherals and interrupts as follows:

• PORTC

- Clears PORTC

- Configures all pins as digital output

• PORTA

- Clears PORTA

- Configures RA2 as a digital input

• Timer0

- Uses the FOSC/4 as clock source

- Increment TMR0 on rising FOSC/4 clock edge

- Use Prescaler at 1:32

• Global Variables

- Initialize direction to ‘0’

- Initialize LED_Output to ‘0’

• Interrupt

- Enable RA2 Interrupt-on-Change

- Enable change interrupts in INTCON by setting the RABIE bit

- Clear the RABIF change interrupt flag in INTCON

- Enable Global Interrupts by setting GIE

- Read PORTA to latch current value on RA2 for reference

3.4.6.3 PROCEDURE

Using the firmware developed in the previous lab, make the following changes:

1. Copy and paste the code in Example 3-26 into the PB_PressISR() over the
code from the previous lab.
 2009-2015 Microchip Technology Inc. DS40001369C-page 61

PICDEMTM Lab Development Board User’s Guide
EXAMPLE 3-26: PB_PRESSISR() CODE FOR GPIO LAB 7

2. Copy and paste the code in Example 3-27 into the Initialize() over the
code from the previous lab.

//First, check if the interrupt occurred as a result of an
//RA2 change interrupt. If so, clear the RABIF flag so
//that subsequent interrupts can occur
if(RABIE && RABIF) RABIF = 0;
//Check the push button connected to RA0 pin. If 0, then a
//push button press is indicated

if(RA2 == 0)
{

//Delay for 5mS to filter switch bounce
Delay_5mS();

//if RA2 is still 0 then change the direction flag
if (RA2 == 0) direction = 1;

}

//Check the push button connected to RA0 pin. If 1, then a
//push button release is indicated

if(RA2 == 1)
{

//Delay for 5mS to filter switch bounce
Delay_5mS();

//if RA2 is still 1 then change the direction flag
if (RA2 == 1) direction = 0;

}
//Otherwise, keep the direction bit the same as it was

else direction = direction;

//Read PORTA to latch RA2 value for the next interrupt
PORTA = PORTA;
DS40001369C-page 62  2009-2015 Microchip Technology Inc.

General Purpose Input/Output Labs
EXAMPLE 3-27: INITIALIZE() CODE FOR GPIO LAB 7

//Clear PORTC to a known state
//Set the least significant bit to 1 so that it can be
//shifted through

PORTC = 0b00000001;

//Clear the PORTA register to a known state
PORTA = 0b00000000;

//Configure PORTC's ANALOG/DIGITAL pins as all Digital
ANS4 = 0;//Associated with RC0
ANS5 = 0;//Associated with RC1
ANS6 = 0;//Associated with RC2
ANS7 = 0;//Associated with RC3
ANS8 = 0;//Associated with RC6
ANS9 = 0;//Associated with RC7

//Configure PORTC pins as all output
//i.e. 1 = Input, 0 = Output

TRISC0 = 0;//Associated with RC0
TRISC1 = 0;//Associated with RC1
TRISC2 = 0;//Associated with RC2
TRISC3 = 0;//Associated with RC3
TRISC4 = 0;//Associated with RC4
TRISC5 = 0;//Associated with RC5
TRISC6 = 0;//Associated with RC6
TRISC7 = 0;//Associated with RC7

//Configure PORTA bit RA0 as Digital input
ANS2 = 0;
TRISA2 = 1;

//Configure Timer0 to overflow every 5mS
T0CS = 0; //Select FOSC/4 as Timer0 clock source
T0SE = 0; //Increment TMR0 on rising clock edge
PSA = 0; //Assign prescaler to Timer0

//Select a 1:32 prescaler
PS0 = 0;
PS1 = 0;
PS2 = 1;

//Initialize the direction flag to shift bits from right-to-left
//(i.e. 0 = Shift PORTC bits from right-to-left
// 1 = Shift PORTC bits from left-to-right

direction = 0;

//Initialize LED_Output to all zeros
LED_Output = 0b00000000;

//Configure for RA2 Interrupt-On-Change
IOCA2 = 1; //Enable RA2 interrupt-on-change
RABIE = 1; //Enable change interrupts
RABIF = 0; //Clear the change interrupt flag
GIE = 1;//Enable interrupt capability on the

//PIC16F690 ***ALWAYS DONE LAST*****

//Read PORTA to latch the current RA2 voltage level
PORTA = PORTA;
 2009-2015 Microchip Technology Inc. DS40001369C-page 63

PICDEMTM Lab Development Board User’s Guide
3. All remaining code from the previous lab is unchanged. Compile the project.
There should be no errors.

3.4.6.4 TESTING THE APPLICATION

Program the PIC16F690. The LEDs connected to PORTC should now flash
sequentially from left-to-right when the push button is released and flash from
right-to-left when the push button is pressed.

The solution for this project is located in the
C:\PICDEM_Lab\GPIO_Labs\GPIO_Lab7\solution directory.

3.4.7 Lab 8: Using Weak Pull-Ups

3.4.7.1 NEW REGISTERS USED IN THIS LAB

To configure the peripherals used in this lab, the following registers are used:

1. OPTION Register: OPTION (Register 2-2 in Section 2 of the PIC16F690 Data
Sheet)

- Enables PORTA/PORTB weak pull-ups to be used on the PIC16F690.

2. PORTA Weak Pull-Up Register: WPUA (Register 4-5 in Section 4 of the
PIC16F690 Data Sheet)

- Selects which PORTA pins will have weak pull-ups enabled.

3.4.7.2 OVERVIEW

This lab expands on the previous lab by adding weak pull-ups to remove the 10 k
used previously to tie RA2 pin to VDD. Each of the PORTA pins (except RA3) and
PORTB pins, has an individually configurable internal weak pull-up. Essentially, these
weak pull-ups perform the same task as the resistor connected to the RA2 pin and push
button as shown in Figure 3-12 only internal to the microcontroller. This feature can be
used to decrease component counts in the circuit.

Clearing the PORTA/PORTB Pull-up Enable bit, RABPU, in the OPTION register will
enable weak pull-ups on any PORTA pin selected using the Weak Pull-Up PORTA
register (WPUA).

The only change needed to the PICDEM Lab Development Board Schematic shown in
Figure 3-21 is to remove the 10 kresistor connected to both the push button and pin
RA2.

The Initialize() is all that needs to be changed in firmware by adding the following
configurations:

• Select RA2 to have a weak pull-up by setting the Weak Pull-Up Register bit
WPUA2 in the WPUA: PORTA Register.

• Enable the PORTA/PORTB Pull-up Enable bit (RABPU) in the OPTION register
by clearing it.

3.4.7.3 PROCEDURE

Using the firmware developed in the previous lab, make the following changes:

1. Copy/paste the code in Example 3-28 into the Initialize() over the code
from the previous lab.
DS40001369C-page 64  2009-2015 Microchip Technology Inc.

General Purpose Input/Output Labs
EXAMPLE 3-28: INITIALIZE() CODE FOR GPIO LAB 8

//Clear PORTC to a known state
//Set the least significant bit to 1 so that it can be
//shifted through

PORTC = 0b00000001;

//Clear the PORTA register to a known state
PORTA = 0b00000000;

//Configure PORTC's ANALOG/DIGITAL pins as all Digital
ANS4 = 0;//Associated with RC0
ANS5 = 0;//Associated with RC1
ANS6 = 0;//Associated with RC2
ANS7 = 0;//Associated with RC3
ANS8 = 0;//Associated with RC6
ANS9 = 0;//Associated with RC7

//Configure PORTC pins as all output
//i.e. 1 = Input, 0 = Output

TRISC0 = 0;//Associated with RC0
TRISC1 = 0;//Associated with RC1
TRISC2 = 0;//Associated with RC2
TRISC3 = 0;//Associated with RC3
TRISC4 = 0;//Associated with RC4
TRISC5 = 0;//Associated with RC5
TRISC6 = 0;//Associated with RC6
TRISC7 = 0;//Associated with RC7

//Configure PORTA bit RA0 as Digital input
ANS2 = 0;
TRISA2 = 1;

//Enable Weak Pull-ups on RA2
WPUA2 = 1;
RABPU = 0; //Enable PORTA/PORTB Pull-ups

//Configure Timer0 to overflow every 5mS
T0CS = 0; //Select FOSC/4 as Timer0 clock source
T0SE = 0; //Increment TMR0 on rising clock edge
PSA = 0; //Assign prescaler to Timer0
//Select a 1:32 prescaler
PS0 = 0;
PS1 = 0;
PS2 = 1;

//Initialize the direction flag to shift bits from right-to-left
//(i.e. 0 = Shift PORTC bits from right-to-left
// 1 = Shift PORTC bits from left-to-right

direction = 0;
//Initialize LED_Output to all zeros

LED_Output = 0b00000000;

//Configure for RA2 Interrupt-On-Change
IOCA2 = 1; //Enable RA2 interrupt-on-change
RABIE = 1; //Enable change interrupts
RABIF = 0; //Clear the change interrupt flag
GIE = 1;//Enable interrupt capability on the

//PIC16F690 ***ALWAYS DONE LAST*****
//Read PORTA to latch the current RA2 voltage level

PORTA = PORTA;
 2009-2015 Microchip Technology Inc. DS40001369C-page 65

PICDEMTM Lab Development Board User’s Guide
3.4.7.4 TESTING THE APPLICATION

Program the PIC16F690. The application should operate exactly as it did in the
previous lab. Only this time with the absence of the 10 kpull-up resistor.

The solution for this project is located in the
C:\PICDEM_Lab\GPIO_Labs\GPIO_Lab8\solution directory.
DS40001369C-page 66  2009-2015 Microchip Technology Inc.

