Features
* High Performance, Low Power 32-bit Atmel® AVR® Microcontroller
— Compact Single-Cycle RISC Instruction Set Including DSP Instruction Set
— Read-Modify-Write Instructions and Atomic Bit Manipulation
— Performing up to 1.51DMIPS/MHz
« Up to 126 DMIPS Running at 84MHz from Flash (1 Wait-State)
* Up to 63 DMIPS Running at 42MHz from Flash (0 Wait-State)
— Memory Protection Unit
* Multi-Layer Bus System
— High-Performance Data Transfers on Separate Buses for Increased Performance
— 8 Peripheral DMA Channels (PDCA) Improves Speed for Peripheral
Communication
— 4 generic DMA Channels for High Bandwidth Data Paths
* Internal High-Speed Flash
— 256KBytes, 128KBytes, 64KBytes versions
— Single-Cycle Flash Access up to 36 MHz
— Prefetch Buffer Optimizing Instruction Execution at Maximum Speed
— 4ms Page Programming Time and 8ms Full-Chip Erase Time
— 100,000 Write Cycles, 15-year Data Retention Capability
— Flash Security Locks and User Defined Configuration Area
* Internal High-Speed SRAM
— 64KBytes Single-Cycle Access at Full Speed, Connected to CPU Local Bus
— 64KBytes (2x32KBytes with independent access) on the Multi-Layer Bus System
* Interrupt Controller
— Autovectored Low Latency Interrupt Service with Programmable Priority
* System Functions
— Power and Clock Manager Including Internal RC Clock and One 32KHz Oscillator
— Two Multipurpose Oscillators and Two Phase-Lock-Loop (PLL),
— Watchdog Timer, Real-Time Clock Timer
* External Memories
— Support SDRAM, SRAM, NandFlash (1-bit and 4-bit ECC), Compact Flash
— Up to 66 MHz
* External Storage device support
MultiMediaCard (MMC V4.3), Secure-Digital (SD V2.0), SDIO V1.1
CE-ATA V1.1, FastSD, SmartMedia, Compact Flash
Memory Stick: Standard Format V1.40, PRO Format V1.00, Micro
IDE Interface
* One Advanced Encryption System (AES) for AT32UC3A3256S, AT32UC3A3128S,
AT32UC3A364S, AT32UC3A4256S, AT32UC3A4128S and AT32UC3A364S
— 256-, 192-, 128-bit Key Algorithm, Compliant with FIPS PUB 197 Specifications
— Buffer Encryption/Decryption Capabilities
* Universal Serial Bus (USB)
— High-Speed USB 2.0 (480Mbit/s) Device and Embedded Host
— Flexible End-Point Configuration and Management with Dedicated DMA Channels
— On-Chip Transceivers Including Pull-Ups
* One 8-channel 10-bit Analog-To-Digital Converter, multiplexed with Digital 10s.
* Two Three-Channel 16-bit Timer/Counter (TC)
* Four Universal Synchronous/Asynchronous Receiver/Transmitters (USART)

— Fractionnal Baudrate Generator

Y 5

Y ()

32-bit AVR
Microcontroller

AT32UC3A3256S
AT32UC3A3256
AT32UC3A3128S
AT32UC3A3128
AT32UC3A364S
AT32UC3A364
AT32UC3A4256S
AT32UC3A4256
AT32UC3A4128S
AT32UC3A4128
AT32UC3A464S
AT32UC3A464

32072H-AVR32-10/2012

— Support for SPland LIN

— Optionnal support for IrDA, 1ISO7816, Hardware Handshaking, RS485 interfaces and Modem Line
* Two Master/Slave Serial Peripheral Interfaces (SPI) with Chip Select Signals
* One Synchronous Serial Protocol Controller

— Supports 12S and Generic Frame-Based Protocols
* Two Master/Slave Two-Wire Interface (TWI), 400kbit/s I2C-compatible
* 16-bit Stereo Audio Bitstream

— Sample Rate Up to 50 KHz
» QTouch® Library Support

— Capacitive Touch Buttons, Sliders, and Wheels

— QTouch and QMatrix Acquisition
* On-Chip Debug System (JTAG interface)

— Nexus Class 2+, Runtime Control, Non-Intrusive Data and Program Trace
* 110 General Purpose Input/Output (GPIOs)

— Standard or High Speed mode

— Toggle capability: up to 84MHz
* Packages

— 144-pall TFBGA, 11x11 mm, pitch 0.8 mm

— 144-pin LQFP, 22x22 mm, pitch 0.5 mm

— 100-ball VFBGA, 7x7 mm, pitch 0.65 mm
* Single 3.3V Power Supply

AIMEL 2

32072H-AVR32-10/2012 I ©

1. Description

32072H-AVR32-10/2012

The AT32UC3A3/A4 is a complete System-On-Chip microcontroller based on the AVR32 UC
RISC processor running at frequencies up to 84MHz. AVR32 UC is a high-performance 32-bit
RISC microprocessor core, designed for cost-sensitive embedded applications, with particular
emphasis on low power consumption, high code density and high performance.

The processor implements a Memory Protection Unit (MPU) and a fast and flexible interrupt con-
troller for supporting modern operating systems and real-time operating systems. Higher
computation capabilities are achievable using a rich set of DSP instructions.

The AT32UC3A3/A4 incorporates on-chip Flash and SRAM memories for secure and fast
access. 64 KBytes of SRAM are directly coupled to the AVR32 UC for performances optimiza-
tion. Two blocks of 32 Kbytes SRAM are independently attached to the High Speed Bus Matrix,
allowing real ping-pong management.

The Peripheral Direct Memory Access Controller (PDCA) enables data transfers between
peripherals and memories without processor involvement. The PDCA drastically reduces pro-
cessing overhead when transferring continuous and large data streams.

The Power Manager improves design flexibility and security: the on-chip Brown-Out Detector
monitors the power supply, the CPU runs from the on-chip RC oscillator or from one of external
oscillator sources, a Real-Time Clock and its associated timer keeps track of the time.

The device includes two sets of three identical 16-bit Timer/Counter (TC) channels. Each chan-
nel can be independently programmed to perform frequency measurement, event counting,
interval measurement, pulse generation, delay timing and pulse width modulation. 16-bit chan-
nels are combined to operate as 32-bit channels.

The AT32UC3A3/A4 also features many communication interfaces for communication intensive
applications like UART, SPI or TWI. The USART supports different communication modes, like
SPI Mode and LIN Mode. Additionally, a flexible Synchronous Serial Controller (SSC) is avail-
able. The SSC provides easy access to serial communication protocols and audio standards like
12S.

The AT32UC3A3/A4 includes a powerfull External Bus Interface to interface all standard mem-
ory device like SRAM, SDRAM, NAND Flash or parallel interfaces like LCD Module.

The peripheral set includes a High Speed MCI for SDIO/SD/MMC and a hardware encryption
module based on AES algorithm.

The device embeds a 10-bit ADC and a Digital Audio bistream DAC.

The Direct Memory Access controller (DMACA) allows high bandwidth data flows between high
speed peripherals (USB, External Memories, MMC, SDIO, ...) and through high speed internal
features (AES, internal memories).

The High-Speed (480MBit/s) USB 2.0 Device and Host interface supports several USB Classes
at the same time thanks to the rich Endpoint configuration. The Embedded Host interface allows
device like a USB Flash disk or a USB printer to be directly connected to the processor. This
periphal has its own dedicated DMA and is perfect for Mass Storage application.

AT32UC3A3/A4 integrates a class 2+ Nexus 2.0 On-Chip Debug (OCD) System, with non-intru-
sive real-time trace, full-speed read/write memory access in addition to basic runtime control.

AIMEL 3

Y 5

2. Overview

2.1 Block Diagram

Figure 2-1. Block Diagram

AVRIZUC | b gz | e

< 100 JTAG
™ »| INTERFACE <#>

US> NEXUS
[{«——McKO—— CLASS 2+
< MDOI5..0]. ocD MEMORY PROTECTION UNIT: 64 KB
D7 N INSTR SRAM
«— evion—— | INTERFACE | INTERFACE
< USB_VBIAS
— USB_VBUS >
<-DMFS, DMH » USB HS
< DPFS, DPHS . » INTERFACE %
[€¢—VBOF— 256/128/64
v s M M M s é KB
— M sk 2 FLASH
32KB RAM % s
32KBRAM |& s
HIGH SPEED €—DATA[15..0
" BUS MATRIX s 5 [aoorizs.op»|
DMACA E L NCS[5..0—»!
NRD—p
| § § T [€«—NWAT——
o] % NWEO— |
- NWE1—
g AES % S s s M g g = [NWES—
% o g CAS—
z m (§) |——SDAT0—|
B HsB Hs8 PERIPHERAL g T o
% HSB-PB HSB-PB DMA '(7) %
l(_ﬁ BRIDGE B BRII:;SE A CONTROLLER 735{‘;‘;!?*)
E ———CFCE2—)»|
§ @ ———CFRW—»|
L L NaNDOE—p|
[¢——CLK—— | MULTIMEDIA CARD F—NANDWE—)|
«——cmD(1.0} | & MEMORY STICK «——RXD
PA |€——DATA[15..0——» INTERFACE /‘\I:">§ USART1 72>$4> 8
PB PA
<« RTS,CTS—p| =
4£§> I |€—DsR, DTR, DCD, Ri—3{ K gg
INTERRUPT g X
CONTROLLER V] USARTO DN
@% USART2 €« clk——» z
|€———RTS, CTS——»! 5
EXTINT[7..0— | EXTERNAL I &
l€«——SCAN[7.0} INTERRUPT /l\l:\l> «RO0—1 &
CONTROLLER ®§ USART3 N
<« Clk—
REAL TIME ﬂ\,;> |
COUNTER SERIAL <7M\SSC';(;\;(OS|4>
oo > KDF| PERPHERAL (&S0 oS
| 18 INTERFACE 0/1 NPCS[3.. 11—
e G ND COR E sl
iocon Regulator WATCHDOG (= |
<—VDDCORE_ TIMER SYNCHRONOUS |€TX_CLOCK, TX_FRAME_SYNC
K= SERIAL G
15Kz CONTROLLER €RX_CLOCK, RX_FRAME_SYNC)»>
POWER |€——RX DATA—————
RCSYS MANAGER | .
LxiN32p 32 KHz
K= TWO-WIRE
[xouTs2 CLOCK B| NTerracon [¢ i >
XINO GENERATOR < TWALM >
- 0sCo K= |
v CLOCK ANALOG TO <« ADf.OF——
L XIN1»| CONTROLLER % DIGITAL
(o104 I =)
€xouTi— = CONVERTER
SLEEP
PLLO =)/ | CONTROLLER |
PLL1 K= AUDIO DATA[1..0F— 3
RESET (=>E| BITSTREAM DATAN[1..0——
RESET N |€———GCLK[3..0} CONTROLLER DAC
«—ARO——»
BL2. 0} TIMER/g/?UNTER /\,:>
CLK[2..0—— |
AV

AIMEL 4

32072H-AVR32-10/2012 I ©

2.2 Configuration Summary
The table below lists all AT32UC3A3/A4 memory and package configurations:

Table 2-1. Configuration Summary
Feature AT32UC3A3256/128/64 AT32UC3A4256/128/64
Flash 256/128/64 KB
SRAM 64 KB
HSB RAM 64 KB
EBI Full Nand flash only
GPIO 110 70
External Interrupts 8
TWI 2
USART 4
Peripheral DMA Channels 8
Generic DMA Channels 4
SPI 2
MCI slots 2 MMC/SD slots 1 MMC/SD slot
+ 1 SD slot
High Speed USB 1
AES (S option) 1
SSC 1
Audio Bitstream DAC 1
Timer/Counter Channels 6
Watchdog Timer 1
Real-Time Clock Timer 1
Power Manager 1

PLL 80-240 MHz (PLLO/PLL1)
Crystal Oscillators 0.4-20 MHz (OSC0/OSC1)

Oscillators .
Crystal Oscillator 32 KHz (OSC32K)
RC Oscillator 115 kHz (RCSYS)
10-bit ADC 1
number of channels 8
JTAG 1
Max Frequency 84 MHz
Package LQFP144, TFBGA144 VFBGA100

AIMEL 5

32072H-AVR32-10/2012 I ©

3. Package and Pinout

Package

3.1

The device pins are multiplexed with peripheral functions as described in the Peripheral Multi-

plexing on I/O Line section.

TFBGA144 Pinout (top view)

Figure 3-1.

12

9 10 11

8

DMHS USB_VBUS

PCO04 PC05 DPHS

PCO02

PBOO PA28 PA27 PB03

PX40

PA10

DPFS GNDCORE PA08

VDDIO uUsB_VBIAS DMFS GNDPLL PA09
PB08

PCO03
PA30

PA31 PB02 VDDIO
PX35 GNDIO PBO1 PX16

PB11

PX10
PX09

PX37 PX36 PXa7 PX19 PX12 PB10 PAOQ2 PA26 PA11 PBO7 PB06

PX08

PAO7 VDDCORE PA12

VDDIO PX54 PX53 VDDIO PX15 PB09 VDDIN PA25

PX38

PA16
PAO1

PAO05 PA13
PA24 PAO03 PAOO

PAO4

PAO6
PA23

GNDIO GNDIO
GNDIO GNDIO

PX48
PX51

PX06 PX49
PX05 PX59 PX50

PX07

PX39
PX00

TDO RESET_N

PA22 VDDANA PBO05
TMS

PA21
PA20

VDDIO
PA19

PA17
PA15

VDDIO
PX55

PX57
PX56

PX34

VDDIO PX58

PX02

PX01
PX04

PA18 PX27 GNDIO PX29 TCK

PX52

PX44 GNDIO PX46 PCO00

PX03

o 0 0 O O O O

PX23

VDDIN PX26 PX28 GNDANA

PX43

GNDIO PX45 PX20 VDDIO

PX11

PX30 PX33

PX31

PX25

PX24

O
PX14 PX21

PX42

PX22

Y 5

AIMEL

ALO O O O O O O O O O O O

BOOOOO%OOOOOO
cloO O O O O O O O O O O O

DO O O O O O O O O O O O
EEO O O O O O O O O O O O

FFTO O O O O O O O O O O O
GO O O O O O O O O O O O

HOOOOOP%OOOOOO
JJO O O O O O O O O O O O

KOOOOOQOOOOOO

Lo O 0 O O O O O O O O O

MO O O O

32072H-AVR32-10/2012

Figure 3-2.

