1.6 x 0.8 x 0.4mm SMD #### **OSXX0603C1A** #### **■Features** - Single chip - Super high brightness of surface mount LED - Sorting for Iv and Vf @ 5mA of If - Compact package outline (LxWxT) of 1.6mm x 0.8mm x 0.4mm - Compatible to IR reflow soldering. ## Applications • Backlighting (switches, keys, etc.) ■Absolute Maximum Rating • Marker lights (e.g. steps, exit ways, etc.) # (Ta=25) #### Value Symbo Item Unit WT/BL/TG YG/YL/OR/HR DC Forward Current $I_{\rm F}$ 30 30 mA Pulse Forward Current* 100 100 I_{FP} mΑ Reverse Voltage V $V_{R} \\$ 5 5 Power Dissipation mW 100 P_{D} 70 Operating Temperature Topr $-40 \sim +85$ Storage Temperature Tstg **-40**~ +85 Lead Soldering Temperature Tsol 260 /5sec #### **■Outline Dimension** # **■**Directivity ### **Electrical -Optical Characteristics** #### (Ta=25) | | | | $V_{F}(V)$ | | | $I_R(\mu A)$ | Iv(mcd) | | | λD(nm) | | | 2θ1/2(deg) | | |-------------------|--------------|------|------------|---------------------|------|--------------|--------------------|---------------------|------|--------|------|----------|------------|-----| | Part Number Color | | Min. | Тур. | Max. | Max. | Min. | Тур. | Max. | Min. | Тур. | Max. | Тур. | | | | | | | | I _F =5mA | | | V _R =5V | I _F =5mA | | | | | | | | OSWT0603C1A | White | WT | | 2.7 | 2.9 | 3.2 | 100 | 37 | 74 | 110 | X=(| 0.27, Y= | 0.28 | 120 | | OSBL0603C1A | Blue | BL | | 2.6 | 2.9 | 3.2 | 100 | 9 | 23 | 37 | 465 | 470 | 475 | 120 | | OSTG0603C1A | True Green | TG | | 2.6 | 2.9 | 3.1 | 10* | 60 | 103 | 145 | 520 | 525 | 530 | 120 | | OSYG0603C1A | Yellow green | YG | | 1.7 | 1.9 | 2.2 | 100 | 6 | 11 | 16 | 565 | 570 | 575 | 120 | | OSYL0603C1A | Yellow | YL | | 1.7 | 1.9 | 2.2 | 100 | 27 | 40 | 71 | 586 | 590 | 592 | 120 | | OSOR0603C1A | Orange | OR | | 1.7 | 1.9 | 2.2 | 100 | 18 | 35 | 60 | 600 | 605 | 610 | 120 | | OSHR0603C1A | Red | HR | | 1.7 | 1.9 | 2.2 | 100 | 18 | 35 | 60 | 620 | 625 | 630 | 120 | Note: * Vf tolerance: ±0.05V *True Green V_R=4V # **LED & Application Technologies** http://www.optosupply.com VER A.0 ^{*}Pulse width Max 0.1ms, Duty ratio max 1/10 ^{*} Dominant wavelength tolerance: ±1nm ^{*} Luminous intensity is NIST reading. Luminous intensity tolerance:±10% # ■ Optical and electrical characteristics #### TYPICAL ELECTRICAL/OPTICAL CHARACTERISTIC CURVES **LED & Application Technologies** http://www.optosupply.com VER A.0 ### ■ Recommended Soldering Temperature – Time Profile (Reflow Soldering) #### **Surface Mounting Condition** In automatic mounting of the SMD LEDs on printed circuit boards, any bending, expanding and pulling forces or shock against the SMD LEDs should be kept min. to prevent them from electrical failures and mechanical damages of the devices. #### Soldering Reflow - -Soldering of the SMD LEDs should conform to the soldering condition in the individual specifications. - -SMD LEDs are designed for Reflow Soldering. - -In the reflow soldering, too high temperature and too large temperature gradient such as rapid heating/cooling may cause electrical & optical failures and damages of the devices. - -We cannot guarantee the LEDs after they have been assembled using the solder dipping method. #### 1) Lead Solder #### **LED & Application Technologies** http://www.optosupply.com VER A.0 ### 2) Lead-Free Solder #### 3) Manual Soldering conditions. - Lead Solder Max. 300 for Max. 3sec, and only one time. - Lead-free Solder Max. 350 for Max. 3sec, and only one time. - There is possibility that the brightness of LEDs is decreased, which is influenced by heat or ambient atmosphere during reflow. It is recommended to use the nitrogen reflow method. - After LEDs have been soldered, repair should not be done. As repair is unavoidable, a double-head soldering iron should be used. It should be confirmed beforehand whether the characteristics of the LEDs will be damaged by repairing or not. - Reflow soldering should not be done more than two times. 2S (150 9001 : 2000 ### ■ Material # True green: | | Material | |----------------------------------|--| | 1. Lead-frame. / Soldering Leads | Cu Alloy With Ni, Au Plating. | | 2. PCB | BT Resin. | | 3. Encapsulant | Epoxy Resin. | | 4. Die | InGaN based | | 5. Zener diode | Si | | 6. Bonding wire | Au