PICDEMTM LAB DEVELOPMENT

BOARD USER’S GUIDE

Chapter 4. Comparator Peripheral Labs
4.1 INTRODUCTION

The following labs cover some of the fundamental features of the Comparator 1
peripheral found on the PIC16F690 including some unique applications. These
peripherals are very useful mixed signal building blocks as they provide analog
functionality independent of program execution. The labs in this section will
demonstrate this functionality, then introduce intelligence to implement a relatively high
resolution temperature sensor measurement application.

4.2 COMPARATOR LABS

4.2.1 Reference Documentation

All documentation is available on the PICDEM™ Lab Development Kit accompanying
CD-ROM:

• PIC16F690 Data Sheet (DS41262)

- Section 4.0: I/O Ports

- Section 5.0: Timer0 Module

- Section 6.0: Timer1 Module

- Section 8.0: Comparator Module

• Introduction to MPLAB IDE and HI-TECH C PRO for the PIC10/12/16 MCU
Family Lite Mode Compiler Tutorial (DS41322)

4.2.2 Comparator Labs

The labs that will be implemented in this chapter are:

• Lab 1: Simple Comparator

• Lab 2: Using the Internal Comparator Voltage Reference

• Lab 3: Higher Resolution Sensor Readings Using a Single Comparator

4.2.3 Equipment Required

To complete the labs in this section, the following components are required:

1. 2 – 10 kresistors

2. 4 – 470 resistor

3. 1 – 100 kpotentiometer

4. 4 – Light Emitting Diodes

5. 1 – 1N4148 diodes

6. 1 – 1 F capacitor

7. PIC16F690 populating socket U2

8. Assorted jumper wires
 2009-2015 Microchip Technology Inc. DS40001369C-page 67

PICDEMTM Lab Development Board User’s Guide
4.2.4 Lab 1: Simple Compare

4.2.4.1 NEW REGISTERS USED IN THIS LAB

To configure the peripherals used in this lab, the following registers are used:

1. Comparator C1 Control Register 0: CM1CON0 (Register 8-1 in Section 8 of the
PIC16F690 Data Sheet)

- Enables Comparator C1.

- Configures Comparator output polarity.

- Enables the Comparator result to be available internal only or on the C1OUT
pin (pin 17).

- Select inverting and non-inverting Comparator 1 reference input sources.

4.2.4.2 OVERVIEW

In this lab, Comparator 1 on the PIC16F690 is configured to perform a simple compare.
A potentiometer connected to the inverting input (C12IN0-) of the comparator will be
compared against the 2.5V connected to the non-inverting input (C1IN+) from a simple
voltage divider circuit. An LED connected to the output of Comparator 1 (C1OUT) will
light or turn off as follows:

• inverting reference > non-inverting reference = C1OUT is low = LED OFF

• inverting reference < non-inverting reference = C1OUT is high = LED ON

The PICDEM™ Development Board configuration schematic is shown in Figure 4-1.

FIGURE 4-1: SCHEMATIC FOR COMPARATOR LAB 1

The software flowchart for this lab is shown in Figure 4-2.

U2
1
2
3
4
5
6
7
8
9
10

20
19
18
17
16
15
14
13
12
11

C1IN+

J9J8

R4

470Ω

LED1

VSS

VDD

C12IN0-
C1OUT

R1

10 kΩ

R2

10 kΩ VDD

R3

100 kΩ

VSS

VSS
DS40001369C-page 68  2009-2015 Microchip Technology Inc.

Comparator Peripheral Labs
FIGURE 4-2: MAIN() SOFTWARE CONTROL LOOP FLOWCHART FOR
COMPARATOR LAB 1

As mentioned in the introduction, comparators on the PIC16F690 are able to function
independent of software logic. Therefore, all that is needed is to call the
Initialize() from main() to activate the peripheral. The Initialize()
configures Comparator 1 as follows:

• Turn on Comparator 1

• Make the Comparator 1 output available on the C1OUT pin

• Select pin C1IN+ as the non-inverting reference

• Select pin C12IN0- as the inverting reference

• Configure the C1OUT pin as an output

4.2.4.3 PROCEDURE

Using the Project Wizard, create a new project using the PIC16F690 entitled
Comparator_Lab1.mcp as was done in previous labs. Once completed, open the
Comparator_Lab2.c source file in MPLAB and do the following:

1. Copy/paste the code in Example 4-1 into the Initialize() section labeled:
//ADD INITIALIZE CODE HERE

EXAMPLE 4-1: INITIALIZE CODE FOR COMPARATOR LAB 1

main()

Initialize()

Loop Forever
Wait

//Initialize Comparator 1 as follows:

//Turn comparator 1 on
C1ON = 1;

//Make the comparator output available on the
//C1OUT pin
C1OE = 1;

//Select the non-inverting pin (C1IN+) as the
//non-inverting reference input for the comparator 1
C1R = 0;

//Select the C12IN0- pin as the inverting reference
C1CH0 = 0;
C1CH1 = 0;

//Since the comparator 1 output shares the same pin
//as PORTA bit 2, configure the corresponding TRISA2 bit
//as an output
TRISA2 = 0;
 2009-2015 Microchip Technology Inc. DS40001369C-page 69

PICDEMTM Lab Development Board User’s Guide
2. Copy and paste the code in Example 4-2 into the main() section labeled:
//ADD MAIN CODE HERE

EXAMPLE 4-2: MAIN() CODE FOR COMPARATOR LAB 1

3. Compile the project. There should be no errors.

4.2.4.4 TESTING THE APPLICATION

Program the PIC16F690. The LED connected to the C1OUT pin should light when the
voltage present on the C12IN0- pin is less than the 2.5V present on the C1IN+ pin and
turn off when the 2.5V is exceeded.

The solution for this project is located in the
C:\PICDEM_Lab\Comparator_Labs\Comparator_Lab1\solution directory.

4.2.5 Lab 2: Using the Comparator Voltage Reference

4.2.5.1 NEW REGISTERS USED IN THIS LAB

To configure the peripherals used in this lab, the following registers are used:

1. Voltage Reference Control Register: VRCON (Register 8-5 in Section 8 of the
PIC16F690 Data Sheet).

- Enables either the Comparator Voltage Reference or the 0.6V constant
reference as the non-inverting reference input to Comparator C1 or
Comparator C2.

- Selects either a High or Low resolution 16-level voltage range.

- Enable a 0.6V reference.

- Uses three bits to configure the reference voltage level.

4.2.5.2 OVERVIEW

This lab expands on Lab 1 by utilizing the internal Comparator Voltage Reference
(CVREF) feature on the PIC16F690. The CVREF provides an internally generated
voltage reference that can be used by the Comparator 1 non-inverting reference input
so that external components are not needed such as the resistor voltage divider used
in the previous lab. The CVREF features:

• Independent comparator operation

• Two 16-level voltage ranges

• Ratiometric with VDD

• Fixed 0.6 reference option

• Output clamped to VSS

Initialize(); //Initialize the relevant registers
while(1);

Note: The inclusion of the while loop forces the microcontroller to sit and wait at
a “known” instruction. At start-up, the contents of the program memory are
unknown. Without the while loop, the microcontroller will continue to run
through each address in program memory executing whatever resides at a
particular address. This could have adverse effects on the application.

Note: This application uses two pins that are used during the programming pro-
cess (ICSPDATA and ICSPCLK). The jumper wires connecting these pins
to the application circuit may need to be disconnected while programming
if there are problems with the MPLAB IDE connecting to the PIC16F690.
DS40001369C-page 70  2009-2015 Microchip Technology Inc.

Comparator Peripheral Labs
The CVREF has two ranges with 16 voltage levels in each range. Range selection is
controlled by the CVREF Range Selection (VRR) bit in the VRCON (Voltage Reference
Control Register) along with the CVREF Value Selection bits (VR<3:0>). The Value
Selection bits hold a value based upon some simple calculations to set the internal
reference voltage. The CVREF voltage is determined using Equation 4-1:

EQUATION 4-1: CVREF OUTPUT VOLTAGE

This lab will implement the low-range calculation by setting the VRR bit in VRCON
equal to 1. Equation 4-2 demonstrates how to calculate the VR<3:0> values, using the
low-range method, to obtain a 2.5V internal reference. If higher resolutions are
required, the high-range method should be used (see Section 8.10.2 in the PIC16F690
Data Sheet (DS41262).

EQUATION 4-2: CALCULATING A 2.5V INTERNAL REFERENCE
(LOW-RANGE METHOD)

The Initialize() from the previous lab now must configure both the Comparator 1
peripheral and the CVREF as follows:

• Turn on Comparator 1

• Select CVREF the non-inverting reference for Comparator 1

• Continue to use the C12IN0- pin as the inverting reference

• Turn on CVREF

• Select the low-range feature

• Set the CVREF Value Selection bits as per the calculation in Equation 4-2.

Changes to the PICDEM™ Development Board configuration schematic for this lab are
shown in Figure 4-3.

VRR = 1 (Low-Range):

CVREF = (VR<3:0>/24) x VDD

VRR = 0 (High-Range):

CVREF = (VDD/4) + (VR<3:0> x VDD/32)

VRR = 1 (Low-Range):

CVREF = (VR<3:0>/24) x VDD

Known: desired CVREF = 2.5V, VDD approximately 5V

Therefore:

2.5V = (VR<3:0>/24 x 5V

2.5V/5V = (VR<3:0>/24)

(2.5V/5V) x 24 = VR<3:0>

VR<3:0> = 1210 or 11002

VR0 = 0

VR1 = 0

VR2 = 1

VR3 = 1
 2009-2015 Microchip Technology Inc. DS40001369C-page 71

PICDEMTM Lab Development Board User’s Guide
FIGURE 4-3: SCHEMATIC FOR COMPARATOR LAB 2

4.2.5.3 PROCEDURE

Using the firmware developed in the previous lab, make the following changes:

1. Copy and paste the code in Example 4-3 into the Initialize() over the code
from the previous lab.

U2
1
2
3
4
5
6
7
8
9
10

20
19
18
17
16
15
14
13
12
11

J9J8

R4

470Ω

LED1

C12IN0-
C1OUT

VDD

R3

100 kΩ

VSS

VSS
DS40001369C-page 72  2009-2015 Microchip Technology Inc.