PA21
PA22
PA23
PA24
PA20
PA19
PA18
PA17
GNDANA
VDDANA
PA25
PA26
PB05
PAOO
PAO1
PAO5
PAO3
PAO4
PAO6
PA16
PA13
VDDIO
GNDIO
PA12
PAQO7
PB06
PBO7
PA11
PAO8
PA10
PAQO9
GNDCORE
VDDCORE
VDDIN
VDDIN
GNDPLL

LQFP144 Pinout

CIUUITUanraruenuenuenronrronreuroroo

Z
|
b 09 Q0
D OIS ES58R8IYEILRLYIVREOOSBBE8%
ISRl Rl a i fedoias!
L T T e e e e e e e L
8588358385853 R855385883BYBIRRRLLNE
— 109 72
— 110 71
— 111 70
— 112 69
— 113 68
— 114 67
— 115 66
— 116 65
— 117 64
— 118 63
— 119 62
— 120 61
— 121 60
— 122 59
— 123 58
— 124 57
— 125 56
— 126 55
— 127 54
— 128 53
— 129 52
— 130 51
— 131 50
— 132 49
— 133 48
— 134 47
— 135 46
— 136 45
— 137 44
— 138 43
— 139 42
— 140 41
— 141 40
— 142 39
— 143 38
— 144 37
ENWAUIONDOO A NWROIO VDO RPN X8
. BNNEREENBESXEBRES
JUUUUuuUooggoooounuunuooouoovorouony
G) i) V0V TWT () MUV TUUUUUUUUTUTUTUTUTT
w Z XX XXX
e P R R E R AR R
5050 O [e]o)

32072H-AVR32-10/2012

ATMEL

PX22
PX41
PX45
PX42
PX14
PX11
PX44
GNDIO
VDDIO
PX03
PX02
PX34
PX04
PX01
PX05
PX58
PX59
PX00
PX07
PX06
PX39
PX38
PX08
PX09
VDDIO
GNDIO
PX54
PX37
PX36
PX49
PX53
PX48
PX15
PXa7
PX35
PX10

AT32UC3A3

Figure 3-3. VFBGAZ100 Pinout (top view)

-
o

O |=
O N
O |w
O |
O |o
O |o
O |IN
O |
O |©
O

O
>
]
®©
U
>
R~
~
0
us)
o
Ny
0
>
w
S
3
@)
=]
N
3
9
S
@
3
Q
S
a
o
)
T
w
o
=
I
w
c
177
w
<
@
c
7

O
O
O
O
O
O
O
O
O
O

'U
@
o
=}
0
©
<
n
@
o
N
0
>
N
©
<
O
9
o
<
lw}
9
(@)
0
(@]
o
=
O
0
M
w
@)
<
M
(2]
@
Z
o
T
—
(e

O
O
O
O
O
O
O
O
O
O

T
w
BN
-_—
o
>
w
—
@
z
g
@)
T
W
o
w
T
W
o
o
T
W
o
oo
c
@
lm
<
@
>
o
@
z
g
o
o
>
-
—
T
>
-
o

O
O
O
O
O
O
O
O

U
P
-_—
N
U
X
-
o
U
X
—
w
-
X
=
hY
@
o
Y
o8}
S
N
U
uy]
S
>
0
>
o
©
<
O
)
z
<
)
9
z

T
x
15
@

T
>
o
N
@
z
g9
@)
T
x
o
oo
T
X
o
©
<
o)
g
@)
@
z
g
o]
T
=
(e}

O
O
O
O
O
O

0
>
o
@

GNDCORE

T

X

©
<
o
g
o
U
X
o
>
U
x
o
\‘
@
Z
9
o
<
9
9
o

O
O
O
O
O

PA23/ PA12/ PAOO/
PA18®"

O

GNDANA o X

O O

TDO RESET N

_U
>
<)
&
o
>
4

T
OR10
o
()]
U
x
o
—
U
x
o
N
T
x
o
o
T
x
w
o
X
N
2N
T
>
)
a
0
=
~

N~ . I @ m m O O w >»
O
@,
O
O
O
@,
O

O
O
O
O
O
O
1O

0
>
N
N
X
Y
|
N}
o
=4
N

T
x
o
S
T
x
)
@
z
g
@)
T
x
S
o
T
x
«
T
X
N
S
_i
<
»
T

)

[oe]

O
O
O
O
O
O 2

PA15/

T
x
o
w
T
x
N
N
T
x
N
(o)}
T
x
N
©
<
]
g
@)
<
S
s
>
Z
>

PXx45% px17%)
PX15/ PCO0/ PA14/ PA21/
PX23 PX27 PX28 omoth pyqqn PCOT Siim TDI TCK oo

Note: 1. Those balls are physically connected to 2 GPIOs. Software must managed carrefully the GPIO
configuration to avoid electrical conflict

ATMEL 8

32072H-AVR32-10/2012

3.2 Peripheral Multiplexing on I/O lines
3.2.1 Multiplexed Signals

Each GPIO line can be assigned to one of the peripheral functions. The following table
describes the peripheral signals multiplexed to the GPIO lines.

Note that GPIO 44 is physically implemented in silicon but it must be kept unused and config-
ured in input mode.

Table 3-1. GPIO Controller Function Multiplexing

G GPIO function
P PIN
BGA | QFP | BGA I Type
144 | 144 100 PIN o] Supply @ A B C]
G1l1 122 [et:10 PAOO 0 VDDIO X3 USARTO - RTS TCO - CLK1 SPI1 - NPCS[3]
G12 123 G10W PAO1 1 VDDIO x1 USARTO - CTS TCO-A1l USART2 - RTS
D8 15 E1W PA02 2 VDDIO x1 USARTO - CLK TCO-B1 SPIO - NPCS[0]
G10 125 F9 PA03 3 VDDIO x1 USARTO - RXD EIC - EXTINT[4] ABDAC - DATA[O]
F9 126 E9 PAO4 4 VDDIO x1 USARTO - TXD EIC - EXTINT[5] ABDAC - DATAN[O]
F10 124 G9 PAO5 5 VDDIO x1 USART1 - RXD TC1 - CLKO USB - ID
F8 127 E8W PAO6 6 VDDIO x1 USART1 - TXD TC1-CLK1 USB - VBOF
E10 133 H10W PAO7 7 VDDIO x1 SPI0 - NPCS[3] ABDAC - DATAN[O] USART1 - CLK
Cl1 137 F8 PAO8 8 VDDIO X3 SPIO - SPCK ABDAC - DATA[O] TCl-B1
B12 139 D8 PA09 9 VDDIO X2 SPI0 - NPCSI0] EIC - EXTINT[6] TC1-A1l
C12 138 C10 PA10 10 VDDIO X2 SPIO - MOSI USB - VBOF TC1-BO
D10 136 c9 PA11 11 VDDIO X2 SPI0 - MISO USB - ID TC1-A2
E12 132 G7® PA12 12 VDDIO x1 USART1 - CTS SPIO - NPCS[2] TC1-AO0
F11 129 E8W PA13 13 VDDIO x1 USART1 - RTS SPI0 - NPCS[1] EIC - EXTINT[7]
J6 100 K7® PA14 14 VDDIO x1 SPIO - NPCS[1] TWIMSO - TWALM TWIMS1 - TWCK
J7 101 J70 PA15 15 VDDIO x1 MCI - CMD[1] SPI1 - SPCK TWIMSL1 - TWD
F12 128 E7 PA16 16 VDDIO x1 MCI - DATA[11] SPI1 - MOSI TC1- CLK2
H7 116 G10® PA17 17 | VDDANA x1 MCI - DATA[10] SPI1 - NPCS[1] ADC - AD[7]
K8 115 (e PA18 18 | VDDANA x1 MCI - DATA[9] SPI1 - NPCS[2] ADC - AD[6]
J8 114 H10® PA19 19 | VDDANA x1 MCI - DATA[8] SPI1 - MISO ADC - ADI[5]
J9 113 HoW PA20 20 VDDANA x1 EIC - NMI SSC - RX_FRAME_SYNC ADC - AD[4]
H9 109 K10® PA21 21 | VDDANA x1 ADC - AD[0] EIC - EXTINT[O] USB - ID
H10 110 He® PA22 22 VDDANA x1 ADC - AD[1] EIC - EXTINT[1] USB - VBOF
G8 111 GeW PA23 23 | VDDANA x1 ADC - AD[2] EIC - EXTINT[2] ABDAC - DATA[1]
G9 112 Jio® PA24 24 | VDDANA x1 ADC - AD[3] EIC - EXTINT[3] ABDAC - DATAN[1]
E9 119 G7W PA25 25 VDDIO x1 TWIMSO - TWD TWIMS1 - TWALM USART1 - DCD
D9 120 F7(1)) PA26 26 VDDIO x1 TWIMSO - TWCK USART2 - CTS USART1 - DSR
A4 26 A2 PA27 27 VDDIO X2 MCI - CLK SSC - RX_DATA USART3 - RTS MSI - SCLK
A3 28 Al PA28 28 VDDIO x1 MCI - CMDI0] SSC - RX_CLOCK USART3 - CTS MSI - BS
A6 23 B4 PA29 29 VDDIO x1 MCI - DATA[O] USART3 - TXD TCO - CLKO MSI - DATA[O]

AIMEL 9

32072H-AVR32-10/2012 I ©

Table 3-1. GPIO Controller Function Multiplexing
G GPIO function
P PIN
BGA | QFP | BGA I Type
144 | 144 100 PIN o] Supply @ A B C]
C7 14 A4 PA30 30 VDDIO x1 MCI - DATA[1] USART3 - CLK DMACA - DMAACK][0] MSI - DATA[1]
B3 29 c2 PA31 | 31 VDDIO x1 MCI - DATA[2] USART2 - RXD DMACA - DMARQI0] MSI - DATA[2]
A2 30 B1 PBO0O0O 32 VDDIO x1 MCI - DATA[3] USART2 - TXD ADC - TRIGGER MSI - DATA[3]
c4 27 B2 PBOL | 33 VDDIO x1 MCI - DATA[4] ABDAC - DATA[1] EIC - SCAN[O] MSI - INS
B4 25 B3 PB02 34 VDDIO x1 MCI - DATA[5] ABDAC - DATAN[1] EIC - SCAN[1]
A5 24 c4 PBO3 | 35 VDDIO x1 MCI - DATA[6] USART2 - CLK EIC - SCAN[2]
B6 22 A3 PB04 36 VDDIO x1 MCI - DATA[7] USART3 - RXD EIC - SCAN[3]
H12 121 F7® PBO5 | 37 VDDIO x3 USB - ID TCO- AO EIC - SCAN[4]
D12 134 D7 PB06 38 VDDIO x1 USB - VBOF TCO-BO EIC - SCANI5]
D11 135 D6 PBO7 | 39 VDDIO x3 SPI1 - SPCK SSC - TX_CLOCK EIC - SCANI[6]
C8 11 C6 PB08 40 VDDIO X2 SPI1 - MISO SSC - TX_DATA EIC - SCAN[7]
E7 17 c5 PBO9 | 41 VDDIO x2 SPI1 - NPCS[0] SSC - RX_DATA EBI- NCS[4]
D7 16 D5 PB10 42 VDDIO X2 SPI1 - MOSI SSC - RX_FRAME_SYNC EBI - NCS[5]
B2 31 c1 PB11 | 43 VDDIO x1 USARTL-RXD | SSC- TX_FRAME_SYNC PM - GCLK[1]
K5 98 K5W PCO00 45 VDDIO x1
H6 99 K6 PCOL | 46 VDDIO x1
A7 18 A5 PC02 47 VDDIO x1
B7 19 A6 PCO3 | 48 VDDIO x1
A8 13 B7 PCO04 49 VDDIO x1
A9 12 A7 PCO5 | 50 VDDIO x1
Gl 55 G4 PX00 51 VDDIO X2 EBI - DATA[10] USARTO - RXD USART1 - RI
H1 59 G2 PX01 | 52 VDDIO x2 EBI - DATA[9] USARTO - TXD USART1 - DTR
J2 62 G3 PX02 53 VDDIO X2 EBI - DATA[8] USARTO - CTS PM - GCLK]J0]
K1 63 J1 PX03 54 VDDIO X2 EBI - DATA[7] USARTO - RTS
J1 60 H1 PX04 55 VDDIO X2 EBI - DATA[6] USART1 - RXD
G2 58 Gl PX05 56 VDDIO X2 EBI - DATA[5] USART1 - TXD
F3 53 F3 PX06 57 VDDIO X2 EBI - DATA[4] USART1 - CTS
F2 54 F4 PX07 58 VDDIO x2 EBI - DATA[3] USART1 - RTS
D1 50 E3 PX08 59 VDDIO X2 EBI - DATA[2] USART3 - RXD
C1 49 E4 PX09 60 VDDIO x2 EBI - DATA[1] USART3 - TXD
B1 37 D2 PX10 61 VDDIO X2 EBI - DATA[O] USART2 - RXD
L1 67 K7W PX11 62 VDDIO X2 EBI - NWE1 USART2 - TXD
D6 34 D1 PX12 63 VDDIO X2 EBI - NWEO USART2 - CTS MCI - CLK
C6 33 D3 PX13 64 VDDIO X2 EBI - NRD USART2 - RTS MCI - CLK
M4 68 K5W PX14 65 VDDIO x2 EBI - NCS[1] TCO - AO
E6 40 K4W PX15 66 VDDIO x2 EBI - ADDR[19] USART3 - RTS TCO - BO
C5 32 D4W PX16 67 VDDIO X2 EBI - ADDR[18] USART3-CTS TCO-A1l
K6 83 Jio® PX17 68 VDDIO x2 EBI - ADDR[17] DMACA - DMARQI1] TCO-B1