Chip : Ball Bonding / PCB : Ball Bonding | Note: Product is lead-free (Pb free). ### White/ Blue/ Yellow green/ Yellow/ Orange/ Red: | | Material | |----------------------------------|--| | 1. Lead-frame. / Soldering Leads | Cu Alloy With Ni, Au Plating. | | 2. PCB | BT Resin. | | 3. Encapsulate | Epoxy Resin. | | 4. Die | AllnGaP based | | 5. Bonding wire | Au | | | Chip : Ball Bonding / PCB : Ball Bonding | Note: Product is lead-free (Pb free). #### ■ Taping and Orientation. Quantity: 4,000 units/reel Diameter: 178 mm General Tolerance: ± 0.1 | <u>Item</u> | Spec | Tol.(+/-) | <u>ltem</u> | Spec | Tol.(+/-) | |-------------|------|------------|-------------|------|------------| | W | 8.00 | ±0.20 | P2 | 2.00 | ±0.05 | | Е | 1.75 | ±0.10 | t | 0.20 | ±0.05 | | F | 3.50 | ±0.05 | A0 | 0.95 | ±0.05 | | D0 | 1.50 | +0.10/-0 | В0 | 1.85 | ±0.05 | | D1 | 0.50 | ±0.08 | K0 | 0.50 | ±0.05 | | P0 | 4.00 | ±0.1 | | | | | P1 | 4.00 | ±0.1 | | | | Unit: mm #### **■** Cautions: - 1. After open the package, the LED should be kept at 30°C, 30%RH or less. The LED should be soldered within 24 hours (1 day) after opening the package. - 2. Heat generation must be taken into design consideration when using the LED. - 3. Power must be applied resistors for protection, over current would be caused the optic damage to the devices and wavelength shift. - 4. Manual tip solder may cause the damage to Chip devices, so advised that heat of iron should be lower than 15W with temperature control under 5 seconds at 230-260 deg. C. (The device would be got damage in re working process, recommended under 5 seconds at 230-260 deg. C) - 5. All equipment and machinery must be properly grounded. It is recommended to use a wristband or anti-electrostatic glove when handing the LED. - 6. Use IPA as a solvent for cleaning the LED. The other solvent may dissolve the LED package and the epoxy, Ultrasonic cleaning should not be done. - 7. Damaged LED will show unusual characteristics such as leak current remarkably increase, turn-on voltage becomes lower and the LED get unlight at low current. ### **LED & Application Technologies** #### ■ Reliability Test: | | Test Item | Test Conditions | Time | Test Q'ty | Fail Q'ty | O.K | |---|---|---|---------|-----------|-----------|------| | 1 | Thermal Cycle Test
(168 cycles) | H:+75°C 30 min
~
L:-35°C 30 min | 168 Hrs | 20 | 0 | Pass | | 2 | Thermal Shock Test
(84 cycles, Rate= 5min) | H:+85°C (Holding 1 hr)
~
L:-40°C (Holding 1 hr) | 168 Hrs | 20 | 0 | Pass | | 3 | High Temp. Storage Test | Temp.:100°C | 168 Hrs | 20 | 0 | Pass | | 4 | Low Temp. Storage Test | Temp.:-40°C | 168 Hrs | 20 | 0 | Pass | | 5 | High Temp. High
Humidity Test | 85°C/85%RH, | 168 Hrs | 20 | 0 | Pass | | 6 | Press Cook Test | T=121°C, P=2atms
H=100%RH | 168 Hrs | 20 | 0 | Pass | | 7 | Operating Life Test | IF=20 mA, 25°C | 168 Hrs | 20 | 0 | Pass | | 8 | IR-Reflow Test | Max 260°C
(Pb free condition) | 2 Times | 10 | 0 | Pass | #### **Conclusions:** The reliability tests were designed to evaluate both package integrity as well as workability of product performance over time. All samples have done well by completed test requirement and passed all the qualification criteria with zero failure. From design standpoint, the package is robust enough to meet its datasheet conditions. Based on the good result shows on the above test, this product is qualified and released for market.