Comparator Peripheral Labs
EXAMPLE 4-3: INITIALIZE CODE FOR COMPARATOR LAB 2

2. The main() stays the same as the previous lab.

3. Compile the project. There should be no errors.

4.2.5.4 TESTING THE APPLICATION

Program the PIC16F690. The application should behave exactly as it did in the
previous lab with the exception of less components used.

The solution for this project is located in the
C:\PICDEM_Lab\Comparator_Labs\Comparator_Lab2\solution directory.

//Initialize Comparator 1 as follows:

//Turn comparator 1 on
C1ON = 1;

//Make the comparator output available on the
//C1OUT pin
C1OE = 1;

//Select the internal voltage reference
//as the non-inverting reference voltage
C1R = 1;

//Select the C12IN0- pin as the inverting reference
C1CH0 = 0;
C1CH1 = 0;

//Initialize the internal voltage reference as follows:

//Turn on the CVref output and route to the C1Vref input
//of comparator 1
C1VREN = 1;

//Use the comparator voltage low range feature
VRR = 1;

//Set the comparator voltage reference value selection
//to 2.5V by making the VR<3:0> bits equal to 12 or
//binary 1100 (see lab manual for equations)
VR0 = 0;
VR1 = 0;
VR2 = 1;
VR3 = 1;

//Since the comparator 1 output shares the same pin
//as PORTA bit 2, configure the corresponding TRISA2 bit
//as an output
TRISA2 = 0;
 2009-2015 Microchip Technology Inc. DS40001369C-page 73

PICDEMTM Lab Development Board User’s Guide
4.2.6 Lab 3: Higher Resolution Sensor Readings Using a Single
Comparator

4.2.6.1 NEW REGISTERS USED IN THIS LAB

To configure the peripherals used in this lab, the following registers are used:

1. Timer1 Control Register: T1CON (Register 6-1 in Section 6 of the PIC16F690
data sheet)

- This register is used to control Timer1 and select various features of the
module. In this lab the register will be used to enable Timer1 and select the
clock source.

4.2.6.2 OVERVIEW

This lab expands on concepts discussed in the previous comparator lab by
implementing intelligence to create a higher resolution temperature sensor
measurement application. The comparator will be configured to operate as a simple
relaxation oscillator with the addition of a few external components. The internal
voltage reference will still be used to provide the non-inverting reference only this time
the 0.6V Fixed Voltage Reference feature will be implemented.

The basic oscillator circuit is shown in Figure 4-4.

FIGURE 4-4: BASIC RELAXATION OSCILLATOR CIRCUIT

Referring to Figure 4-4, at start-up, the capacitor connected to the inverting reference
of Comparator 1 is completely discharged. Therefore, the voltage present on the
inverting reference is 0V which is less than the 0.6V Fixed Voltage Reference on the
non-inverting reference and Comparator 1’s output goes high. This rapidly charges the
capacitor through the diode (D1) to a level approximately equal to VDD. Once the
Comparator detects that the inverting reference input is greater than the 0.6V Fixed
Voltage Reference, the output transitions low. The charge across the capacitor then
discharges slowly across the resistor R1. Once the capacitor charge drops below the

+
_

0.6V

VSS

C1

VSS

PIC16F690
V

t

V

t

C1OUT
C12IN0-

D1

R1
DS40001369C-page 74  2009-2015 Microchip Technology Inc.

Comparator Peripheral Labs
0.6V fixed reference, the cycle repeats and the system oscillates. The frequency of this
oscillation is dependent on the RC time constant ( = R x C), or the time it takes to
discharge the capacitor to 37% of its initial voltage. As either the resistance or
capacitance decreases, so will effectively increasing the frequency of the oscillator.
If the resistor is replaced with a Negative Temperature Coefficient (NTC) thermistor
where resistance decreases as temperature increases, any temperature change would
cause a shift in resistance with a subsequent shift in the frequency of the oscillator.

This oscillator can be created quite easily by simply initializing the comparator and
nothing more. However, with the addition of some intelligence and some additional
peripherals, a high resolution sensor measurement application can be achieved.

The PIC16F690 features a 16-bit timer/counter peripheral Timer1. This timer can either
use the internal instruction clock (FOSC/4) as its time base or an external clock source
on the Timer1 Clock Input (T1CKI) pin to increment two 8-bit registers, TMR1H and
TMR1L, to obtain a combined 16-bit result. In this application, the oscillator described
will be used as the Timer1 clock source. Therefore, the TMR1H:TMR1L will increment
with each low-to-high transition effectively counting the number of pulses. The Timer0
peripheral features an interrupt-on-overflow (255-0) that will be used to provide a fixed
time frame in which the TMR1H:TMR1L registers will count. On a Timer0 overflow
interrupt, the Timer1 peripheral stops counting and the current value in the upper four
bits of TMR1H will be output to four LEDs connected to PORTC pins RC3, RC2, RC1
and RC0. In order to obtain a usable result, it is important that Timer0 triggers an
interrupt before the TMR1H:TMR1L result overflows. If the temperature to the
thermistor changes, the oscillator frequency will shift resulting in a change in the
number of counts the Timer1 peripheral was able to implement before the fixed Timer0
interrupt with a different result displayed on the LEDs.

The schematic for this lab is shown in Figure 4-5.

FIGURE 4-5: SCHEMATIC FOR COMPARATOR LAB 3

U2
1
2
3
4
5
6
7
8
9
10

20
19
18
17
16
15
14
13
12
11

J9J8

C12IN0-
C1OUT

R1

100 kΩ

D1

1N4148

VSS

C1

1F

VSS

R3

10 kΩ

NTC thermistor

R7

470Ω

LED4

VSS

RC0
RC1
RC2

T1CKI

RC3

R6

470Ω

LED3

VSS

R5

470Ω

LED2

VSS

R4

470Ω

LED1

VSS

R2

10 kΩ

VSS
 2009-2015 Microchip Technology Inc. DS40001369C-page 75

PICDEMTM Lab Development Board User’s Guide
The software flowchart for this lab is shown in Figure 4-6.

FIGURE 4-6: MAIN() SOFTWARE CONTROL LOOP FLOWCHART FOR
COMPARATOR LAB 3

The Initialize() configures the PIC16F690 as follows:

• Configure PORTC pins RC0, RC1, RC2 and RC3 and digital outputs

• Comparator 1

- Enable Comparator 1.

- Make the Comparator 1 output available on the C1OUT pin configuring
TRISA2 as an output.

- Route the CVREF output to the non-inverting reference input.

- Select pin C12IN0- as the inverting reference configuring TRISA1 as an input.

- Configure the C1OUT pin as an output.

• CVREF Configuration:

- Configure CVREF to route the 0.6V Fixed Voltage Reference to the non-invert-
ing reference of Comparator 1.

• Timer1 Configuration:

- Select the T1CKI pin as the Timer1 clock source making TRISA5 an input.

- Clear both Timer1 result registers TMR1H:TMR1L.

- Turn on Timer1.

• Timer0

- Select FOSC/4 as the Timer0 clock source.

- Assign the prescaler to Timer0 and configure so that the TMR0 register
increments every 256th clock pulse.

- Enable Timer0 interrupt-on-overflow

- Clear the Timer0 interrupt flag

- Preload TMR0 with 10 (this ensures that a Timer0 interrupt will occur before
the Timer1 registers overflow).

- Enable Global Interrupts on the PIC16F690.

The Interrupt Service Routine, TMR0_ISR(), is shown in Figure 4-7.

main()

 Initialize()

Loop Forever
Wait
DS40001369C-page 76  2009-2015 Microchip Technology Inc.

Comparator Peripheral Labs
FIGURE 4-7: TMR0_ISR FLOWCHART FOR COMPARATOR LAB 3

The TMR0_ISR() first checks if a Timer0 interrupt has occurred (good programming
practice). If so, then the Timer0 interrupt flag is cleared and Timer1 is turned off to stop
counting the oscillator clock pulses on the T1CKI pin. Next, the 4 MSbs of the Timer1
16-bit result is assigned to the RC0, RC1, RC2 and RC3 pins to light the associated
LEDs. Finally, the Timer1 result register pair are cleared and Timer1 is turned on to
begin a new count.

4.2.6.3 PROCEDURE

Using the firmware developed in the previous lab, make the following changes:

1. Copy/paste the code in Example 4-4 into the top of the main firmware source file
under the heading labeled:
//----------------INTERRUPT CODE---------------

END

TMR0_ISR()

T0IF = 1

?

Clear T0IF Flag

Turn off Timer1

Assign PORTC the T1MRH value
shifted 4 bits to the right

Clear the Timer1 result register
pair TMR1H:TMR1L

Turn on Timer1

YES

NO

Keep PORTC the same
 2009-2015 Microchip Technology Inc. DS40001369C-page 77

PICDEMTM Lab Development Board User’s Guide
EXAMPLE 4-4: TMR0_ISR CODE FOR LAB 3

2. Copy and paste the code in Example 4-5 into the Initialize() over the code
from the previous lab:

void interrupt TMR0_ISR(void)
{

//Check if Timer0 interrupt has occurred

if(T0IE&&T0IF)
{

//if so, clear the interrupt flag
T0IF = 0;
//Turn off Timer1 (stop counting)
TMR1ON = 0;
//Assign the upper 4-bits of the 16-bit
//result to PORTC to light the LEDs connected
//RC0,R1,RC2 and RC3
PORTC = TMR1H>>4;
TMR0 = 10;
//Clear the Timer1 register pair
TMR1L = 0;
TMR1H = 0;
//Turn Timer1 back to start counting again
TMR1ON = 1;

}
else PORTC = PORTC;

}

DS40001369C-page 78  2009-2015 Microchip Technology Inc.