32072H-AVR32-10/2012

ATMEL

Y 5

10

Table 3-1. GPIO Controller Function Multiplexing
G GPIO function
P PIN

BGA | QFP | BGA I Type

144 | 144 100 PIN o] Supply @ A B C
L6 84 Ho® PX18 69 VDDIO X2 EBI - ADDR[16] DMACA - DMAACK([1] TCO - A2

D5 35 F1® PX19 70 VDDIO x2 EBI - ADDR[15] EIC - SCAN[O0] TCO- B2
L4 73 He® PX20 71 VDDIO X2 EBI - ADDR[14] EIC - SCAN[1] TCO - CLKO
M5 80 H2 PX21 72 VDDIO x2 EBI - ADDR[13] EIC - SCAN[2] TCO - CLK1
M1 72 K10W | Px22 73 VDDIO X2 EBI - ADDR[12] EIC - SCAN[3] TCO - CLK2
M6 85 K1 PX23 74 VDDIO x2 EBI - ADDR[11] EIC - SCAN[4] SSC - TX_CLOCK
M7 86 J2 PX24 75 VDDIO x2 EBI - ADDR[10] EIC - SCAN[5] SSC - TX_DATA
M8 92 H4 PX25 76 VDDIO x2 EBI - ADDR[9] EIC - SCAN[6] SSC - RX_DATA
L9 90 J3 PX26 77 VDDIO x2 EBI - ADDR[8] EIC - SCAN[7] SSC - RX_FRAME_SYNC
K9 89 K2 PX27 78 VDDIO x2 EBI - ADDR[7] SPIO - MISO SSC - TX_FRAME_SYNC
L10 91 K3 PX28 79 VDDIO X2 EBI - ADDRI[6] SPIO - MOSI SSC - RX_CLOCK
K11 94 J4 PX29 80 VDDIO x2 EBI - ADDR[5] SPI0 - SPCK

M11 96 G5 PX30 81 VDDIO X2 EBI - ADDR[4] SPIO - NPCS[0]

M10 97 H5 PX31 82 VDDIO x2 EBI - ADDR[3] SPIO0 - NPCS[1]

M9 93 K4® PX32 83 VDDIO X2 EBI - ADDR[2] SPIO - NPCS[2]

M12 95 PX33 84 VDDIO x2 EBI - ADDR[1] SPIO0 - NPCS[3]
J3 61 PX34 85 VDDIO X2 EBI - ADDR[0] SPI1 - MISO PM - GCLK[0]
c2 38 PX35 86 VDDIO x2 EBI - DATA[15] SPI1 - MOSI PM - GCLK[1]
D3 44 PX36 87 VDDIO X2 EBI - DATA[14] SPI1 - SPCK PM - GCLK[2]
D2 45 PX37 88 VDDIO x2 EBI - DATA[13] SPI1 - NPCS[0] PM - GCLK(3]
E1l 51 PX38 89 VDDIO x2 EBI - DATA[12] SPI1 - NPCS[1] USART1 - DCD
F1 52 PX39 90 VDDIO x2 EBI - DATA[11] SPI1 - NPCS[2] USART1 - DSR
Al 36 PX40 91 VDDIO X2 MCI - CLK

M2 71 PX41 92 VDDIO X2 EBI- CAS

M3 69 PX42 93 VDDIO X2 EBI- RAS
L7 88 PX43 94 VDDIO X2 EBI - SDA10 USART1 - RI

K2 66 PX44 95 VDDIO X2 EBI - SDWE USART1 - DTR
L3 70 J7® PX45 96 VDDIO x3 EBI - SDCK

K4 74 G6W PX46 97 VDDIO X2 EBI - SDCKE

D4 39 E1® PX47 98 VDDIO x2 EBI - NANDOE ADC - TRIGGER MCI - DATA[11]
F5 41 PX48 99 VDDIO x2 EBI - ADDR[23] USB - VBOF MCI - DATA[10]
F4 43 PX49 | 100 VDDIO x2 EBI - CFRNW USB - ID MCI - DATA[9]
G4 75 PX50 | 101 VDDIO x2 EBI - CFCE2 TC1-B2 MCI - DATA[8]
G5 77 PX51 | 102 VDDIO x2 EBI - CFCE1 DMACA - DMAACK[0] MCI - DATA[15]
K7 87 PX52 | 103 VDDIO x2 EBI - NCS[3] DMACA - DMARQ[0] MCI - DATA[14]
E4 42 D4W PX53 | 104 VDDIO x2 EBI - NCS[2] MCI - DATA[13]
E3 46 PX54 | 105 VDDIO x2 EBI - NWAIT USART3 - TXD MCI - DATA[12]
J5 79 PX55 | 106 VDDIO X2 EBI - ADDR[22] EIC - SCAN[3] USART2 - RXD

ATMEL 1
32072H-AVR32-10/2012 I ©

Table 3-1. GPIO Controller Function Multiplexing
G GPIO function
P PIN
BGA | QFP | BGA I Type
144 | 144 100 PIN o] Supply @ A B C]
Ja 78 PX56 | 107 | VDDIO x2 EBI - ADDR[21] EIC - SCAN[2] USART2 - TXD
H4 76 PX57 | 108 | VDDIO x2 EBI - ADDR[20] EIC - SCAN[1] USART3 - RXD
H3 57 PX58 | 109 | VDDIO x2 EBI - NCSI[0] EIC - SCAN[0] USART3 - TXD
G3 56 F1® PX59 | 110 | VDDIO x2 EBI - NANDWE MCI - CMD[1]
Note: 1. Those balls are physically connected to 2 GPIOs. Software must managed carrefully the GPIO
configuration to avoid electrical conflict.
2. Refer to "Electrical Characteristics” on page 960 for a description of the electrical properties of
the pad types used..
3.2.2 Peripheral Functions
Each GPIO line can be assigned to one of several peripheral functions. The following table
describes how the various peripheral functions are selected. The last listed function has priority
in case multiple functions are enabled on the same pin.
Table 3-2. Peripheral Functions
Function Description
GPIO Controller Function multiplexing GPIO and GPIO peripheral selection A to D
Nexus OCD AUX port connections OCD trace system
JTAG port connections JTAG debug port
Oscillators 0OSCO0, OSC1, OSC32
3.2.3 Oscillator Pinout

The oscillators are not mapped to the normal GPIO functions and their muxings are controlled
by registers in the Power Mananger (PM). Please refer to the PM chapter for more information

about this.
Table 3-3.Oscillator Pinout
TFBGA144 QFP144 VFBGA100 Pin name Oscillator pin

A7 18 A5 PC02 XINO

B7 19 A6 PCO03 XOUTO0

A8 13 B7 PC04 XIN1

A9 12 A7 PCO05 XOUT1

K5 98 K5 PC00 XIN32

H6 99 K6 PCO1 XOUT32
Note: 1. This ball is physically connected to 2 GPIOs. Software must managed carrefully the GPIO con-

figuration to avoid electrical conflict

AIMEL 12

32072H-AVR32-10/2012 I ©

3.24 JTAG port connections

Table 3-4. JTAG Pinout

TFBGA144 QFP144 VFBGA100 Pin name JTAG pin
K12 107 K9 TCK TCK
L12 108 K8 TDI TDI
Ji1 105 J8 TDO TDO
J10 104 H7 TMS TMS

3.25 Nexus OCD AUX port connections
If the OCD trace system is enabled, the trace system will take control over a number of pins, irre-
spective of the GPIO configuration. Three differents OCD trace pin mappings are possible,
depending on the configuration of the OCD AXS register. For details, see the AVR32 UC Tech-
nical Reference Manual.

Table 3-5. Nexus OCD AUX port connections

Pin AXS=0 AXS=1 AXS=2
EVTI_N PBO5 PAOS PX00
MDO[5] PAOO PX56 PX06
MDO[4] PAO1 PX57 PX05
MDO[3] PAO3 PX58 PX04
MDO[2] PA16 PA24 PX03
MDOJ[1] PA13 PA23 PX02
MDO[0] PA12 PA22 PX01
MSEO[1] PA10 PAO7 PX08
MSEO[0] PA11 PX55 PX07

MCKO PBO7 PX00 PB09
EVTO_N PB06 PB06 PB06

AIMEL 13

32072H-AVR32-10/2012 I ©

3.3 Signal Descriptions
The following table gives details on signal name classified by peripheral.

Table 3-6. Signal Description List

Active
Signal Name Function Type Level Comments
Power

VDDIO 1/0 Power Supply Power 3.0to 3.6V
VDDANA Analog Power Supply Power 3.0to 3.6V
VDDIN Voltage Regulator Input Supply Power 3.0to 3.6V
VDDCORE Voltage Regulator Output for Digital Supply gﬁ\t/\;/)irt 1.65t01.95V
GNDANA Analog Ground Ground
GNDIO I/0 Ground Ground
GNDCORE Digital Ground Ground
GNDPLL PLL Ground Ground

Clocks, Oscillators, and PLL's
XINO, XINZ1, XIN32 Crystal 0, 1, 32 Input Analog
igglg,zxoun, Crystal 0, 1, 32 Output Analog

JTAG
TCK Test Clock Input
TDI Test Data In Input
TDO Test Data Out Output
TMS Test Mode Select Input
Auxiliary Port - AUX
MCKO Trace Data Output Clock Output
MDO[5:0] Trace Data Output Output
MSEO[1:0] Trace Frame Control Output
EVTI_N Event In Input Low
EVTO_N Event Out Output Low
Power Manager - PM

GCLK][3:0] Generic Clock Pins Output

32072H-AVR32-10/2012

ATMEL

Y 5

14

Table 3-6. Signal Description List
Active
Signal Name Function Type Level Comments
RESET_N Reset Pin Input Low
DMA Controller - DMACA (optional)
DMAACK]1:0] DMA Acknowledge Output
DMARQ[1:0] DMA Requests Input
External Interrupt Controller - EIC
EXTINT[7:0] External Interrupt Pins Input
SCANJ7:0] Keypad Scan Pins Output
NMI Non-Maskable Interrupt Pin Input Low
General Purpose Input/Output pin - GPIOA, GPIOB, GPIOC, GPIOX

PA[31:0] Parallel /0O Controller GPIO port A I/0
PB[11:0] Parallel 1/0O Controller GPIO port B I/1O
PC[5:0] Parallel 1/0 Controller GPIO port C 1/0
PX[59:0] Parallel 1/0O Controller GPIO port X I/1O

External Bus Interface - EBI
ADDR[23:0] Address Bus Output
CAS Column Signal Output Low
CFCE1l Compact Flash 1 Chip Enable Output Low
CFCE2 Compact Flash 2 Chip Enable Output Low
CFRNW Compact Flash Read Not Write Output
DATA[15:0] Data Bus I/0
NANDOE NAND Flash Output Enable Output Low
NANDWE NAND Flash Write Enable Output Low
NCSI[5:0] Chip Select Output Low
NRD Read Signal Output Low
NWAIT External Wait Signal Input Low
NWEO Write Enable 0 Output Low
NWE1 Write Enable 1 Output Low
RAS Row Signal Output Low

32072H-AVR32-10/2012

ATMEL

Y 5

15

Table 3-6. Signal Description List
Active

Signal Name Function Type Level Comments
SDA10 SDRAM Address 10 Line Output
SDCK SDRAM Clock Output
SDCKE SDRAM Clock Enable Output
SDWE SDRAM Write Enable Output Low

MultiMedia Card Interface - MCI
CLK Multimedia Card Clock Output
CMD[1:0] Multimedia Card Command 110
DATA[15:0] Multimedia Card Data I/0

Memory Stick Interface - MSI
SCLK Memory Stick Clock Output
BS Memory Stick Command /0
DATA[3:0] Multimedia Card Data /0
Serial Peripheral Interface - SPI0, SPI1
MISO Master In Slave Out I/0
MOSI Master Out Slave In /0
NPCS[3:0] SPI Peripheral Chip Select 1/0 Low
SPCK Clock Output
Synchronous Serial Controller - SSC

RX_CLOCK SSC Receive Clock I/0
RX_DATA SSC Receive Data Input
RX_FRAME_SYNC SSC Receive Frame Sync I/0
TX_CLOCK SSC Transmit Clock I/0
TX_DATA SSC Transmit Data Output
TX_FRAME_SYNC SSC Transmit Frame Sync I/0

Timer/Counter - TCO, TC1

A0 Channel 0 Line A 110
Al Channel 1 Line A 110
A2 Channel 2 Line A 110

32072H-AVR32-10/2012

ATMEL

Y 5

16

Table 3-6. Signal Description List
Active
Signal Name Function Type Level Comments
BO Channel O Line B /0
B1 Channel 1 Line B /0
B2 Channel 2 Line B /0
CLKO Channel 0 External Clock Input Input
CLK1 Channel 1 External Clock Input Input
CLK2 Channel 2 External Clock Input Input
Two-wire Interface - TWIO, TWI1
TWCK Serial Clock 110
TWD Serial Data /0
TWALM SMBALERT signal /0
Universal Synchronous Asynchronous Receiver Transmitter - USARTO, USART1, USART2, USART3
CLK Clock 11O
CTS Clear To Send Input
DCD Data Carrier Detect Only USART1
DSR Data Set Ready Only USART1
DTR Data Terminal Ready Only USART1
RI Ring Indicator Only USART1
RTS Request To Send Output
RXD Receive Data Input
TXD Transmit Data Output
Analog to Digital Converter - ADC
ADO - AD7 Analog input pins Analog
input

Audio Bitstream DAC (ABDAC)

DATAO-DATA1

D/A Data out

Output

DATANO-DATAN1

D/A Data inverted out

Output

Universal Serial Bus Device - USB

DMFS

USB Full Speed Data -

Analog

DPFS

USB Full Speed Data +

Analog

32072H-AVR32-10/2012

ATMEL

Y 5

17

Table 3-6. Signal Description List

Active
Signal Name Function Type Level Comments
DMHS USB High Speed Data - Analog
DPHS USB High Speed Data + Analog
Connect to the ground through a
6810 ohms (+/- 1%) resistor in
arallel with a 10pf capacitor.
USB_VBIAS USB VBIAS reference Analog P . Pl cap .
If USB hi-speed feature is not
required, leave this pin
unconnected to save power
USB_VBUS USB VBUS signal Output
VBOF USB VBUS on/off bus power control port Output
ID ID Pin fo the USB bus Input

AIMEL 18

32072H-AVR32-10/2012 I ©

3.4 I/O Line Considerations

34.1 JTAG Pins

TMS and TDI pins have pull-up resistors. TDO pin is an output, driven at up to VDDIO, and has
no pull-up resistor.

3.4.2 RESET_N Pin
The RESET_N pin is a schmitt input and integrates a permanent pull-up resistor to VDDIO. As
the product integrates a power-on reset cell, the RESET_N pin can be left unconnected in case
no reset from the system needs to be applied to the product.

343 TWI Pins
When these pins are used for TWI, the pins are open-drain outputs with slew-rate limitation and
inputs with inputs with spike filtering. When used as GPIO pins or used for other peripherals, the
pins have the same characteristics as other GPIO pins.

3.4.4 GPIO Pins
All the I/O lines integrate a programmable pull-up resistor. Programming of this pull-up resistor is
performed independently for each 1/O line through the I/O Controller. After reset, I/O lines default
as inputs with pull-up resistors disabled, except when indicated otherwise in the column “Reset
State” of the I/O Controller multiplexing tables.

AIMEL 19

32072H-AVR32-10/2012 I ©

35 Power Considerations

3.5.1 Power Supplies
The AT32UC3A3 has several types of power supply pins:

* VDDIO: Powers I/O lines. Voltage is 3.3V nominal

* VDDANA: Powers the ADC. Voltage is 3.3V nominal

* VDDIN: Input voltage for the voltage regulator. Voltage is 3.3V nominal

* VDDCORE: Output voltage from regulator for filtering purpose and provides the supply to the
core, memories, and peripherals. Voltage is 1.8V nominal

The ground pin GNDCORE is common to VDDCORE and VDDIN. The ground pin for VDDANA

is GNDANA. The ground pins for VDDIO are GNDIO.

Refer to Electrical Characteristics chapter for power consumption on the various supply pins.

3.5.2 Voltage Regulator
The AT32UC3A3 embeds a voltage regulator that converts from 3.3V to 1.8V with a load of up
to 100 mA. The regulator takes its input voltage from VDDIN, and supplies the output voltage on
VDDCORE and powers the core, memories and peripherals.

Adequate output supply decoupling is mandatory for VDDCORE to reduce ripple and avoid
oscillations.

The best way to achieve this is to use two capacitors in parallel between VDDCORE and
GNDCORE:

* One external 470pF (or 1nF) NPO capacitor (CouT1) should be connected as close to the
chip as possible.
« One external 2.2 uF (or 3.3uF) X7R capacitor (CouT2).
Adequate input supply decoupling is mandatory for VDDIN in order to improve startup stability
and reduce source voltage drop.

The input decoupling capacitor should be placed close to the chip, e.g., two capacitors can be
used in parallel (LnF NPO and 4.7 uF X7R).

3.3V = »| VDDIN--------~
c,, L L. D] vooiN----=- LA
Regulator
18V m VDDCORE <--—--_--—--_--_'.| ---------

COUT2 f f COUT1

amsmEEmEEEE
LTI LLLLY,

-

For decoupling recommendations for VDDIO and VDDANA please refer to the Schematic
checklist.

AIMEL 20

32072H-AVR32-10/2012 I ©

4. Processor and Architecture

4.1

4.2

Features

32072H-AVR32-10/2012

Rev: 1.4.2.0

This chapter gives an overview of the AVR32UC CPU. AVR32UC is an implementation of the
AVR32 architecture. A summary of the programming model, instruction set, and MPU is pre-
sented. For further details, see the AVR32 Architecture Manual and the AVR32UC Technical
Reference Manual.

e 32-bit load/store AVR32A RISC architecture
15 general-purpose 32-bit registers
32-bit Stack Pointer, Program Counter and Link Register reside in register file
Fully orthogonal instruction set
Privileged and unprivileged modes enabling efficient and secure Operating Systems
— Innovative instruction set together with variable instruction length ensuring industry leading
code density
— DSP extention with saturating arithmetic, and a wide variety of multiply instructions
* 3-stage pipeline allows one instruction per clock cycle for most instructions
— Byte, halfword, word and double word memory access
— Multiple interrupt priority levels
* MPU allows for operating systems with memory protection

AVR32 Architecture

AVR32 is a high-performance 32-bit RISC microprocessor architecture, designed for cost-sensi-
tive embedded applications, with particular emphasis on low power consumption and high code
density. In addition, the instruction set architecture has been tuned to allow a variety of micro-
architectures, enabling the AVR32 to be implemented as low-, mid-, or high-performance
processors. AVR32 extends the AVR family into the world of 32- and 64-bit applications.

Through a quantitative approach, a large set of industry recognized benchmarks has been com-
piled and analyzed to achieve the best code density in its class. In addition to lowering the
memory requirements, a compact code size also contributes to the core’s low power characteris-
tics. The processor supports byte and halfword data types without penalty in code size and
performance.

Memory load and store operations are provided for byte, halfword, word, and double word data
with automatic sign- or zero extension of halfword and byte data. The C-compiler is closely
linked to the architecture and is able to exploit code optimization features, both for size and
speed.

In order to reduce code size to a minimum, some instructions have multiple addressing modes.
As an example, instructions with immediates often have a compact format with a smaller imme-
diate, and an extended format with a larger immediate. In this way, the compiler is able to use
the format giving the smallest code size.

Another feature of the instruction set is that frequently used instructions, like add, have a com-
pact format with two operands as well as an extended format with three operands. The larger
format increases performance, allowing an addition and a data move in the same instruction in a
single cycle. Load and store instructions have several different formats in order to reduce code
size and speed up execution.

AIMEL 21

Y 5

The register file is organized as sixteen 32-bit registers and includes the Program Counter, the
Link Register, and the Stack Pointer. In addition, register R12 is designed to hold return values
from function calls and is used implicitly by some instructions.

4.3 The AVR32UC CPU

32072H-AVR32-10/2012

The AVR32UC CPU targets low- and medium-performance applications, and provides an
advanced OCD system, no caches, and a Memory Protection Unit (MPU). Java acceleration
hardware is not implemented.

AVR32UC provides three memory interfaces, one High Speed Bus master for instruction fetch,
one High Speed Bus master for data access, and one High Speed Bus slave interface allowing
other bus masters to access data RAMs internal to the CPU. Keeping data RAMs internal to the
CPU allows fast access to the RAMs, reduces latency, and guarantees deterministic timing.
Also, power consumption is reduced by not needing a full High Speed Bus access for memory
accesses. A dedicated data RAM interface is provided for communicating with the internal data
RAMs.

A local bus interface is provided for connecting the CPU to device-specific high-speed systems,
such as floating-point units and fast GPIO ports. This local bus has to be enabled by writing the
LOCEN bit in the CPUCR system register. The local bus is able to transfer data between the
CPU and the local bus slave in a single clock cycle. The local bus has a dedicated memory
range allocated to it, and data transfers are performed using regular load and store instructions.
Details on which devices that are mapped into the local bus space is given in the Memories
chapter of this data sheet.

Figure 4-1 on page 23 displays the contents of AVR32UC.

AIMEL 22

Y 5

Figure 4-1. Overview of the AVR32UC CPU

=
g 8
8 T 5
b k= k=
<
5 8 \33\
‘% Power/
8 ocD Reset
g system
control
=
AVR32UC CPU pipeline
A A
Y A4
| MPU
A A
Instruction memory controller Data memory controller
Sr-ngnd High | CPU Local
High Speed Bus master gi‘: Speed Bus
Bus slave master §
master i
i=
4 i@ 8 3 =
g o4
i i g 5
5 = 5 z
T T T

4.3.1 Pipeline Overview
AVR32UC has three pipeline stages, Instruction Fetch (IF), Instruction Decode (ID), and Instruc-
tion Execute (EX). The EX stage is split into three parallel subsections, one arithmetic/logic
(ALU) section, one multiply (MUL) section, and one load/store (LS) section.

Instructions are issued and complete in order. Certain operations require several clock cycles to
complete, and in this case, the instruction resides in the ID and EX stages for the required num-
ber of clock cycles. Since there is only three pipeline stages, no internal data forwarding is
required, and no data dependencies can arise in the pipeline.

Figure 4-2 on page 24 shows an overview of the AVR32UC pipeline stages.

AIMEL 23

32072H-AVR32-10/2012 I ©

Figure 4-2. The AVR32UC Pipeline

- MUL > Multiply unit
F D Regfile » ALU p| Redfile ALU unit
Read w rite
Prefetch unit | Decode unit |—
Y
Ly| s > Load-s.tore
unit

4.3.2 AVR32A Microarchitecture Compliance
AVR32UC implements an AVR32A microarchitecture. The AVR32A microarchitecture is tar-
geted at cost-sensitive, lower-end applications like smaller microcontrollers. This
microarchitecture does not provide dedicated hardware registers for shadowing of register file
registers in interrupt contexts. Additionally, it does not provide hardware registers for the return
address registers and return status registers. Instead, all this information is stored on the system
stack. This saves chip area at the expense of slower interrupt handling.

Upon interrupt initiation, registers R8-R12 are automatically pushed to the system stack. These
registers are pushed regardless of the priority level of the pending interrupt. The return address
and status register are also automatically pushed to stack. The interrupt handler can therefore
use R8-R12 freely. Upon interrupt completion, the old R8-R12 registers and status register are
restored, and execution continues at the return address stored popped from stack.

The stack is also used to store the status register and return address for exceptions and scall.
Executing the rete or rets instruction at the completion of an exception or system call will pop
this status register and continue execution at the popped return address.

4.3.3 Java Support
AVR32UC does not provide Java hardware acceleration.

4.3.4 Memory Protection
The MPU allows the user to check all memory accesses for privilege violations. If an access is
attempted to an illegal memory address, the access is aborted and an exception is taken. The
MPU in AVR32UC is specified in the AVR32UC Technical Reference manual.

4.3.5 Unaligned Reference Handling
AVR32UC does not support unaligned accesses, except for doubleword accesses. AVR32UC is
able to perform word-aligned st.d and Id.d. Any other unaligned memory access will cause an
address exception. Doubleword-sized accesses with word-aligned pointers will automatically be
performed as two word-sized accesses.

AIMEL 24

32072H-AVR32-10/2012 I ©

The following table shows the instructions with support for unaligned addresses. All other
instructions require aligned addresses.

Table 4-1. Instructions with Unaligned Reference Support
Instruction Supported alignment
Id.d Word
st.d Word
4.3.6 Unimplemented Instructions

The following instructions are unimplemented in AVR32UC, and will cause an Unimplemented
Instruction Exception if executed:

« All SIMD instructions
« All coprocessor instructions if no coprocessors are present

« retj, incjosp, popjc, pushjc
« tlbr, tibs, tlbw

* cache

4.3.7 CPU and Architecture Revision
Three major revisions of the AVR32UC CPU currently exist.

32072H-AVR32-10/2012

The Architecture Revision field in the CONFIGO system register identifies which architecture
revision is implemented in a specific device.

AVR32UC CPU revision 3 is fully backward-compatible with revisions 1 and 2, ie. code compiled
for revision 1 or 2 is binary-compatible with revision 3 CPUs.

ATMEL

Y 5

25

4.4 Programming Model

4.4.1 Register File Configuration
The AVR32UC register file is shown below.

Figure 4-3. The AVR32UC Register File

Application Supervisor INTO INT1 INT2 INT3 Exception NMI Secure
Bit 31 Bit 0 Bit 31 Bit 0 Bit 31 Bit 0 Bit 31 Bit0 Bit 31 Bit0 Bit 31 Bit0 Bit 31 Bit 0 Bit 31 Bit 0 Bit 31 Bit 0
PC PC |] PC PC PC PC PC PC PC
LR LR LR LR LR LR LR LR LR
SP_APP SP_SYS SP_SYS SP_SYS SP_SYS SP_SYS SP_SYS SP_SYS SP_SEC
R12 R12 R12 R12 R12 R12 R12 R12 R12
R11 R11 R11 R11 R11 R11 R11 R11 R11
R10 R10 R10 R10 R10 R10 R10 R10 R10
R9 R9 R9 R9 R9 R9 R9 R9 R9
R8 R8 R8 R8 R8 R8 R8 R8 R8
R7 R7 R7 R7 R7 R7 R7 R7 R7
R6 R6 R6 R6 R6 R6 R6 R6 R6
R5 R5 R5 R5 R5 R5 R5 R5 R5
R4 R4 R4 R4 R4 R4 R4 R4 R4
R3 R3 R3 R3 R3 R3 R3 R3 R3
R2 R2 R2 R2 R2 R2 R2 R2 R2
R1 R1 R1 R1 R1 R1 R1 R1 R1
RO RO RO RO RO RO RO RO RO
SR | SR | SR | SR | SR | SR | SR | SR | SR
SS_STATUS
SS_ADRF
SS_ADRR
SS_ADRO
SS_ADR1
SS_SP_SYS
SS_SP_APP
SS_RAR
SS_RSR

4.4.2 Status Register Configuration
The Status Register (SR) is split into two halfwords, one upper and one lower, see Figure 4-4 on
page 26 and Figure 4-5 on page 27. The lower word contains the C, Z, N, V, and Q condition
code flags and the R, T, and L bits, while the upper halfword contains information about the
mode and state the processor executes in. Refer to the AVR32 Architecture Manual for details.

Figure 4-4. The Status Register High Halfword

Bit 31 Bit 16

- - - - |DM| D - | M2 | M1 | MO | EM |I3M | I2M | I1M | IOM | GM | Bit name

o0/ 0|0 0 00|00/ 1 1 0| 0| 0| 0 | 1 [Initialvalue

T |—> Global Interrupt Mask

—— Interrupt Level 0 Mask
Interrupt Level 1 Mask
Interrupt Level 2 Mask
Interrupt Level 3 Mask
Exception Mask
Mode Bit 0

Mode Bit 1

Mode Bit 2

Reserved

Debug State

Debug State Mask
Reserved

AIMEL 26

32072H-AVR32-10/2012 I ©

YYYYYYYYY V{

4.4.3

443.1

4.4.3.2

32072H-AVR32-10/2012

AT32UC3A3

Figure 4-5. The Status Register Low Halfword

Bit 15 Bit 0

- T - - - - - - - -/ L, Q| V/|N| Z| C Bitname

o, 0, 000 0|0 0|0 0|0 0|0 0| 0| 0 Initalvalue

|—> Carry

L——» Zero

Sign
Overflow
Saturation
Lock
Reserved
Scratch
Reserved

YYVYYVYY V{

Processor States

Normal RISC State

The AVR32 processor supports several different execution contexts as shown in Table 4-2 on
page 27.