Comparator Peripheral Labs
EXAMPLE 4-5: INITIALIZE CODE FOR COMPARATOR LAB 3

//Configure RC0,RC1,RC2 and RC3 as digital outputs
ANSEL = 0b00001111;
PORTC = 0;
TRISC0 = 0;
TRISC1 = 0;
TRISC2 = 0;
TRISC3 = 0;

//Initialize PORTA pin connected to C12IN0-
TRISA1 = 1;

//Make C1OUT pin an output
TRISA2 = 0;

//Configure the Comparator 1 as follows:
//Turn on comparator 1

C1ON = 1;
//Make C1OUT available externally

C1OE = 1;
//Connect the non-inverting reference to CVREF

C1R = 1;
//Connect the inverting reference to C12IN0-

C1CH0 = 0;
C1CH1 = 0;

//Configure the CVREF as follows:
//Route CVREF output to Comparator 1 non-inverting reference

VRCON = 0;
//Enable the 0.6V fixed reference voltage

VP6EN = 1;
//Configure Timer1 as follows
//Make T1CKI and input

TRISA5 = 1;
T1CON = 0;

//Select T1CKI as Timer1's clock source
TMR1CS = 1;

//Initialize the 16-bit Timer1 register pair to 0
TMR1H = 0;
TMR1L = 0;

//Turn on Timer1
TMR1ON = 1;

//Set up Timer0 as follows:
//Use FOSC/4 for Timer0 Clock Source

OPTION = 0;
T0CS = 0;

//assign the prescaler to TMR0
PSA = 0;

//set up prescaler for 1:256
PS0 = 1;
PS1 = 1;
PS2 = 1;

//Enable Timer0 Interrupts
T0IE = 1;

//Clear the Timer0 overflow interrupt flag
T0IF = 0;

//Preload TMR0 with 10 to keep overflow period
//less than Timer1 overflow period

TMR0 = 10;
//Enable global interrupts

GIE = 1;
 2009-2015 Microchip Technology Inc. DS40001369C-page 79

PICDEMTM Lab Development Board User’s Guide
3. Copy and paste the code in Example 4-6 into the main() over the code from
the previous lab:

EXAMPLE 4-6: MAIN() CODE FOR COMPARATOR LAB 3

4. Compile the project. There should be no errors.

4.2.6.4 TESTING THE APPLICATION

Program the PIC16F690. Adjust the R1 potentiometer until the LEDs begin to light
displaying a binary value. Touching the thermistor should introduce heat, reduce the
frequency of oscillation and increase the binary count on the LED display. Introducing
cold to the thermistor should have the opposite effect thereby decreasing the binary
count.

The solution for this project is located in the
C:\PICDEM_Lab\Comparator_Lab\Comparator_Lab3\solution directory.

Initialize(); //Initialize the relevant registers
while(1);
DS40001369C-page 80  2009-2015 Microchip Technology Inc.

PICDEMTM LAB DEVELOPMENT

BOARD USER’S GUIDE

Chapter 5. Analog-to-Digital Converter Peripheral Labs
5.1 INTRODUCTION

The Analog-to-Digital Converter (ADC) peripheral allows conversion of an analog input
signal to a 10-bit binary value representing that signal so that it can be used in firmware.

The following labs cover some of the fundamental features of the Analog-to-Digital
Converter (ADC) peripheral found on the PIC16F690 including some unique
applications.

5.2 ADC LABS

The labs that will be implemented in this chapter are:

• Lab 1: Simple ADC

• Lab 2: Audible Temperature Sensor

5.2.1 Reference Documentation

All documentation is available on the PICDEM™ Lab Development Kit accompanying
CD-ROM

• PIC16F690 Data Sheet (DS41262)

- Section 4: I/O Ports

- Section 5: Timer0 Module

- Section 9: Analog-to-Digital Converter (ADC) Module

• Timers: Timer0 Tutorial (Part 1) (DS51628)

• Timers: Timer0 Tutorial (Part 2) (DS51702)

• Introduction to MPLAB IDE and HI-TECH C PRO for the PIC10/12/16 MCU
Family Lite Mode Compiler Tutorial (DS41322)

5.2.2 Equipment Required

To complete the labs in this section, the following components are required:

1. 1 – 100 resistor

2. 4 – 470resistors

3. 1 – 1 kresistor

4. 1 – 10 kresistor

5. 1 – 100 kpotentiometer

6. 1 – 10 kNTC Thermistor

7. 4 – Light Emitting Diodes

8. 1 – IRFD010 N-Channel MOSFET

9. PIC16F690 populating socket U2

10. Assorted jumper wires
 2009-2015 Microchip Technology Inc. DS40001369C-page 81

PICDEMTM Lab Development Board User’s Guide
5.2.3 Lab 1: Simple ADC

5.2.3.1 NEW REGISTERS USED IN THIS LAB

To configure the peripherals used in this lab, the following registers are used:

1. ADC Control Register 0: ADCON0 (Register 9-1 in Section 9 of the PIC16F690
Data Sheet)

- Configures ADC conversion result justification.

- Select ADC reference voltage.

- Selects ADC input channel (i.e., pin with analog voltage to be converted).

- Starts ADC conversion and determines when ADC conversion is complete.

- Enables the ADC peripheral.

2. ADC Control Register 1: ADCON1 (Register 9-2 in Section 9 of the PIC16F690
Data Sheet)

- Determines ADC conversion clock.

3. ADC Result Register high: ADRESH (see Register 9-3 in Section 9 of the
PIC16F690 Data Sheet)

- Holds upper eight bits or upper two bits (depending on justification selected)
of 10-bit ADC conversion result.

4. ADC Result Register low: ADRESL (see Register 9-4 in Section 9 of the
PIC16F690 Data Sheet)

- Holds lower eight bits or lower two bit (depending on justification selected) of
10-bit ADC conversion result.

5.2.3.2 OVERVIEW

In this lab, the ADC peripheral on the PIC16F690 is used to perform a simple
conversion of an analog voltage present on pin 13. The voltage is varied using a
100 k potentiometer. This voltage is compared against a reference voltage to
generate a 10-bit binary result via successive approximation stored into two 8-bit ADC
result registers ADRESH and ADRESL. The ADC result is software selectable as either
left or right justified as shown in Section 9.1.6 of the PIC16F690 Data Sheet. This
application will configure the ADC result as left justified with the four Most Significant
bits of the 10-bit result output to the RC0, RC1, RC2 and RC3 PORTC pins used to light
connected LEDs accordingly.The PICDEM™ Development Board configuration
schematic is shown in Figure 5-1.
DS40001369C-page 82  2009-2015 Microchip Technology Inc.

Analog-to-Digital Converter Peripheral Labs
FIGURE 5-1: SCHEMATIC FOR ADC LAB 1

The voltage reference is software selectable as either VDD or an external voltage
applied to the external reference pin 18 (VREF). To minimize circuit complexity, this
application makes use of VDD as the reference.

The software flowchart for this lab is shown in Figure 5-2.

FIGURE 5-2: MAIN() SOFTWARE CONTROL LOOP FLOWCHART FOR
COMPARATOR LAB 1

1
2
3
4
5
6
7
8
9
10

20
19
18
17
16
15
14
13
12
11

J9J8

R3

470Ω

LED3

VDD

R5

100 kΩ

VSS

VSS

RB4/AN10

U2

RC0
RC1
RC2RC3

R2

470Ω

LED2

VSS

R1

470Ω

LED1

VSS

R4

470Ω

LED4

VSS

main()

Initialize()

Loop Forever

Get_Inputs()

Decide()

Do_Outputs()

Global variables initialized:

• 8-bit variable LED_output will be used to
light the three LEDs connected to PORTC
 2009-2015 Microchip Technology Inc. DS40001369C-page 83

PICDEMTM Lab Development Board User’s Guide
The Initialize() configures the peripherals as follows:

• Ports

- Configure pin 13 as an analog input (using TRISB4).

- Clear the PORTC register.

- Configure RC0, RC1, RC2 and RC3 pins as digital output.

• ADC

- Select ADC conversion clock FRC.

- Configure voltage reference using VDD.

- Select channel 10 as the ADC input channel (Pin 13: RB4/AN10).

- Select result format left justified (10-bit result in ADRESH<7:0> and
ADRESL<7:6>).

- Turn on ADC module.

Next, the Get_Inputs() performs an ADC on the voltage present on pin 13. The
internal capacitor connected to the input of the ADC peripheral needs time to charge to
the voltage present on the pin. Therefore, software will need to implement a short delay
to allow for this charging time. The ADC module section “A/D Acquisition
Requirements” of the data sheet goes into great detail and includes an equation for
selecting an appropriate acquisition time. For the purposes of this lab, a simple 1 mS
delay should be more than sufficient. These parameters become important in
high-speed applications where every S counts.

The GO/DONE bit in ADCON0 is used to start the ADC process when set to ‘1’. This
bit also serves as a flag that indicates when the ADC is completed (GO/DONE = 0).
Therefore, the Get_Inputs() initiates an ADC by setting GO/DONE then sits and
waits for the bit to clear, indicating a completed conversion.

The software flowchart for the Get_Inputs() is shown in Figure 5-3.

Note: The ADC conversion clock is the time that will be used to convert the analog
voltage present on pin 13 to a 10-bit value in the ADRESH:ADRESL
registers. It takes 11 of these conversion clock cycles to perform a complete
ADC. If the conversion clock period is insufficient, an incomplete ADC result
will occur. The electrical specifications for the PIC16F690 state that the
conversion clock must have a period of at least 1.5 Seconds or a
frequency of approximately 667 kHz. The ADC module section of the data
sheet specifies acceptable conversion clock frequencies depending on the
main oscillator used to drive the microcontroller and should be referenced.
In this application, a dedicated internal oscillator for the ADC module is
used ensuring a conversion clock frequency of between 2-6 Seconds.
(see Table 17-16 in Section 17 of the PIC16F690 Data Sheet).
DS40001369C-page 84  2009-2015 Microchip Technology Inc.