Table 4-2. Overview of Execution Modes, their Priorities and Privilege Levels.
Priority Mode Security Description
1 Non Maskable Interrupt Privileged Non Maskable high priority interrupt mode
2 Exception Privileged Execute exceptions
3 Interrupt 3 Privileged General purpose interrupt mode
4 Interrupt 2 Privileged General purpose interrupt mode
5 Interrupt 1 Privileged General purpose interrupt mode
6 Interrupt O Privileged General purpose interrupt mode
N/A Supervisor Privileged Runs supervisor calls
N/A Application Unprivileged Normal program execution mode

Debug State

Mode changes can be made under software control, or can be caused by external interrupts or
exception processing. A mode can be interrupted by a higher priority mode, but never by one
with lower priority. Nested exceptions can be supported with a minimal software overhead.

When running an operating system on the AVR32, user processes will typically execute in the
application mode. The programs executed in this mode are restricted from executing certain
instructions. Furthermore, most system registers together with the upper halfword of the status
register cannot be accessed. Protected memory areas are also not available. All other operating
modes are privileged and are collectively called System Modes. They have full access to all priv-
ileged and unprivileged resources. After a reset, the processor will be in supervisor mode.

The AVR32 can be set in a debug state, which allows implementation of software monitor rou-
tines that can read out and alter system information for use during application development. This
implies that all system and application registers, including the status registers and program
counters, are accessible in debug state. The privileged instructions are also available.

AIMEL 27

Y 5

All interrupt levels are by default disabled when debug state is entered, but they can individually
be switched on by the monitor routine by clearing the respective mask bit in the status register.

Debug state can be entered as described in the AVR32UC Technical Reference Manual.

Debug state is exited by the retd instruction.

4.4.4 System Registers

32072H-AVR32-10/2012

The system registers are placed outside of the virtual memory space, and are only accessible
using the privileged mfsr and mtsr instructions. The table below lists the system registers speci-
fied in the AVR32 architecture, some of which are unused in AVR32UC. The programmer is
responsible for maintaining correct sequencing of any instructions following a mtsr instruction.
For detail on the system registers, refer to the AVR32UC Technical Reference Manual.

Table 4-3. System Registers

Reg # Address Name Function

0 0 SR Status Register

1 4 EVBA Exception Vector Base Address

2 8 ACBA Application Call Base Address

3 12 CPUCR CPU Control Register

4 16 ECR Exception Cause Register

5 20 RSR_SUP Unused in AVR32UC

6 24 RSR_INTO Unused in AVR32UC

7 28 RSR_INT1 Unused in AVR32UC

8 32 RSR_INT2 Unused in AVR32UC

9 36 RSR_INT3 Unused in AVR32UC

10 40 RSR_EX Unused in AVYR32UC

11 44 RSR_NMI Unused in AVYR32UC

12 48 RSR_DBG Return Status Register for Debug mode

13 52 RAR_SUP Unused in AVR32UC

14 56 RAR_INTO Unused in AVR32UC

15 60 RAR_INT1 Unused in AVR32UC

16 64 RAR_INT2 Unused in AVR32UC

17 68 RAR_INT3 Unused in AVR32UC

18 72 RAR_EX Unused in AVR32UC

19 76 RAR_NMI Unused in AVR32UC

20 80 RAR_DBG Return Address Register for Debug mode

21 84 JECR Unused in AVR32UC

22 88 JOSP Unused in AVR32UC

23 92 JAVA_LVO Unused in AVYR32UC

24 96 JAVA_LV1 Unused in AVR32UC

25 100 JAVA_LV2 Unused in AVR32UC
ATET :
Y 5

Table 4-3. System Registers (Continued)

Reg # Address Name Function

26 104 JAVA_LV3 Unused in AVR32UC

27 108 JAVA_LV4 Unused in AVYR32UC

28 112 JAVA_LV5 Unused in AVYR32UC

29 116 JAVA_LV6 Unused in AVYR32UC

30 120 JAVA_LV7 Unused in AVR32UC

31 124 JTBA Unused in AVR32UC

32 128 JBCR Unused in AVR32UC

33-63 132-252 Reserved Reserved for future use

64 256 CONFIGO Configuration register 0

65 260 CONFIG1 Configuration register 1

66 264 COUNT Cycle Counter register

67 268 COMPARE Compare register

68 272 TLBEHI Unused in AVR32UC

69 276 TLBELO Unused in AVR32UC

70 280 PTBR Unused in AVR32UC

71 284 TLBEAR Unused in AVYR32UC

72 288 MMUCR Unused in AVR32UC

73 292 TLBARLO Unused in AVR32UC

74 296 TLBARHI Unused in AVR32UC

75 300 PCCNT Unused in AVR32UC

76 304 PCNTO Unused in AVR32UC

77 308 PCNT1 Unused in AVYR32UC

78 312 PCCR Unused in AVR32UC

79 316 BEAR Bus Error Address Register

80 320 MPUARO MPU Address Register region 0

81 324 MPUAR1 MPU Address Register region 1

82 328 MPUAR2 MPU Address Register region 2

83 332 MPUARS3 MPU Address Register region 3

84 336 MPUAR4 MPU Address Register region 4

85 340 MPUARS5 MPU Address Register region 5

86 344 MPUARG MPU Address Register region 6

87 348 MPUAR7 MPU Address Register region 7

88 352 MPUPSRO MPU Privilege Select Register region 0
89 356 MPUPSR1 MPU Privilege Select Register region 1
90 360 MPUPSR2 MPU Privilege Select Register region 2
91 364 MPUPSR3 MPU Privilege Select Register region 3

AIMEL 29

32072H-AVR32-10/2012 I ©

Table 4-3. System Registers (Continued)

Reg # Address Name Function

92 368 MPUPSR4 MPU Privilege Select Register region 4
93 372 MPUPSR5 MPU Privilege Select Register region 5
94 376 MPUPSR6 MPU Privilege Select Register region 6
95 380 MPUPSR7 MPU Privilege Select Register region 7
96 384 MPUCRA Unused in this version of AVR32UC

97 388 MPUCRB Unused in this version of AVR32UC

98 392 MPUBRA Unused in this version of AVR32UC

99 396 MPUBRB Unused in this version of AVR32UC
100 400 MPUAPRA MPU Access Permission Register A
101 404 MPUAPRB MPU Access Permission Register B
102 408 MPUCR MPU Control Register

103-191 448-764 Reserved Reserved for future use

192-255 768-1020 IMPL IMPLEMENTATION DEFINED

4.5 Exceptions and Interrupts
AVR32UC incorporates a powerful exception handling scheme. The different exception sources,
like lllegal Op-code and external interrupt requests, have different priority levels, ensuring a well-
defined behavior when multiple exceptions are received simultaneously. Additionally, pending
exceptions of a higher priority class may preempt handling of ongoing exceptions of a lower pri-
ority class.

When an event occurs, the execution of the instruction stream is halted, and execution control is
passed to an event handler at an address specified in Table 4-4 on page 33. Most of the han-
dlers are placed sequentially in the code space starting at the address specified by EVBA, with
four bytes between each handler. This gives ample space for a jump instruction to be placed
there, jumping to the event routine itself. A few critical handlers have larger spacing between
them, allowing the entire event routine to be placed directly at the address specified by the
EVBA-relative offset generated by hardware. All external interrupt sources have autovectored
interrupt service routine (ISR) addresses. This allows the interrupt controller to directly specify
the ISR address as an address relative to EVBA. The autovector offset has 14 address bits, giv-
ing an offset of maximum 16384 bytes. The target address of the event handler is calculated as
(EVBA | event_handler_offset), not (EVBA + event_handler_offset), so EVBA and exception
code segments must be set up appropriately. The same mechanisms are used to service all dif-
ferent types of events, including external interrupt requests, yielding a uniform event handling
scheme.

An interrupt controller does the priority handling of the external interrupts and provides the
autovector offset to the CPU.

45.1 System Stack Issues
Event handling in AVR32UC uses the system stack pointed to by the system stack pointer,
SP_SYS, for pushing and popping R8-R12, LR, status register, and return address. Since event
code may be timing-critical, SP_SYS should point to memory addresses in the IRAM section,
since the timing of accesses to this memory section is both fast and deterministic.

AIMEL 30

32072H-AVR32-10/2012 I ©

45.2

45.3

45.4

32072H-AVR32-10/2012

The user must also make sure that the system stack is large enough so that any event is able to
push the required registers to stack. If the system stack is full, and an event occurs, the system
will enter an UNDEFINED state.

Exceptions and Interrupt Requests

When an event other than scall or debug request is received by the core, the following actions
are performed atomically:

1. The pending event will not be accepted if it is masked. The 13M, 12M, 11M, I0M, EM, and
GM bits in the Status Register are used to mask different events. Not all events can be
masked. A few critical events (NMI, Unrecoverable Exception, TLB Multiple Hit, and
Bus Error) can not be masked. When an event is accepted, hardware automatically
sets the mask bits corresponding to all sources with equal or lower priority. This inhibits
acceptance of other events of the same or lower priority, except for the critical events
listed above. Software may choose to clear some or all of these bits after saving the
necessary state if other priority schemes are desired. It is the event source’s respons-
ability to ensure that their events are left pending until accepted by the CPU.

2. When arequest is accepted, the Status Register and Program Counter of the current
context is stored to the system stack. If the eventis an INTO, INT1, INT2, or INT3, reg-
isters R8-R12 and LR are also automatically stored to stack. Storing the Status
Register ensures that the core is returned to the previous execution mode when the
current event handling is completed. When exceptions occur, both the EM and GM bits
are set, and the application may manually enable nested exceptions if desired by clear-
ing the appropriate bit. Each exception handler has a dedicated handler address, and
this address uniquely identifies the exception source.

3. The Mode bits are set to reflect the priority of the accepted event, and the correct regis-
ter file bank is selected. The address of the event handler, as shown in Table 4-4, is
loaded into the Program Counter.

The execution of the event handler routine then continues from the effective address calculated.

The rete instruction signals the end of the event. When encountered, the Return Status Register
and Return Address Register are popped from the system stack and restored to the Status Reg-
ister and Program Counter. If the rete instruction returns from INTO, INTZ1, INT2, or INTS3,
registers R8-R12 and LR are also popped from the system stack. The restored Status Register
contains information allowing the core to resume operation in the previous execution mode. This
concludes the event handling.

Supervisor Calls

The AVR32 instruction set provides a supervisor mode call instruction. The scall instruction is
designed so that privileged routines can be called from any context. This facilitates sharing of
code between different execution modes. The scall mechanism is designed so that a minimal
execution cycle overhead is experienced when performing supervisor routine calls from time-
critical event handlers.

The scall instruction behaves differently depending on which mode it is called from. The behav-
iour is detailed in the instruction set reference. In order to allow the scall routine to return to the
correct context, a return from supervisor call instruction, rets, is implemented. In the AVR32UC
CPU, scall and rets uses the system stack to store the return address and the status register.

Debug Requests

The AVR32 architecture defines a dedicated Debug mode. When a debug request is received by
the core, Debug mode is entered. Entry into Debug mode can be masked by the DM bit in the

AIMEL 31

Y 5

status register. Upon entry into Debug mode, hardware sets the SR[D] bit and jumps to the
Debug Exception handler. By default, Debug mode executes in the exception context, but with
dedicated Return Address Register and Return Status Register. These dedicated registers
remove the need for storing this data to the system stack, thereby improving debuggability. The
mode bits in the status register can freely be manipulated in Debug mode, to observe registers
in all contexts, while retaining full privileges.

Debug mode is exited by executing the retd instruction. This returns to the previous context.

45.5 Entry Points for Events

32072H-AVR32-10/2012

Several different event handler entry points exists. In AVR32UC, the reset address is
0x8000_0000. This places the reset address in the boot flash memory area.

TLB miss exceptions and scall have a dedicated space relative to EVBA where their event han-
dler can be placed. This speeds up execution by removing the need for a jump instruction placed
at the program address jumped to by the event hardware. All other exceptions have a dedicated
event routine entry point located relative to EVBA. The handler routine address identifies the
exception source directly.

AVR32UC uses the ITLB and DTLB protection exceptions to signal a MPU protection violation.
ITLB and DTLB miss exceptions are used to signal that an access address did not map to any of
the entries in the MPU. TLB multiple hit exception indicates that an access address did map to
multiple TLB entries, signalling an error.

All external interrupt requests have entry points located at an offset relative to EVBA. This
autovector offset is specified by an external Interrupt Controller. The programmer must make
sure that none of the autovector offsets interfere with the placement of other code. The autovec-
tor offset has 14 address bits, giving an offset of maximum 16384 bytes.

Special considerations should be made when loading EVBA with a pointer. Due to security con-
siderations, the event handlers should be located in non-writeable flash memory, or optionally in
a privileged memory protection region if an MPU is present.

If several events occur on the same instruction, they are handled in a prioritized way. The priority
ordering is presented in Table 4-4. If events occur on several instructions at different locations in
the pipeline, the events on the oldest instruction are always handled before any events on any
younger instruction, even if the younger instruction has events of higher priority than the oldest
instruction. An instruction B is younger than an instruction A if it was sent down the pipeline later
than A.

The addresses and priority of simultaneous events are shown in Table 4-4. Some of the excep-
tions are unused in AVR32UC since it has no MMU, coprocessor interface, or floating-point unit.

AIMEL 32

Y 5

Table 4-4. Priority and Handler Addresses for Events
Priority | Handler Address Name Event source Stored Return Address
1 0x8000_0000 Reset External input Undefined
2 Provided by OCD system OCD Stop CPU OCD system First non-completed instruction
3 EVBA+0x00 Unrecoverable exception Internal PC of offending instruction
4 EVBA+0x04 TLB multiple hit MPU
5 EVBA+0x08 Bus error data fetch Data bus First non-completed instruction
6 EVBA+0x0C Bus error instruction fetch Data bus First non-completed instruction
7 EVBA+0x10 NMI External input First non-completed instruction
8 Autovectored Interrupt 3 request External input First non-completed instruction
9 Autovectored Interrupt 2 request External input First non-completed instruction
10 Autovectored Interrupt 1 request External input First non-completed instruction
11 Autovectored Interrupt O request External input First non-completed instruction
12 EVBA+0x14 Instruction Address CPU PC of offending instruction
13 EVBA+0x50 ITLB Miss MPU
14 EVBA+0x18 ITLB Protection MPU PC of offending instruction
15 EVBA+0x1C Breakpoint OCD system First non-completed instruction
16 EVBA+0x20 lllegal Opcode Instruction PC of offending instruction
17 EVBA+0x24 Unimplemented instruction Instruction PC of offending instruction
18 EVBA+0x28 Privilege violation Instruction PC of offending instruction
19 EVBA+0x2C Floating-point UNUSED
20 EVBA+0x30 Coprocessor absent Instruction PC of offending instruction
21 EVBA+0x100 Supervisor call Instruction PC(Supervisor Call) +2
22 EVBA+0x34 Data Address (Read) CPU PC of offending instruction
23 EVBA+0x38 Data Address (Write) CPU PC of offending instruction
24 EVBA+0x60 DTLB Miss (Read) MPU
25 EVBA+0x70 DTLB Miss (Write) MPU
26 EVBA+0x3C DTLB Protection (Read) MPU PC of offending instruction
27 EVBA+0x40 DTLB Protection (Write) MPU PC of offending instruction
28 EVBA+0x44 DTLB Modified UNUSED

32072H-AVR32-10/2012

ATMEL

Y 5

33

4.6 Module Configuration

All AT32UC3A3 parts implement the CPU and Architecture Revision 2.

ATMEL o

32072H-AVR32-10/2012

5. Memories

5.1 Embedded Memories
* Internal High-Speed Flash
— 256KBytes (AT32UC3A3256/S)
— 128Kbytes (AT32UC3A3128/S)
— 64Kbytes (AT32UC3A364/S)
« 0 wait state access at up to 42MHz in worst case conditions
« 1 wait state access at up to 84MHz in worst case conditions
« Pipelined Flash architecture, allowing burst reads from sequential Flash locations, hiding
penalty of 1 wait state access
 Pipelined Flash architecture typically reduces the cycle penalty of 1 wait state operation
to only 15% compared to 0 wait state operation
« 100 000 write cycles, 15-year data retention capability
« Sector lock capabilities, Bootloader protection, Security Bit
« 32 Fuses, Erased During Chip Erase
» User page for data to be preserved during Chip Erase
¢ Internal High-Speed SRAM
— 64KBytes, Single-cycle access at full speed on CPU Local Bus and accessible through the
High Speed Bud (HSB) matrix
— 2x32KBytes, accessible independently through the High Speed Bud (HSB) matrix

5.2 Physical Memory Map
The System Bus is implemented as a bus matrix. All system bus addresses are fixed, and they
are never remapped in any way, not even in boot.

Note that AVR32 UC CPU uses unsegmented translation, as described in the AVR32UC Techni-
cal Architecture Manual.

The 32-bit physical address space is mapped as follows:

Table 5-1. AT32UC3A3A4 Physical Memory Map
Size Size Size
_ Start AT32UC3A3256S | AT32UC3A3128S | AT32UC3A364S

Device Address AT32UC3A3256 AT32UC3A3128 AT32UC3A364
AT32UC3A4256S | AT32UC3A4128S | AT32UC3A464S
AT32UC3A4256 AT32UC3A4128 AT32UC3A464

Embedded CPU SRAM | 0x00000000 64 KByte 64KByte 64 KByte

Embedded Flash 0x80000000 | 256KByte 128KByte 64KByte

EBI SRAM CSO 0xC0000000 | 16MByte 16 MByte 16 MByte

EBI SRAM CS2 0xC8000000 | 16MByte 16 MByte 16 MByte

EBI SRAM CS3 0xCCO000000 | 16MByte 16 MByte 16 MByte

EBI SRAM CS4 0xD8000000 | 16MByte 16 MByte 16 MByte

EBI SRAM CS5 0xDCO000000 | 16MByte 16 MByte 16 MByte

E%SE@“égsl 0xD0000000 | 128MByte 128 MByte 128 MByte

USB Data OxEO000000 | 64KByte 64KByte 64KByte

N AImEl 35
32072H-AVR32-10/2012 —©

Table 5-1. AT32UC3A3A4 Physical Memory Map
Size Size Size
. Start AT32UC3A3256S | AT32UC3A3128S | AT32UC3A364S
Device Address AT32UC3A3256 AT32UC3A3128 AT32UC3A364
AT32UC3A4256S | AT32UC3A4128S | AT32UC3A464S
AT32UC3A4256 AT32UC3A4128 AT32UC3A464
HRAMCO OxFF000000 | 32KByte 32KByte 32KByte
HRAMC1 OxFF008000 | 32KByte 32KByte 32KByte
HSB-PB Bridge A OXFFFFO000 | 64KByte 64 KByte 64 KByte
HSB-PB Bridge B OXFFFEO000 | 64KByte 64 KByte 64 KByte
5.3 Peripheral Address Map
Table 5-2. Peripheral Address Mapping
Address Peripheral Name
0xFF100000
DMACA DMA Controller - DMACA
O0xFFFD0000)
AES Advanced Encryption Standard - AES
OxFFFE0000 _
UsB USB 2.0 Device and Host Interface - USB
O0xFFFE1000
HMATRIX HSB Matrix - HMATRIX
OXFFFE1400
FLASHC Flash Controller - FLASHC
O0xFFFE1C00)
SMC Static Memory Controller - SMC
OxFFFE2000
SDRAMC SDRAM Controller - SDRAMC
OxFFFE2400 Error code corrector Hamming and Reed Solomon -
ECCHRS ECCHRS
OxFFFE2800)
BUSMON Bus Monitor module - BUSMON
O0xFFFE4000))
MCI Mulitmedia Card Interface - MCI
OxFFFE8000
MSI Memory Stick Interface - MSI
OxFFFF0000
PDCA Peripheral DMA Controller - PDCA
OxFFFF0800
INTC Interrupt controller - INTC

AIMEL 36

Y 5

32072H-AVR32-10/2012

Table 5-2. Peripheral Address Mapping

OxFFFFOCO00
PM Power Manager - PM
0xFFFFODO00 .
RTC Real Time Counter - RTC
OxFFFFOD30 _
WDT Watchdog Timer - WDT
OxFFFFOD80
EIC External Interrupt Controller - EIC
OxFFFF1000
GPIO General Purpose Input/Output Controller - GPIO
OxFFFF1400 i
USARTO Unlve_rsal Synchrpnous/Asynchronous
Receiver/Transmitter - USARTO
OxFFFF1800 USART1 Universal Synchronous/Asynchronous
Receiver/Transmitter - USART1
OxFFFF1C00 USART?2 Universal Synchronous/Asynchronous
Receiver/Transmitter - USART2
OxFFFF2000 i
USART3 Unlve_rsal Synchrpnous/Asynchronous
Receiver/Transmitter - USART3
OxFFFF2400))
SPIO Serial Peripheral Interface - SPI0
OxFFFF2800))
SPI1 Serial Peripheral Interface - SPI1
OxFFFF2C00 .
TWIMO Two-wire Master Interface - TWIMO
OXFFFF3000)
TWIM1 Two-wire Master Interface - TWIM1
OxFFFF3400)
SSC Synchronous Serial Controller - SSC
OxFFFF3800)
TCO Timer/Counter - TCO
OxFFFF3C00 o
ADC Analog to Digital Converter - ADC
OxFFFF4000 o
ABDAC Audio Bitstream DAC - ABDAC
OxFFFF4400)
TC1 Timer/Counter - TC1

AIMEL 37

32072H-AVR32-10/2012 I ©

Table 5-2.

OxFFFF5000

OxFFFF5400

Peripheral Address Mapping

TWISO

Two-wire Slave Interface - TWISO

TWIS1

Two-wire Slave Interface - TWIS1

5.4 CPU Local Bus Mapping

32072H-AVR32-10/2012

Some of the registers in the GPIO module are mapped onto the CPU local bus, in addition to
being mapped on the Peripheral Bus. These registers can therefore be reached both by
accesses on the Peripheral Bus, and by accesses on the local bus.

Mapping these registers on the local bus allows cycle-deterministic toggling of GPIO pins since
the CPU and GPIO are the only modules connected to this bus. Also, since the local bus runs at
CPU speed, one write or read operation can be performed per clock cycle to the local bus-

mapped GPIO registers.

The following GPIO registers are mapped on the local bus:

Table 5-3. Local Bus Mapped GPIO Registers
Local Bus

Port Register Mode Address Access
0 Output Driver Enable Register (ODER) WRITE 0x40000040 Write-only
SET 0x40000044 Write-only
CLEAR 0x40000048 Write-only
TOGGLE 0x4000004C Write-only
Output Value Register (OVR) WRITE 0x40000050 Write-only
SET 0x40000054 Write-only
CLEAR 0x40000058 Write-only
TOGGLE 0x4000005C Write-only
Pin Value Register (PVR) - 0x40000060 Read-only
1 Output Driver Enable Register (ODER) WRITE 0x40000140 Write-only
SET 0x40000144 Write-only
CLEAR 0x40000148 Write-only
TOGGLE 0x4000014C Write-only
Output Value Register (OVR) WRITE 0x40000150 Write-only
SET 0x40000154 Write-only
CLEAR 0x40000158 Write-only
TOGGLE 0x4000015C Write-only
Pin Value Register (PVR) - 0x40000160 Read-only

AIMEL 38

Y 5

Table 5-3. Local Bus Mapped GPIO Reqgisters

Local Bus

Port Register Mode Address Access
2 Output Driver Enable Register (ODER) WRITE 0x40000240 Write-only
SET 0x40000244 Write-only
CLEAR 0x40000248 Write-only
TOGGLE 0x4000024C Write-only
Output Value Register (OVR) WRITE 0x40000250 Write-only
SET 0x40000254 Write-only
CLEAR 0x40000258 Write-only
TOGGLE 0x4000025C Write-only
Pin Value Register (PVR) - 0x40000260 Read-only
3 Output Driver Enable Register (ODER) WRITE 0x40000340 Write-only
SET 0x40000344 Write-only
CLEAR 0x40000348 Write-only
TOGGLE 0x4000034C Write-only
Output Value Register (OVR) WRITE 0x40000350 Write-only
SET 0x40000354 Write-only
CLEAR 0x40000358 Write-only
TOGGLE 0x4000035C Write-only
Pin Value Register (PVR) - 0x40000360 Read-only

AIMEL 39

32072H-AVR32-10/2012 I ©

6. Boot Sequence

This chapter summarizes the boot sequence of the AT32UC3A3/A4. The behavior after power-
up is controlled by the Power Manager. For specific details, refer to Section 7. "Power Manager
(PM)” on page 41.

6.1 Starting of Clocks

After power-up, the device will be held in a reset state by the Power-On Reset circuitry, until the
power has stabilized throughout the device. Once the power has stabilized, the device will use
the internal RC Oscillator as clock source.

On system start-up, the PLLs are disabled. All clocks to all modules are running. No clocks have
a divided frequency, all parts of the system receives a clock with the same frequency as the
internal RC Oscillator.

6.2 Fetching of Initial Instructions

32072H-AVR32-10/2012

After reset has been released, the AVR32 UC CPU starts fetching instructions from the reset
address, which is 0x8000_0000. This address points to the first address in the internal Flash.

The internal Flash uses VDDIO voltage during read and write operations. BOD33 monitors this
voltage and maintains the device under reset until VDDIO reaches the minimum voltage, pre-
venting any spurious execution from flash.

The code read from the internal Flash is free to configure the system to use for example the
PLLs, to divide the frequency of the clock routed to some of the peripherals, and to gate the
clocks to unused peripherals.

When powering up the device, there may be a delay before the voltage has stabilized, depend-
ing on the rise time of the supply used. The CPU can start executing code as soon as the supply
is above the POR threshold, and before the supply is stable. Before switching to a high-speed
clock source, the user should use the BOD to make sure the VDDCORE is above the minimum-
level (1.62V).

AIMEL 40

Y 5

7. Power Manager (PM)
Rev: 2.3.1.0

7.1 Features

* Controls integrated oscillators and PLLs

* Generates clocks and resets for digital logic

e Supports 2 crystal oscillators 0.4-20MHz

* Supports 2 PLLs 40-240MHz

e Supports 32KHz ultra-low power oscillator

* Integrated low-power RC oscillator

* On-the fly frequency change of CPU, HSB, PBA, and PBB clocks

* Sleep modes allow simple disabling of logic clocks, PLLs, and oscillators

* Module-level clock gating through maskable peripheral clocks

* Wake-up from internal or external interrupts

* Generic clocks with wide frequency range provided

* Automatic identification of reset sources

e Controls brownout detector (BOD and BOD33), RC oscillator, and bandgap voltage reference
through control and calibration registers

7.2 Overview
The Power Manager (PM) controls the oscillators and PLLs, and generates the clocks and
resets in the device. The PM controls two fast crystal oscillators, as well as two PLLs, which can
multiply the clock from either oscillator to provide higher frequencies. Additionally, a low-power
32KHz oscillator is used to generate the real-time counter clock for high accuracy real-time mea-
surements. The PM also contains a low-power RC oscillator with fast start-up time, which can be
used to clock the digital logic.

The provided clocks are divided into synchronous and generic clocks. The synchronous clocks
are used to clock the main digital logic in the device, namely the CPU, and the modules and
peripherals connected to the HSB, PBA, and PBB buses. The generic clocks are asynchronous
clocks, which can be tuned precisely within a wide frequency range, which makes them suitable
for peripherals that require specific frequencies, such as timers and communication modules.