Analog-to-Digital Converter Peripheral Labs
FIGURE 5-3: MAIN() SOFTWARE CONTROL LOOP FLOWCHART FOR
COMPARATOR LAB 1

Following the Get_Inputs(), the 10-bit ADC result is now in the ADRESH:ADRESL
registers. The Decide() assigns the ADC result value, shifted four bit positions to the
right, to the LED_Output variable.

Finally, the Do_Outputs() assigns the contents of LED_Output to the PORTC
register that will light the LEDs connected to RC0, RC1, RC2 and RC3 accordingly.

5.2.3.3 PROCEDURE

Using the Project Wizard, create a new project called ADC_Lab1.mcp. Once
completed, open the ADC_Lab1.c source file in MPLAB and make the following
changes:

1. Copy and paste the code in Example 5-1 into the top of the main firmware source
file under the heading labeled:
//----------------DATA MEMORY---------------

EXAMPLE 5-1: GLOBAL VARIABLES USED IN LAB 1

2. Copy and paste the code in Example 5-2 into the top of the main firmware source
file under the heading labeled:
//----------------SUPPORT ROUTINES---------------

Get_Inputs()

Delay_1mS()

Start conversion by setting
GO/DONE bit

Gives ADC capacitor time to charge

NO

GO/DONE = 1

?

YES

END

Wait for ADC to complete

unsigned char LED_Output = 0;//assigned to PORTC to light
//connected LEDs
 2009-2015 Microchip Technology Inc. DS40001369C-page 85

PICDEMTM Lab Development Board User’s Guide
EXAMPLE 5-2: DELAY_1MS() CODE FOR ADC LAB 1

3. Copy and paste the code in Example 5-3 into the Initialize() section
labeled:
//ADD INITIALIZE CODE HERE

/*---
Subroutine: Delay_1mS
Parameters: none
Returns:nothing
Synopsys:Creates a 1mS delay when called

---*/
void Delay_1mS(void)
{

unsigned int delay_var = 98;
//Keep looping until the delay_var is
// equal to zero (should take 1mS)
while(--delay_var);

}

DS40001369C-page 86  2009-2015 Microchip Technology Inc.

Analog-to-Digital Converter Peripheral Labs
EXAMPLE 5-3: INITIALIZE CODE FOR COMPARATOR LAB 1

4. Copy and paste the code in Example 5-4 into the Get_Inputs() section
labeled:
//ADD GET INPUTS CODE HERE

//Configure Port:
//Disable pin output driver (See TRIS register)
TRISB4 = 1;

// Configure pin as analog
ANS10 = 1;

//Configure RC0, RC1, RC2 and RC3 as digital output
PORTC = 0;
TRISC0 = 0;
TRISC1 = 0;
TRISC2 = 0;
TRISC3 = 0;

ANS4 = 0;
ANS5 = 0;
ANS6 = 0;
ANS7 = 0;

//Configure the ADC module:
//Select ADC conversion clock Frc
ADCS0 = 1;
ADCS1 = 1;
ADCS2 = 1;

//Configure voltage reference using VDD
VCFG = 0;

//Select ADC input channel Pin 13 (RB4/AN10)
CHS0 = 0;
CHS1 = 1;
CHS2 = 0;
CHS3 = 1;

//Select result format left justified
ADFM = 0;

//Turn on ADC module
ADON = 1;
 2009-2015 Microchip Technology Inc. DS40001369C-page 87

PICDEMTM Lab Development Board User’s Guide
EXAMPLE 5-4: GET_INPUTS() CODE FOR ADC LAB 1

5. Copy and paste the code in Example 5-5 into the Decide() section labeled:
//ADD DECIDE CODE HERE

EXAMPLE 5-5: DECIDE() CODE FOR ADC LAB 1

6. Copy and paste the code in Example 5-6 into the Do_Outputs() section
labeled:
//ADD DO OUTPUTS CODE HERE

EXAMPLE 5-6: D0_OUTPUTS() CODE FOR ADC LAB 1

7. Copy and paste the code in Example 5-7 into the main() section labeled:
//ADD MAIN CODE HERE

EXAMPLE 5-7: MAIN() CODE FOR ADC LAB 1

8. Compile the project. There should be no errors.

//Perform an ADC of potentiometer connected to pin 13

//Wait the required acquisition time
Delay_1mS();

//Start conversion by setting the GO/DONE bit.
GODONE = 1;

//Wait for ADC conversion to complete
//Polling the GO/DONE bit
// 0 = ADC completed
// 1 = ADC in progress
while(GODONE == 1);

//Assign the upper 4 bits of ADRESH to the lower 4 bits
//of LED_Output
LED_Output = ADRESH >> 4; //Shifts the bits in ADRESL 4 bits

//to the right

//Assign contents of LED_Output to PORTC to light the connected
//LEDs
PORTC = LED_Output;

Initialize(); //Initialize the relevant registers
while(1)
{

Get_Inputs();
Decide();
Do_Outputs();

}

DS40001369C-page 88  2009-2015 Microchip Technology Inc.

Analog-to-Digital Converter Peripheral Labs
5.2.3.4 TESTING THE APPLICATION

Program the PIC16F690. Turning the potentiometer connected to pin 13 should light
the LEDs sequentially in a binary fashion. Note that these are the four Most Significant
bits of the ADC result. Adding six more LEDs and I/O pins would allow the complete
10-bit value to be displayed. To determine the significance of each bit in the
ADRESH:ADRESL 10-bit result, see Figure 5-4.

FIGURE 5-4: ADC RESULT BIT SIGNIFICANCE

VDD
1
2

VDD
1
4

VDD
1
8

VDD
1

16
VDD

1
32

VDD
1

64
VDD

1
128

VDD
1

256
VDD

1
512

VDD
1

1024

10-BIT ADC RESULT (ADRESH: ADRESL)

Example:

If following an ADC, the ADRESH:ADRESL contains the following 10-bit
value:

10-BIT ADC RESULT (ADRESH: ADRESL)

1 1 0 0 1 0 0 0 0 1

VDD
2

1
+ VDD

4

1
+ VDD

32

1
+ VDD

1024

1

=
5V

2

1
+ 5V

4

1
+ 5V

32

1
+ 5V

1024

1

= 2.5V + 1.25V + 0.15625V + 0.000488V = 3.911V
(rounded to the nearest mV)

Note: Assumes that VDD is used as the ADC reference. If an external
reference is used, the voltage present on VREF pin is substituted
for VDD.

Bit positions set to ‘1’
are added together

Note: Using a 5V reference voltage with a 10-bit provides a resolution of
0.000488V or 4.88 mV (5V/1024).
 2009-2015 Microchip Technology Inc. DS40001369C-page 89

PICDEMTM Lab Development Board User’s Guide
Since this lab outputs the four Most Significant bits of the ADC result and VDD is used
as the reference voltage, the LED display should correspond with the following voltage
levels shown in Table 5-1.

The solution for this project is located in the
C:\PICDEM_Lab\ADC_Labs\ADC_Lab1\solution directory.

TABLE 5-1: CORRESPONDING VOLTAGE ON PIN 13 RELATED TO LIT LEDS
(1 = LED ON, 0 = LED OFF)

LED4 LED3 LED2 LED1 pin 13 Voltage

0 0 0 0 < 0.3125V

0 0 0 1 > 0.3125V

0 0 1 0 > 0.625V

0 0 1 1 > 0.9375V

0 1 0 0 > 1.25V

0 1 0 1 > 1.5625V

0 1 1 0 > 1.875V

0 1 1 1 > 2.1875V

1 0 0 0 > 2.5V

1 0 0 1 > 2.8125V

1 0 1 0 > 3.125V

1 0 1 1 > 3.4375V

1 1 0 0 > 3.75V

1 1 0 1 > 4.0625V

1 1 1 0 > 4.375V

1 1 1 1 > 4.6875V or greater

Note: The greater than symbol (>) is required since the lower six bits of the ADC
result are not shown using LEDs.
DS40001369C-page 90  2009-2015 Microchip Technology Inc.

Analog-to-Digital Converter Peripheral Labs
5.2.4 Lab 2: Audible Temperature Sensor

5.2.4.1 OVERVIEW

In this lab, the ADC peripheral on the PIC16F690 is used to alter the frequency of
Pulse-Width Modulated Waveform (PWM) in relation to the temperature sensed by a
thermistor connected to the input of the ADC peripheral. The PWM waveform is
generated by simply toggling the RC0 voltage level high and low. The thermistor is used
to create a voltage divider in conjunction with a 1 kresistor to vary the voltage into
the ADC input. This thermistor is a Negative Temperature Coefficient type (NTC)
meaning that as the temperature of the device increases, the resistance effectively
decreases. The voltage drop across the thermistor is converted by the ADC and the
ADRESH result then used to manipulate a TMR0 preload value (see GPIO Lab 3) that
will be used in the Timing() to vary the execution speed of the software control loop
and ultimately the frequency of the PWM waveform. The PWM will be connected to an
N-Channel MOSFET used to drive the 8speaker on the PICDEM Lab Development
Board. The schematic for this lab is shown in Figure 5-5.

FIGURE 5-5: SCHEMATIC FOR ADC LAB 2

Referring to the schematic in Figure 5-5, the RC0 connects to the gate of the IRFD010
N-Channel MOSFET Q1. Resistor R4 pulls the gate input low ensuring the transistor
will remain OFF until a high voltage level is present on the RC0 output. When the PWM
transitions high, Q1 is ON and current flows through the 8speaker. The 100 R3
resistor is used to limit the current through the speaker to maintain manufacturer
specified power ratings. In this way, any change in temperature around the thermistor
will alter the frequency of the PWM, thereby changing the audible frequency emitted
from the speaker.