The PM also contains advanced power-saving features, allowing the user to optimize the power
consumption for an application. The synchronous clocks are divided into three clock domains,
one for the CPU and HSB, one for modules on the PBA bus, and one for modules on the PBB
bus.The three clocks can run at different speeds, so the user can save power by running periph-
erals at a relatively low clock, while maintaining a high CPU performance. Additionally, the
clocks can be independently changed on-the-fly, without halting any peripherals. This enables
the user to adjust the speed of the CPU and memories to the dynamic load of the application,
without disturbing or re-configuring active peripherals.

Each module also has a separate clock, enabling the user to switch off the clock for inactive
modules, to save further power. Additionally, clocks and oscillators can be automatically
switched off during idle periods by using the sleep instruction on the CPU. The system will return
to normal on occurrence of interrupts.

The Power Manager also contains a Reset Controller, which collects all possible reset sources,
generates hard and soft resets, and allows the reset source to be identified by software.

AIMEL 4

32072H-AVR32-10/2012 I ©

7.3

32072H-AVR32-10/2012

Block Diagram

Figure 7-1. Power Manager Block Diagram
RCSYS ™ Synchronous
“ | Clock Generator
—]
Oscillator 0 z PLLO
Oscillator 1 | PLL1
L
Generic Clock
> Generator
32 KHz
Oscillator
OSC/PLL
Control signals . RC
Oscillator

-af-Voltage Regulator=—

fuses—im=1

Calibration
Registers

v

Brown-Out

Interrupts—m=|

Detector

External Reset Pad &

Power-On

.
-

Detector

sources

A
Other reset

Y
Oscillator and Startup
PLL Control Counter
A
Sleep Controller <—insstr'ﬁigon—
Reset Controller [—resets—#

ATMEL

Y 5

Synchronous
clocks
CPU, HSB,
PBA, PBB

->

—Generic clocks-

CLK_32—p

Slow clock———»

42

7.4 Product Dependencies

7.4.1 I/O Lines
The PM provides a number of generic clock outputs, which can be connected to output pins,
multiplexed with I/O lines. The user must first program the 1/0O controller to assign these pins to
their peripheral function. If the I/O pins of the PM are not used by the application, they can be
used for other purposes by the 1/O controller.

7.4.2 Interrupt
The PM interrupt line is connected to one of the internal sources of the interrupt controller. Using
the PM interrupt requires the interrupt controller to be programmed first.

7.5 Functional Description

75.1 Slow Clock
The slow clock is generated from an internal RC oscillator which is always running, except in
Static mode. The slow clock can be used for the main clock in the device, as described in Sec-
tion 7.5.5. The slow clock is also used for the Watchdog Timer and measuring various delays in
the Power Manager.

The RC oscillator has a 3 cycles startup time, and is always available when the CPU is running.
The RC oscillator operates at approximately 115 kHz. Software can change RC oscillator cali-
bration through the use of the RCCR register. Please see the Electrical Characteristics section
for details.

RC oscillator can also be used as the RTC clock when crystal accuracy is not required.

7.5.2 Oscillator 0 and 1 Operation
The two main oscillators are designed to be used with an external crystal and two biasing capac-
itors, as shown in Figure 7-2 on page 44. Oscillator 0 can be used for the main clock in the
device, as described in Section 7.5.5. Both oscillators can be used as source for the generic
clocks, as described in Section 7.5.8.

The oscillators are disabled by default after reset. When the oscillators are disabled, the XIN and
XOUT pins can be used as general purpose I/0Os. When the oscillators are configured to use an
external clock, the clock must be applied to the XIN pin while the XOUT pin can be used as a
general purpose /0.

The oscillators can be enabled by writing to the OSCnEN bits in MCCTRL. Operation mode
(external clock or crystal) is chosen by writing to the MODE field in OSCCTRLn. Oscillators are
automatically switched off in certain sleep modes to reduce power consumption, as described in
Section 7.5.7.

After a hard reset, or when waking up from a sleep mode that disabled the oscillators, the oscil-
lators may need a certain amount of time to stabilize on the correct frequency. This start-up time
can be set in the OSCCTRLn register.

The PM masks the oscillator outputs during the start-up time, to ensure that no unstable clocks
propagate to the digital logic. The OSCnRDY bits in POSCSR are automatically set and cleared
according to the status of the oscillators. A zero to one transition on these bits can also be con-
figured to generate an interrupt, as described in Section 7.6.7.

AIMEL 43

32072H-AVR32-10/2012 I ©

AT32UC3A3

Figure 7-2. Oscillator Connections

Cz

XouT g “I
XIN g I||

(oF

7.5.3 32 KHz Oscillator Operation

7.5.4 PLL Operation

32072H-AVR32-10/2012

The 32 KHz oscillator operates as described for Oscillator 0 and 1 above. The 32 KHz oscillator
is used as source clock for the Real-Time Counter.

The oscillator is disabled by default, but can be enabled by writing OSC32EN in OSCCTRL32.
The oscillator is an ultra-low power design and remains enabled in all sleep modes except Static
mode.

While the 32 KHz oscillator is disabled, the XIN32 and XOUT32 pins are available as general
purpose I/0Os. When the oscillator is configured to work with an external clock (MODE field in
OSCCTRL32 register), the external clock must be connected to XIN32 while the XOUT32 pin
can be used as a general purpose /0.

The startup time of the 32 KHz oscillator can be set in the OSCCTRL32, after which OSC32RDY
in POSCSR is set. An interrupt can be generated on a zero to one transition of OSC32RDY.

As a crystal oscillator usually requires a very long startup time (up to 1 second), the 32 KHz
oscillator will keep running across resets, except Power-On-Reset.

The device contains two PLLs, PLLO and PLL1. These are disabled by default, but can be
enabled to provide high frequency source clocks for synchronous or generic clocks. The PLLs
can take either Oscillator O or 1 as reference clock. The PLL output is divided by a multiplication
factor, and the PLL compares the resulting clock to the reference clock. The PLL will adjust its
output frequency until the two compared clocks are equal, thus locking the output frequency to a
multiple of the reference clock frequency.

When the PLL is switched on, or when changing the clock source or multiplication factor for the
PLL, the PLL is unlocked and the output frequency is undefined. The PLL clock for the digital
logic is automatically masked when the PLL is unlocked, to prevent connected digital logic from
receiving a too high frequency and thus become unstable.

AIMEL 44

Y 5

Figure 7-3. PLL with Control Logic and Filters

PLLMUL
Out
uput Y ol Mask P dods
Divider
——Osc0dodk =Tt LOCK >
Input Fin
o >
Divider
—0sc1 docke *
T PLLEN
PLLOPT
PL'TSC PLLDIV |
7541 Enabling the PLL

PLLn is enabled by writing the PLLEN bit in the PLLn register. PLLOSC selects Oscillator O or 1
as clock source. The PLLMUL and PLLDIV bitfields must be written with the multiplication and

division factors, respectively, creating the voltage controlled ocillator frequency f,, -5 and the PLL
frequency fp, :

if PLLDIV >0

fin = fosc/2 PLLDIV

fyco = (PLLMUL+1)/(PLLDIV) * fogc
if PLLDIV =0

fin = fosc

fuco = 2 * (PLLMUL+1) » fosc

Note: Refer to Electrical Characteristics section for F) and F, g frequency range.

If PLLOPTI[1] field is set to O:

fouL = fuco.
If PLLOPTI1] field is set to 1:

forL = fuco/ 2.

AIMEL 4

32072H-AVR32-10/2012 I ©

The PLLNn:PLLOPT field should be set to proper values according to the PLL operating fre-
quency. The PLLOPT field can also be set to divide the output frequency of the PLLs by 2.

The lock signal for each PLL is available as a LOCKn flag in POSCSR. An interrupt can be gen-
erated on a 0 to 1 transition of these bits.

7.5.5 Synchronous Clocks

The slow clock (default), Oscillator 0, or PLLO provide the source for the main clock, which is the
common root for the synchronous clocks for the CPU/HSB, PBA, and PBB modules. The main
clock is divided by an 8-bit prescaler, and each of these four synchronous clocks can run from
any tapping of this prescaler, or the undivided main clock, as long as fep > fpga g - The synchro-
nous clock source can be changed on-the fly, responding to varying load in the application. The
clock domains can be shut down in sleep mode, as described in Section 7.5.7. Additionally, the
clocks for each module in the four domains can be individually masked, to avoid power con-
sumption in inactive modules.

Figure 7-4. Synchronous Clock Generation

Sleep Sleep
. e —
instruction Controller

| 1
)
—Slow dock | Mask —|—|=1—| CPU docks™>
—_— 1
0 doa > Prescaler [| :_t"r';ij"z;k(:_'
' CPUMASK
| CPUDIV | | | I I-m—»
MCSEL | cruseL | RN
| | L1
| L1
Cr————— e —————— = L
e e T
|..|_ ________________ J |
e - = J
7551 Selecting PLL or oscillator for the main clock

32072H-AVR32-10/2012

The common main clock can be connected to the slow clock, Oscillator 0, or PLLO. By default,
the main clock will be connected to the slow clock. The user can connect the main clock to Oscil-
lator O or PLLO by writing the MCSEL field in the Main Clock Control Register (MCCTRL). This
must only be done after that unit has been enabled, otherwise a deadlock will occur. Care
should also be taken that the new frequency of the synchronous clocks does not exceed the
maximum frequency for each clock domain.

AIMEL 4

Y 5

7.5.5.2 Selecting synchronous clock division ratio
The main clock feeds an 8-bit prescaler, which can be used to generate the synchronous clocks.
By default, the synchronous clocks run on the undivided main clock. The user can select a pres-
caler division for the CPU clock by writing CKSEL.CPUDIV to 1 and CPUSEL to the prescaling
value, resulting in a CPU clock frequency:

fCPU :fmain/z(CPUSELJrl)

Similarly, the clock for the PBA, and PBB can be divided by writing their respective fields. To
ensure correct operation, frequencies must be selected so that fop, > fpa . AlsO, frequencies
must never exceed the specified maximum frequency for each clock domain.

CKSEL can be written without halting or disabling peripheral modules. Writing CKSEL allows a
new clock setting to be written to all synchronous clocks at the same time. It is possible to keep
one or more clocks unchanged by writing the same value a before to the xxxDIV and xxxSEL
fields. This way, it is possible to e.g. scale CPU and HSB speed according to the required perfor-
mance, while keeping the PBA and PBB frequency constant.

For modules connected to the HSB bus, the PB clock frequency must be set to the same fre-
quency than the CPU clock.

7.5.5.3 Clock ready flag
There is a slight delay from CKSEL is written and the new clock setting becomes effective. Dur-
ing this interval, the Clock Ready (CKRDY) flag in ISR will read as 0. If IER.CKRDY is written to
one, the Power Manager interrupt can be triggered when the new clock setting is effective.
CKSEL must not be re-written while CKRDY is zero, or the system may become unstable or
hang.

7.5.6 Peripheral Clock Masking
By default, the clock for all modules are enabled, regardless of which modules are actually being
used. It is possible to disable the clock for a module in the CPU, HSB, PBA, or PBB clock
domain by writing the corresponding bit in the Clock Mask register (CPU/HSB/PBA/PBB) to O.
When a module is not clocked, it will cease operation, and its registers cannot be read or written.
The module can be re-enabled later by writing the corresponding mask bit to 1.

A module may be connected to several clock domains, in which case it will have several mask
bits.

Table 7-7 on page 58 contains the list of implemented maskable clocks.

7.5.6.1 Cautionary note
The OCD clock must never be switched off if the user wishes to debug the device with a JTAG
debugger.

Note that clocks should only be switched off if it is certain that the module will not be used.
Switching off the clock for the internal RAM will cause a problem if the stack is mapped there.
Switching off the clock to the Power Manager (PM), which contains the mask registers, or the
corresponding PBx bridge, will make it impossible to write the mask registers again. In this case,
they can only be re-enabled by a system reset.

AIMEL 47

32072H-AVR32-10/2012 I ©

7.5.6.2 Mask ready flag

Due to synchronization in the clock generator, there is a slight delay from a mask register is writ-
ten until the new mask setting goes into effect. When clearing mask bits, this delay can usually
be ignored. However, when setting mask bits, the registers in the corresponding module must
not be written until the clock has actually be re-enabled. The status flag MSKRDY in ISR pro-
vides the required mask status information. When writing either mask register with any value,
this bit is cleared. The bit is set when the clocks have been enabled and disabled according to
the new mask setting. Optionally, the Power Manager interrupt can be enabled by writing the
MSKRDY bit in IER.

7.5.7 Sleep Modes
In normal operation, all clock domains are active, allowing software execution and peripheral
operation. When the CPU is idle, it is possible to switch off the CPU clock and optionally other
clock domains to save power. This is activated by the sleep instruction, which takes the sleep
mode index number as argument.

7.5.7.1 Entering and exiting sleep modes

The sleep instruction will halt the CPU and all modules belonging to the stopped clock domains.
The modules will be halted regardless of the bit settings of the mask registers.

Oscillators and PLLs can also be switched off to save power. Some of these modules have a rel-
atively long start-up time, and are only switched off when very low power consumption is
required.

The CPU and affected modules are restarted when the sleep mode is exited. This occurs when
an interrupt triggers. Note that even if an interrupt is enabled in sleep mode, it may not trigger if
the source module is not clocked.

7.5.7.2 Supported sleep modes
The following sleep modes are supported. These are detailed in Table 7-1 on page 49.
« Idle: The CPU is stopped, the rest of the chip is operating. Wake-up sources are any
interrupt.

» Frozen: The CPU and HSB modules are stopped, peripherals are operating. Wake-up
sources are any interrupt from PB modules.

Standby: All synchronous clocks are stopped, but oscillators and PLLs are running, allowing
quick wake-up to normal mode. Wake-up sources are RTC or external interrupt.

* Stop: As Standby, but Oscillator 0 and 1, and the PLLs are stopped. 32 KHz (if enabled) and
RC oscillators and RTC/WDT still operate. Wake-up sources are RTC, external interrupt, or
external reset pin.