1
2
3
4
5
6
7
8
9
10

20
19
18
17
16
15
14
13
12
11

J9J8

VDD

R1

1kΩ

VSS

RB4/AN10

U2

RC0

VSS

VDD

R3

100Ω

8Ω

R2

10 kΩ

J19
SP+

SP-
LS1

Thermistor

Q1

IRFD010 N-Channel
MOSFET

VSS

R4

10 kΩ
 2009-2015 Microchip Technology Inc. DS40001369C-page 91

PICDEMTM Lab Development Board User’s Guide
The audible frequency range is between 20-20000Hz. Therefore, the Timing()
delays from a maximum of 4.096 mS (244.1 Hz) to a minimum of 1.536 mS (651 Hz).
These values are determined using the internal instruction clock (FOSC/4) as the TMR0
clock source with a prescaler of 1:16. Other values could easily be used as long as the
frequency of the PWM remains within the audible range.

The software flowchart for this lab is shown in Figure 5-6.

FIGURE 5-6: MAIN() SOFTWARE CONTROL LOOP FLOWCHART FOR
ADC LAB 2

The Initialize() configures the peripherals as follows:

• Ports

- Clear PORTB.

- Configure pin 13 as an analog input (using TRISB4).

- Clear the PORTC register.

- Configure RC0 pin as digital output.

• Timer0

- Select the FOSC/4 internal instruction clock as the Timer0 clock source.

- Increment TMR0 on the low-to-high transition of FOSC/4.

- Assign the prescaler to Timer0 and configure at a rate of 1:16.

• ADC

- Select ADC conversion clock FRC.

- Configure voltage reference using VDD.

- Select channel 10 as the ADC input channel (Pin 13: RB4/AN10).

- Select result format left justified (10-bit result in ADRESH<7:0> and
ADRESL<7:6>).

- Turn on ADC module.

main()

Initialize()

Loop Forever

Get_Inputs()

Decide()

Do_Outputs()

Global variables initialized:

• 8-bit variable TMR0_preload will be used to vary the
delay in Timing() to alter the frequency of the
PWM output on RC0

Timing()
DS40001369C-page 92  2009-2015 Microchip Technology Inc.

Analog-to-Digital Converter Peripheral Labs
Next, the Get_Inputs() performs an ADC on the voltage present on pin 13 using the
same code as Lab 1 with one minor change. This application is very dependent on the
timing of the software control loop. The 1mS delay used in Lab 1 to allow the hold
capacitor on the input of ADC to fully charge to the pin voltage is excessive. Using the
example given in Equation 9-1, Section 9 in the PIC16F690 Data Sheet as a reference,
the acquisition delay time is shortened to 8 S which should be sufficient.

The Decide() assigns the ADC result value, shifted three bit positions to the left, to
the TMR0_preload variable.

The Do_Outputs() assigns the current toggle bit value to RC0 that will transition
the output accordingly.

Finally, the Timing() clears the TMR0 overflow flag (T0IF), preloads the TMR0
register with the TMR0_preload value subtracted from 255. The function then waits
until the T0IF is set high before returning to the main(). In this way, as the temperature
at the thermistor increases, as will the frequency of the PWM.

5.2.4.2 PROCEDURE

Using the firmware developed in the previous lab, make the following changes:

1. Copy/paste the code in Example 5-8 into the top of the main firmware source file
under the heading labeled:
//----------------DATA MEMORY---------------

EXAMPLE 5-8: GLOBAL VARIABLES USE IN ADC LAB 2

2. Copy and paste the code in Example 5-9 over the Initialize() code from
the previous lab:

Note: Be sure to paste over the code from the previous lab.

unsigned char LED_Output = 0; //assigned to PORTC to light
 //connected LEDs

bit toggle = 0;//Used to generate waveform on RC0

unsigned char TMR0_preload = 0; //Varied by ADRESH to change
//frequency of

//waveform on RC0
 2009-2015 Microchip Technology Inc. DS40001369C-page 93

PICDEMTM Lab Development Board User’s Guide
EXAMPLE 5-9: INITIALIZE CODE FOR ADC LAB 2

3. Copy and paste the code in Example 5-10 over the Get_Inputs() code from
the previous lab:

//Configure Port:
PORTB = 0;
//Disable pin output driver (See TRIS register)
TRISB4 = 1;

// Configure RB4 as analog pin as analog
ANS10 = 1;

//Configure RC0, RC1, RC2 and RC3 as digital output
PORTC = 0;
TRISC0 = 0;
ANS4 = 0;

//Configure Timer0 as follows:

//Select the FOSC/4 internal instruction clock
//as the clock source for TMR0
T0CS = 0;
//Increment TMR0 value on low-to-high transition
//of the FOSC/4
T0SE = 0;
//Assign the prescaler to TMR0
PSA = 1;
//Configure the prescaler to increment TMR0
//at a rate of 1:16
PS0 = 1;
PS1 = 1;
PS2 = 0;

//Configure the ADC module:
//Select ADC conversion clock Frc
ADCS0 = 1;
ADCS1 = 1;
ADCS2 = 1;

//Configure voltage reference using VDD
VCFG = 0;

//Select ADC input channel Pin 13 (RB4/AN10)
CHS0 = 0;
CHS1 = 1;
CHS2 = 0;
CHS3 = 1;

//Select result format left justified
ADFM = 0;

//Turn on ADC module
ADON = 1;
DS40001369C-page 94  2009-2015 Microchip Technology Inc.

Analog-to-Digital Converter Peripheral Labs
EXAMPLE 5-10: GET_INPUTS() CODE FOR ADC LAB 2

4. Copy and paste the code in Example 5-11 over the Decide() code from the
previous lab:

EXAMPLE 5-11: DECIDE() CODE FOR ADC LAB 2

5. Copy and paste the code in Example 5-12 over the Do_Outputs() code from
the previous lab:

EXAMPLE 5-12: D0_OUTPUTS() CODE FOR ADC LAB 2

6. Copy and paste the code in Example 5-13 into the Timing() section labeled:

//ADD TIMING CODE HERE

EXAMPLE 5-13: TIMING() CODE FOR ADC LAB 2

unsigned char counter = 2;

//Give ADC hold capacitor time to charge
//This works out to approximately 8uS

while(--counter > 0);

//Start conversion by setting the GO/DONE bit.
GODONE = 1;

//Wait for ADC conversion to complete
//Polling the GO/DONE bit
// 0 = ADC completed
// 1 = ADC in progress
while(GODONE == 1);

//Shift the ADRESH result to the left
//by three bit positions and assign to
//TMR0_preload
TMR0_preload = ADRESH<<3;

//XOR the toggle value with 1
toggle ^= 1;

//Assign the toggle value to RC0 pin
RC0 = toggle;

//Clear the T0IF
T0IF = 0;

//Subtract the TMR0_preload value from 255 and
//then use to preload TMR0
TMR0 = 255 – TMR0_preload;

//Sit here and wait for TMR0 to overflow while (T0IF == 0);
 2009-2015 Microchip Technology Inc. DS40001369C-page 95

PICDEMTM Lab Development Board User’s Guide
7. Copy and paste the code in Example 5-14 over the main() code from the
previous lab:

EXAMPLE 5-14: MAIN() CODE FOR ADC LAB 2

8. Compile the project. There should be no errors.

5.2.4.3 TESTING THE APPLICATION

Program the PIC16F690. An audible tone should emit from the speaker. Pinching the
thermistor should introduce body heat to the component, thereby increasing the
frequency of the speaker output. Colder temperature sources applied to the thermistor
should reduce the speaker output frequency.

The solution for this project is located in the
C:\PICDEM_Lab\ADC_Labs\ADC_Lab2\solution directory.

Initialize(); //Initialize the relevant registers
while(1)
{

Get_Inputs();
Decide();
Do_Outputs();
Timing();

}

DS40001369C-page 96  2009-2015 Microchip Technology Inc.

PICDEMTM LAB DEVELOPMENT

BOARD USER’S GUIDE

Chapter 6. PICDEM™ Lab Motor Control
6.1 OVERVIEW

This chapter demonstrates the use of the motor included on the PICDEM™ Lab Board.
By using the correct output from the PIC16F690 chip and modifying the period and
pulse width of a PWM (square wave), it can be controlled how quickly the motor turns.

For this stage, the following items are needed:

• PICDEM Lab Board

• IRFD9020 P-channel MOSFET

• Resistors: 10 kΩ and 330 Ω

• Wires

• PIC16F690 microcontroller

6.2 PROCEDURE

6.2.1 Motor Use and Programming

The motor and the resistors should be connected as shown in Figure 6-1, using pin 5
on the PIC16F690 microcontroller.

FIGURE 6-1: CONNECTION OF MOTOR AND RESISTORS

After opening the MPLAB X application, a new project can be created, with
MotorPWM.c as the source file. Another option would be to copy and paste the source
code snippet in Example 6-1 into the MPLAB X application.

VDD

MOTOR

P-Channel
MOSFET

Pin 5
(PIC16F690)

330 Ω

10 KΩ
 2009-2015 Microchip Technology Inc. DS40001369C-page 97

PICDEMTM Lab Development Board User’s Guide
EXAMPLE 6-1: SOURCE CODE SNIPPET

6.2.2 PWM Period

The formula for the period of the pulse-width modulator (PWM) can be found in
“PIC16F631/677/685/687/689/690 Data Sheet 20-Pin Flash-Based, 8-Bit CMOS
Microcontrollers with nanoWatt Technology” (DS41262), Section 11.3.1. A part of this
section has been included below.

6.2.2.1 PWM PERIOD

The PWM period is specified by the PR2 register of Timer2. The PWM period can be
calculated using the formula in Equation 6-1.

EQUATION 6-1: PWM PERIOD

#include <pic.h>

// #pragma config statements should precede project file includes.
// Use project enums instead of #define for ON and OFF.

// CONFIG
#pragma config FOSC = EXTRCCLK // Oscillator Selection bits (RC oscillator: CLKOUT
function on RA4/OSC2/CLKOUT pin, RC on RA5/OSC1/CLKIN)
#pragma config WDTE = ON // Watchdog Timer Enable bit (WDT enabled)
#pragma config PWRTE = OFF // Power-up Timer Enable bit (PWRT disabled)
#pragma config MCLRE = ON // MCLR Pin Function Select bit (MCLR pin function is
MCLR)
#pragma config CP = OFF // Code Protection bit (Program memory code protection
is disabled)
#pragma config CPD = OFF // Data Code Protection bit (Data memory code
protection is disabled)
#pragma config BOREN = ON // Brown-out Reset Selection bits (BOR enabled)
#pragma config IESO = ON // Internal External Switchover bit (Internal External
Switchover mode is enabled)
#pragma config FCMEN = ON // Fail-Safe Clock Monitor Enabled bit (Fail-Safe Clock
Monitor is enabled)

//---

//---
main()
{
OSCCON = 0b00101111; // Osc is set to 2 MHz
TRISC = 0b00100000; // bit 5 = 1 temp disables PORTC RC5/CCP1 on PIC16F690
PORTC = 0b00000000; // Clear PortC port
PR2 = 124; // sets the period or PWM frequency to 4 kHz (0.25 ms)
T2CON = 0b00000100; // sets postscaler and prescaler to 1

// These two registers determine the pulse width (CCPR1L:CCP1CON<5:4>)
CCPR1L = 0b00111110;
CCP1CON = 0b00101111;

TRISC = 0b00000000; // bit 5 = 0 enable output PORTC TRIS RC5/CCP1 ECCP high

while(1);

}

PWM Period PR2  1+  4 TOSC =

(TMR2 Prescale Value)

Note: TOSC = 1/FOSC
DS40001369C-page 98  2009-2015 Microchip Technology Inc.

PICDEM™ Lab Motor Control
When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

• TMR2 is cleared

• The CCP1 pin is set. (Exception: If the PWM duty cycle = 0%, the pin will not be set.)

• The PWM duty cycle is latched from CCPR1L into CCPR1H.

EQUATION 6-2: PULSE WIDTH

EQUATION 6-3: DUTY CYCLE RATIO

The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle.
The double buffering is essential for a glitchless PWM operation.

The 8-bit timer TMR2 register is concatenated with either the 2-bit internal system clock (FOSC) or
with the two bits of the prescaler, to create the 10-bit time base. The system clock is used if the
Timer2 prescaler is set to 1:1.

When the 10-bit time base matches the CCPR1H and 2-bit latch, then the CCP1 pin is cleared.

As indicated in Example 6-1 that includes the code snippet, the oscillator frequency has been
set to 2 MHz. By setting PR2 to 124, the period set out is 4 kHz.

EQUATION 6-1: PWM PERIOD

The duty cycle is set by a combination of the registers in CCPR1L and CCP1CON. It
uses all eight registers from CCPR1L and registers 4 and 5 from CCP1CON.

For example, in the beginning the duty cycle is 50% (half the period). Hence, the value
in the equation for pulse width needs to be 250. In binary, 250 is 11111010, the two
Least Significant bits go into registers 5 and 4 in CCP1CON, while the remaining bits
go into CCPR1L.

EQUATION 6-2: 50% DUTY CYCLE AND PULSE WIDTH

Note: The Timer2 postscaler is not used in the determination of the PWM frequency.

Pulse Width CCPR1L:CCP1CON<5:4>  =

TOSC  (TMR2 Prescale Value)

Duty Cycle Ratio
CCPR1L:CCP1CON<5:4> 

4 PR2 1+ 
---=

PWM Period 124 1+  4 1
2000000
--------------------- 1 .00025s = =

1
.00025
---------------- 4000 Hz=

50% Duty Cycle:
Period

2

.00025s
2

------------------- .000125s= =

PulseWidth ???
1

2000000
--------------------- 0.000125s= =

 .000125 2000000 250=
 2009-2015 Microchip Technology Inc. DS40001369C-page 99

PICDEMTM Lab Development Board User’s Guide
The remainder of CCPR1L is used to modify certain aspects of the PWM. In the code
snippet in Example 6-1 the CCPRL1 register has been set as:

“CCP1CON = 0b00101111;”

Bits 7 – 6: 00 → Single Output

Bits 5 – 4: — → Least Significant bits for pulse width

Bits 3 – 0: 1111 → PWM mode; P1A, P1C active-low; P1B, P1D active-low

To increase the motor speed, a 75% duty cycle can be implemented.

EQUATION 6-3: 75% DUTY CYCLE AND PULSE WIDTH MODULATOR

In binary, 375 is 0101110111. Therefore, 01011101 goes into CCPR1L and 11 goes
into registers 5 and 4 in CCP1CON. The remainder of CCP1CON needs to be left
unchanged.

After entering these values into the code snippet in the MPLAB X application, the
programming of the motor can start and this can be heard running at a faster speed.

The pulse width can also be changed to a different value by using the equations
provided for programming the motor.

Note: Active-low is used due to a PMOS transistor.

75% Duty Cycle: Period 0.75 .00025 0.75 .0001875s= =

Pulse Width ???
1

2000000
--------------------- 0.0001875s= =

 .0001875 2000000 375=
DS40001369C-page 100  2009-2015 Microchip Technology Inc.

PICDEMTM LAB DEVELOPMENT

BOARD USER’S GUIDE

Appendix A. Schematic
A.1 PICDEM™ LAB DEVELOPMENT KIT SCHEMATIC
J1

1
J2

DJ
00

5B2

D3

S1

V C
C

S1
G

S1G

VB
AT

D5

3

270Ω
PWR ON

R5

0.1 UF

D1

C13

1N
41

48
W

S

D2 U1

LM
31

7M
ST

T3
G

IN
OU

T

OU
T

ADJ 1

2 4

D4

R2 33
0Ω

1N4148WS

C7
22

 UF
J3

J4
J5

V D
D1

V D
D2

V D
D3

PI
Ck

it™
 S

er
ial

 H
ea

de
r

Pi
n

I2 C™
SP

I
US

AR
T

1 2 3 4 5 6

_
_

_

+5
V

GN
D

SD
A

SC
L

_
_

_

CS +5
V

GN
D

SD
I

SC
K

SD
O

TX +5
V

GN
D RX

_
_

_
_

_
_

PI
Ck

it™
 S

er
ial

J1
1

Re
ce

pt
ica

l
J1

5

1 2 3 4 5 6

VD
D

VD
D

VP
P

GN
D

IC
SP

DA
T

IC
SP

CL
K

1 2 3 4 5 6

IC
SP

1
J6

1 2 3 4 5 6

J9
U2

1 2 3 4 5 6 7 8 9 10

20 19 18 17 16 15 14 13 12 11

8/
14

/2
0p

 M
CU

V S
S

VD
D

RA
5

RA
4

RA
3

RC
5

RC
4

RC
3

RC
6

RC
7

RB
7

RA
0

RA
1

RA
2

RC
0

RC
1

RC
2

RB
4

RB
5

RB
6

1 2 3 4 5 6 7 8 9 10

0.
1u

F

C2

J8
1 2 3 4 5 6 7 8 9 10

CW

C6

10uF

R1

CC
W

33
52

T-
1-

10
2

3
2

1

J7

2PHDR

Y1

C1
0

15
pF

C1
1

15
pF

32
 kH

z

BT
1

9V

J26

2P
HD

R

VB
AT

J1
4

CD
M

G1
30

08
L-

02
-N

D
J1

9

1 2 3 4

1 2
LS

1

J1
0

0.
1u

F

C4
1 2 3 4

U5

1 2 3 4

NC VD
D

GP
2/

T0
CK

I/C
OU

T/
FO

SC
4

GP
1/

IC
SP

CL
K/

CI
N-

BP
3/

M
CL

R/
V P

P

VS
S

NC

GP
0/

IC
SP

DA
T/

CI
N+

5

PI
C1
0F
20
4_
20
6-
I_P

678 5

1 2 3 4

1 2 3 4 5 6

J1
8

IC
SP

3
J1

3

VP
P

VD
D

GN
D

IC
SP

DA
T

IC
SP

CL
K

J1
7

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

U3

PI
C_
18
P

RA
2

RA
3

RA
4/

TO
CK

I

M
CL

R

Vs
s

RB
0/

IN
T

RB
1

RB
2

RB
3

RA
1

RA
0

OS
C1

/C
LK

IN

OS
C2

/C
LK

OU
T

VD
D

RB
7

RB
6

RB
5

RB
4

18 17 16 15 14 13 12 11 10

C3 0.
1u

F

1 2 3 4 5 6 7 8 9

J1
6

IC
SP

2
J1

2

1 2 3 4 5 6

VP
P

VD
D

GN
D

IC
SP

DA
T

IC
SP

CL
K

VP
P3

VD
D3

IC
SP

DA
T3

IC
SP

CL
K3

VP
P3

IC
SP

DA
T3

V D
D3

IC
SP

CL
K3

GP
2-

U5

VDD1

VDD2

VDD3

VD
D1

IC
SP

DA
T1

IC
SP

CL
K1

RA
2/

RB
2

RC
0

RC
1

RC
2

RB
4

RB
5

RB
6

RA
5/

RB
5

RA
4/

RB
4

RA
3

RC
5

RC
4

RC
3

RC
6

RC
7

RB
7

VP
P1 VD

D1

IC
SP

DA
T1

IC
SP

CL
K1

SD
O/

RS

SC
L/

SC
K

SD
A/

SD
I

CS
/T

X

SP
-

SP
+

CP
+

CN
-

XT
2

XT
2

XT
1

XT
1

RB
3

RB
2

RB
1

RB
0

VP

P2

RA
4

RA
3

RA
2

RA
1

RA
0

OS
C1

OS
C2

IC
SP

DA
T2

IC
SP

CL
K2

U3
_R

B5

U3
_R

B4

VD
D2

VP
P2 VD
D2

IC
SP

DA
T2

IC
SP

CL
K2
 2009-2015 Microchip Technology Inc. DS40001369C-page 101

PICDEMTM Lab Development Board User’s Guide
NOTES:
DS40001369C-page 102  2009-2015 Microchip Technology Inc.

 2009-2015 Microchip Technology Inc. DS40001369C-page 103

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110

Canada - Toronto
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2943-5100
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Dongguan

Tel: 86-769-8702-9880

China - Hangzhou
Tel: 86-571-8792-8115
Fax: 86-571-8792-8116

China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

ASIA/PACIFIC
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-3019-1500

Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310

Japan - Tokyo
Tel: 81-3-6880- 3770
Fax: 81-3-6880-3771

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955

Taiwan - Kaohsiung
Tel: 886-7-213-7828

Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Dusseldorf
Tel: 49-2129-3766400

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Germany - Pforzheim
Tel: 49-7231-424750

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Venice
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Poland - Warsaw
Tel: 48-22-3325737

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

01/27/15

http://support.microchip.com
http://www.microchip.com

	Table of Contents
	Chapter 1. Overview
	1.1 Introduction
	1.2 Highlights
	1.3 PICDEM™ Lab Development Kit Contents
	1.4 PICDEM™ Lab Development Board Construction and Layout
	Figure 1-1: PICDEM™ Lab Development Board

	1.5 Target Power
	1.6 Connecting the PICkit™ 3 Programmer/Debugger
	Figure 1-2: Connecting the PICkit™ 3 Programmer/Debugger to an ICSP™ connector

	1.7 Solderless Prototyping Area Strip Configuration
	Figure 1-3: Solderless Prototyping Area Strip Configuration

	Chapter 2. Getting Started
	2.1 Introduction
	2.2 Prerequisites
	2.3 The Software Control Loop
	Figure 2-1: Main() Software Control Loop Flowchart for uSED iN lABS

	2.4 MPLAB® X IDE and XC Compiler Download Instructions
	Figure 2-2: Run .exe to Download File
	Figure 2-3: Complete The MPLAB® X IDE V2.30 Setup Wizard
	Figure 2-4: Run and Download .exe File

	2.5 Installing the Included Lab Files
	Chapter 3. General Purpose Input/Output Labs
	3.1 Introduction
	3.2 General Purpose Input/Output Labs
	3.3 GPIO Output Labs
	3.3.1 Reference Documentation
	3.3.2 Equipment Required for GPIO Output Labs
	3.3.3 PICDEM Lab Development Board Setup for GPIO Output Labs
	Figure 3-1: PICDEM Lab Schematic for GPIO Output Labs

	3.3.4 Lab 1: Light LEDs
	3.3.4.1 New Registers Used in This Lab
	3.3.4.2 Overview
	Figure 3-2: MAIN() Software Control Loop Flowchart for Lab 1

	3.3.4.3 Procedure
	Figure 3-3: New MPLAB IDE Project Selection
	Figure 3-4: Step one
	Figure 3-5: Device Selection
	Figure 3-6: Header Selection
	Figure 3-7: Tool Selection
	Figure 3-8: Compiler Selection
	Figure 3-9: Select Project Name and Folder
	Figure 3-10: Select Project Source
	Figure 3-11: Project Window
	Figure 3-12: ToolBar Buttons

	3.3.4.4 Testing the Application
	Figure 3-13: Lab 1 LED Output

	3.3.5 Lab 2: Flash LEDs (Delay Loop)
	3.3.5.1 Overview
	Figure 3-14: Main() Software Control Loop Flowchart for Lab 2
	Figure 3-15: Timing() Delay Routine Flowchart for Lab 2

	3.3.5.2 Procedure
	3.3.5.3 Testing the Application

	3.3.6 Lab 3: Simple Delays Using Timer0
	3.3.6.1 New Registers Used in This Lab
	3.3.6.2 Overview
	Equation 3-1: TMR0 Overflow Period using FOSC/4
	Equation 3-2: TMR0 Overflow Period when including the Prescaler
	Equation 3-3: Calculating a TMR0 PreLoad Value to generate a 10mS Overflow Period
	Figure 3-16: Delay_10mS() using Timer0
	Equation 3-4: Maximum TMR0 Overflow Period
	Figure 3-17: Delay_1S() using Timer0

	3.3.6.3 Procedure
	3.3.6.4 Testing the Application

	3.3.7 Lab 4: Rotate LEDs
	3.3.7.1 Overview
	Figure 3-18: Main() Software Control Loop Flowchart for Lab 4
	Figure 3-19: Decide() Flowchart for Lab 4
	Figure 3-20: Results of Do_Output()

	3.3.7.2 Procedure
	3.3.7.3 Testing the Application

	3.4 GPIO Input Labs
	3.4.1 Reference Documentation
	3.4.2 Equipment Required for GPIO Input Labs
	3.4.3 PICDEM Lab Development Board Setup for GPIO Input Labs
	Figure 3-21: PICDEM Lab Schematic for GPIO Input Labs

	3.4.4 Lab 5: Adding a Push Button
	3.4.4.1 New Registers Used in This Lab
	3.4.4.2 Overview
	Figure 3-22: Main() Software Control Loop Flowchart for Lab 5
	Figure 3-23: Get_Inputs() Software Flowchart for Lab 5
	Figure 3-24: Delay_5mS() Software Flowchart for Lab 5
	Figure 3-25: Decide() Software FlowChart for Lab 5

	3.4.4.3 Procedure
	3.4.4.4 Testing the Application

	3.4.5 Lab 6: Push Button Interrupt
	3.4.5.1 New Registers Used in This Lab
	3.4.5.2 Overview
	Figure 3-26: Main() Software Control Loop Flowchart for GPIO Lab 6
	Figure 3-27: pb_pressISR() for Lab 6 Showing Switch Debounce

	3.4.5.3 Procedure
	3.4.5.4 Testing the Application

	3.4.6 Lab 7: Push Button Interrupt-on-Change
	3.4.6.1 New Registers Used in This Lab
	3.4.6.2 Overview
	Figure 3-28: pb_pressisr Flowchart for Lab 7

	3.4.6.3 Procedure
	3.4.6.4 Testing the Application

	3.4.7 Lab 8: Using Weak Pull-Ups
	3.4.7.1 New Registers Used in This Lab
	3.4.7.2 Overview
	3.4.7.3 Procedure
	3.4.7.4 Testing the Application

	Chapter 4. Comparator Peripheral Labs
	4.1 Introduction
	4.2 Comparator Labs
	4.2.1 Reference Documentation
	4.2.2 Comparator Labs
	4.2.3 Equipment Required
	4.2.4 Lab 1: Simple Compare
	4.2.4.1 New Registers Used in This Lab
	4.2.4.2 Overview
	Figure 4-1: Schematic for Comparator Lab 1
	Figure 4-2: Main() software Control Loop Flowchart for Comparator Lab 1

	4.2.4.3 Procedure
	4.2.4.4 Testing the Application

	4.2.5 Lab 2: Using the Comparator Voltage Reference
	4.2.5.1 New Registers Used in This Lab
	4.2.5.2 Overview
	Equation 4-1: CVref Output Voltage
	Equation 4-2: Calculating a 2.5V Internal Reference (Low-Range Method)
	Figure 4-3: Schematic for Comparator Lab 2

	4.2.5.3 Procedure
	4.2.5.4 Testing the Application

	4.2.6 Lab 3: Higher Resolution Sensor Readings Using a Single Comparator
	4.2.6.1 New Registers Used in This Lab
	4.2.6.2 Overview
	Figure 4-4: Basic Relaxation Oscillator Circuit
	Figure 4-5: Schematic for Comparator Lab 3
	Figure 4-6: Main() software Control Loop Flowchart for Comparator Lab 3
	Figure 4-7: TMR0_ISR Flowchart for Comparator Lab 3

	4.2.6.3 Procedure
	4.2.6.4 Testing the Application

	Chapter 5. Analog-to-Digital Converter Peripheral Labs
	5.1 Introduction
	5.2 ADC Labs
	5.2.1 Reference Documentation
	5.2.2 Equipment Required
	5.2.3 Lab 1: Simple ADC
	5.2.3.1 New Registers Used in This Lab
	5.2.3.2 Overview
	Figure 5-1: Schematic for ADC Lab 1
	Figure 5-2: Main() software Control Loop Flowchart for Comparator Lab 1
	Figure 5-3: Main() software Control Loop Flowchart for Comparator Lab 1

	5.2.3.3 Procedure
	5.2.3.4 Testing the Application
	Figure 5-4: ADC Result Bit Significance
	Table 5-1: Corresponding Voltage on Pin 13 related to Lit LEDs (1 = LED ON, 0 = LED OFF)

	5.2.4 Lab 2: Audible Temperature Sensor
	5.2.4.1 Overview
	Figure 5-5: Schematic for ADC Lab 2
	Figure 5-6: Main() software Control Loop Flowchart for ADC Lab 2

	5.2.4.2 Procedure
	5.2.4.3 Testing the Application

	Chapter 6. PICDEM™ Lab Motor Control
	6.1 Overview
	6.2 Procedure
	6.2.1 Motor Use and Programming
	Figure 6-1: Connection of Motor and Resistors

	6.2.2 PWM Period
	6.2.2.1 PWM Period
	Equation 6-1: PWM Period
	Equation 6-2: 50% Duty Cycle and Pulse Width
	Equation 6-3: 75% Duty Cycle and Pulse Width Modulator

	Appendix A. Schematic
	A.1 PICDEM™ Lab Development Kit Schematic
	Worldwide Sales