DeepStop: All synchronous clocks, Oscillator 0 and 1 and PLL 0 and 1 are stopped. 32 KHz
oscillator can run if enabled. RC oscillator still operates. Bandgap voltage reference, BOD
and BOD33 are turned off. Wake-up sources are RTC, external interrupt (EIC) or external
reset pin.

Static: All oscillators, including 32 KHz and RC oscillator are stopped. Bandgap voltage
reference, BOD and BOD33 detectors are turned off. Wake-up sources are external interrupt
(EIC) in asynchronous mode only or external reset pin.

AIMEL 4

32072H-AVR32-10/2012 I ©

Table 7-1. Sleep Modes

Osc0,1 BOD &
PBA,B PLLO,1, BOD33 & | Voltage
Index Sleep Mode CPU HSB GCLK SYSTIMER | Osc32 RCSYS | Bandgap | Regulator

Idle Stop Run Run Run Run Run On Full power

Frozen Stop Stop Run Run Run Run On Full power

Standby Stop Stop Stop Run Run Run On Full power

Stop Stop Stop Stop Stop Run Run On Low power

DeepStop Stop Stop Stop Stop Run Run Off Low power

a |/ hjw | N | |O

Static Stop Stop Stop Stop Stop Stop Off Low power

The power level of the internal voltage regulator is also adjusted according to the sleep mode to
reduce the internal regulator power consumption.

7.5.7.3 Precautions when entering sleep mode
Modules communicating with external circuits should normally be disabled before entering a
sleep mode that will stop the module operation. This prevents erratic behavior when entering or
exiting sleep mode. Please refer to the relevant module documentation for recommended
actions.

Communication between the synchronous clock domains is disturbed when entering and exiting
sleep modes. This means that bus transactions are not allowed between clock domains affected
by the sleep mode. The system may hang if the bus clocks are stopped in the middle of a bus
transaction.

The CPU is automatically stopped in a safe state to ensure that all CPU bus operations are com-
plete when the sleep mode goes into effect. Thus, when entering Idle mode, no further action is
necessary.

When entering a sleep mode (except ldle mode), all HSB masters must be stopped before
entering the sleep mode. Also, if there is a chance that any PB write operations are incomplete,
the CPU should perform a read operation from any register on the PB bus before executing the
sleep instruction. This will stall the CPU while waiting for any pending PB operations to
complete.

When entering a sleep mode deeper or equal to DeepStop, the VBus asynchronous interrupt
should be disabled (USBCON.VBUSTE = 0).

7.5.7.4 Wake Up

The USB can be used to wake up the part from sleep modes through register AWEN of the
Power Manager.

7.5.8 Generic Clocks
Timers, communication modules, and other modules connected to external circuitry may require
specific clock frequencies to operate correctly. The Power Manager contains an implementation
defined number of generic clocks that can provide a wide range of accurate clock frequencies.

AIMEL 4

32072H-AVR32-10/2012 I ©

Each generic clock module runs from either Oscillator O or 1, or PLLO or 1. The selected source
can optionally be divided by any even integer up to 512. Each clock can be independently
enabled and disabled, and is also automatically disabled along with peripheral clocks by the
Sleep Controller.

Figure 7-5. Generic Clock Generation

Sleep
Controller

——0sc0 clock: Mask —Generic Clock—»
——0Osc1 clock s
——PLLO clock »| Divider
—PLL1 clock

PLLSEL * DIVEN CEN

OSCSEL Dl'V |

7.5.8.1 Enabling a generic clock

A generic clock is enabled by writing the CEN bit in GCCTRL to 1. Each generic clock can use
either Oscillator 0 or 1 or PLLO or 1 as source, as selected by the PLLSEL and OSCSEL bits.
The source clock can optionally be divided by writing DIVEN to 1 and the division factor to DIV,
resulting in the output frequency:

Jocrk = fsre/ (2 x(DIV+1))

7.5.8.2 Disabling a generic clock
The generic clock can be disabled by writing CEN to zero or entering a sleep mode that disables
the PB clocks. In either case, the generic clock will be switched off on the first falling edge after
the disabling event, to ensure that no glitches occur. If CEN is written to 0, the bit will still read as
1 until the next falling edge occurs, and the clock is actually switched off. When writing CEN to O,
the other bits in GCCTRL should not be changed until CEN reads as 0, to avoid glitches on the
generic clock.

When the clock is disabled, both the prescaler and output are reset.

7.5.8.3 Changing clock frequency
When changing generic clock frequency by writing GCCTRL, the clock should be switched off by
the procedure above, before being re-enabled with the new clock source or division setting. This
prevents glitches during the transition.

AIMEL 50

32072H-AVR32-10/2012 I ©

7584 Generic clock implementation
The generic clocks are allocated to different functions as shown in Table 7-2 on page 51.

Table 7-2. Generic Clock Allocation

Clock number Function

GCLKO pin
GCLK1 pin
GCLK2 pin
GCLK3 pin
GCLK_UsSBB
GCLK_ABDAC

a|bh|jw | N |- |O

7.5.9 Divided PB Clocks
The clock generator in the Power Manager provides divided PBA and PBB clocks for use by
peripherals that require a prescaled PBx clock. This is described in the documentation for the
relevant modules.

The divided clocks are not directly maskable, but are stopped in sleep modes where the PBx
clocks are stopped.

7.5.10 Debug Operation
The OCD clock must never be switched off if the user wishes to debug the device with a JTAG
debugger.

During a debug session, the user may need to halt the system to inspect memory and CPU reg-
isters. The clocks normally keep running during this debug operation, but some peripherals may
require the clocks to be stopped, e.g. to prevent timer overflow, which would cause the program
to fail. For this reason, peripherals on the PBA and PBB buses may use “debug qualified” PBx
clocks. This is described in the documentation for the relevant modules. The divided PBx clocks
are always debug qualified clocks.

Debug qualified PBx clocks are stopped during debug operation. The debug system can option-
ally keep these clocks running during the debug operation. This is described in the
documentation for the On-Chip Debug system.

7.5.11 Reset Controller
The Reset Controller collects the various reset sources in the system and generates hard and
soft resets for the digital logic.

The device contains a Power-On Detector, which keeps the system reset until power is stable.
This eliminates the need for external reset circuitry to guarantee stable operation when powering
up the device.

It is also possible to reset the device by asserting the RESET_N pin. This pin has an internal pul-
lup, and does not need to be driven externally when negated. Table 7-4 on page 53 lists these
and other reset sources supported by the Reset Controller.

AIMEL 51

32072H-AVR32-10/2012 I ©

AT32UC3A3

Figure 7-6. Reset Controller Block Diagram

RC_RCAUSE
RESET_N g—»
Power-On o . CPU, HSB,
Detector w PBA, PBB
Reset
Brownout - Controller =OCD, RTC/WDT,
Detector o Clock Generator
JTAG -
0CD
WDT =

In addition to the listed reset types, the JTAG can keep parts of the device statically reset
through the JTAG Reset Register. See JTAG documentation for details.

Table 7-3. Reset Description

Reset source Description

Power-on Reset Supply voltage below the power-on reset detector
threshold voltage

External Reset RESET_N pin asserted

Brownout Reset Supply voltage below the brownout reset detector
threshold voltage

CPU Error Caused by an illegal CPU access to external memory
while in Supervisor mode

Watchdog Timer See watchdog timer documentation.

OCD See On-Chip Debug documentation

When a reset occurs, some parts of the chip are not necessarily reset, depending on the reset
source. Only the Power On Reset (POR) will force a reset of the whole chip.

AIMEL 52

Y 5

32072H-AVR32-10/2012

Table 7-4 on page 53 lists parts of the device that are reset, depending on the reset source.

Table 7-4. Effect of the Different Reset Events

Power-On | External Watchdog | BOD BOD33 (E:rprgr OCD

Reset Reset Reset Reset Reset Reset Reset
CPU/HSB/PBA/PBB Y Y Y Y Y Y Y
(excluding Power Manager)
32 KHz oscillator Y N N N N N N
RTC control register Y N N N N N N
GPLP registers Y N N N N N N
Watchdog control register Y Y N Y Y Y Y
Voltage calibration register Y N N N N N N
RCSYS Calibration register Y N N N N N N
BOD control register Y Y N N N N N
BOD33 control register Y Y N N N N N
Bandgap control register Y Y N N N N N
Clock control registers Y Y Y Y Y Y Y
Osc0/Oscl and control registers | Y Y Y Y Y Y Y
PLLO/PLL1 and control registers | Y Y Y Y Y Y Y
OCD system and OCD registers Y Y N Y Y Y N

The cause of the last reset can be read from the RCAUSE register. This register contains one bit
for each reset source, and can be read during the boot sequence of an application to determine
the proper action to be taken.

75111 Power-On detector
The Power-On Detector monitors the VDDCORE supply pin and generates a reset when the
device is powered on. The reset is active until the supply voltage from the linear regulator is
above the power-on threshold level. The reset will be re-activated if the voltage drops below the
power-on threshold level. See Electrical Characteristics for parametric details.

7.5.11.2 Brown-Out detector
The Brown-Out Detector (BOD) monitors the VDDCORE supply pin and compares the supply
voltage to the brown-out detection level, as set in BOD.LEVEL. The BOD is disabled by default,
but can be enabled either by software or by flash fuses. The Brown-Out Detector can either gen-
erate an interrupt or a reset when the supply voltage is below the brown-out detection level. In
any case, the BOD output is available in bit POSCSR.BODDET bit.

Note that any change to the BOD.LEVEL field of the BOD register should be done with the BOD
deactivated to avoid spurious reset or interrupt.

See Electrical Characteristics chapter for parametric details.

AIMEL 53

32072H-AVR32-10/2012 I ©

7.5.11.3 Brown-Out detector 3V3

The Brown-Out Detector 3V3 (BOD33) monitors one VDDIO supply pin and compares the sup-
ply voltage to the brown-out detection 3V3 level, which is typically calibrated at 2V7. The BOD33
is enabled by default, but can be disabled by software. The Brown-Out Detector 3V3 can either
generate an interrupt or a reset when the supply voltage is below the brown-out detection3V3
level. In any case, the BOD33 output is available in bit POSCSR.BOD33DET bit.

Note that any change to the BOD33.LEVEL field of the BOD33 register should be done with the
BOD33 deactivated to avoid spurious reset or interrupt.

The BOD33.LEVEL default value is calibrated to 2V7

See Electrical Characteristics chapter for parametric details.

Table 7-5. VDDIO pin monitored by BOD33

TFBGA144 QFP144 VFBGA100
H5 81 ES

7.5.11.4 External reset

The external reset detector monitors the state of the RESET_N pin. By default, a low level on
this pin will generate a reset.

7.5.12 Calibration Registers

32072H-AVR32-10/2012

The Power Manager controls the calibration of the RC oscillator, voltage regulator, bandgap
voltage reference through several calibrations registers.

Those calibration registers are loaded after a Power On Reset with default values stored in fac-
tory-programmed flash fuses.

Although it is not recommended to override default factory settings, it is still possible to override
these default values by writing to those registers. To prevent unexpected writes due to software
bugs, write access to these registers is protected by a “key”. First, a write to the register must be
made with the field “KEY” equal to 0x55 then a second write must be issued with the “KEY” field
equal to OxXAA.

AIMEL 54

Y 5

7.6 User Interface

Table 7-6. PM Register Memory Map

Offset Register Register Name Access Reset State
0x000 Main Clock Control MCCTRL Read/Write 0x00000000
0x0004 Clock Select CKSEL Read/Write 0x00000000
0x008 CPU Mask CPUMASK Read/Write 0x00000003
0x00C HSB Mask HSBMASK Read/Write 0x00000FFF
0x010 PBA Mask PBAMASK Read/Write O0x001FFFFF
0x014 PBB Mask PBBMASK Read/Write 0x000003FF
0x020 PLLO Control PLLO Read/Write 0x00000000
0x024 PLL1 Control PLL1 Read/Write 0x00000000
0x028 Oscillator 0 Control Register OSCCTRLO Read/Write 0x00000000
0x02C Oscillator 1 Control Register OSCCTRL1 Read/Write 0x00000000
0x030 Oscillator 32 Control Register OSCCTRL32 Read/Write 0x00000000
0x040 PM Interrupt Enable Register IER Write-only 0x00000000
0x044 PM Interrupt Disable Register IDR Write-only 0x00000000
0x048 PM Interrupt Mask Register IMR Read-only 0x00000000
0x04C PM Interrupt Status Register ISR Read-only 0x00000000
00050 PM Interrupt Clear Register ICR Write-only 0x00000000
0x054 Power and Oscillators Status Register POSCSR Read/Write 0x00000000
0x060 Generic Clock Control 0 GCCTRLO Read/Write 0x00000000
0x064 Generic Clock Control 1 GCCTRL1 Read/Write 0x00000000
0x068 Generic Clock Control 2 GCCTRL2 Read/Write 0x00000000
0x06C Generic Clock Control 3 GCCTRL3 Read/Write 0x00000000
0x070 Generic Clock Control 4 GCCTRL4 Read/Write 0x00000000
0x074 Generic Clock Control 5 GCCTRL5 Read/Write 0x00000000
0x0CO0 RC Oscillator Calibration Register RCCR Read/Write Factory settings
0x0C4 Bandgap Calibration Register BGCR Read/Write Factory settings
0x0C8 Linear Regulator Calibration Register VREGCR Read/Write Factory settings
0x0D0 BOD Level Register BOD Read/Write BOD fuses in Flash
0x0D4 BOD33 Level Register BOD33 Read/Write BOD33 reset enable
BOD33 LEVEL=2V7
0x0140 Reset Cause Register RCAUSE Read/Write Latest Reset Source
0x0144 Asynchronous Wake Enable Register AWEN Read/Write 0x00000000
0x200 General Purpose Low-Power register GPLP Read/Write 0x00000000

AIMEL 55

32072H-AVR32-10/2012 I ©

7.6.1 Main Clock Control Register

Name: MCCTRL

Access Type: Read/Write

Offset: 0x00

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

- -] | [I
23 22 21 20 19 18 17 16

L - | | [I
15 14 13 12 11 10 9 8

L - | | [I
7 6 5 4 3 2 1 0

‘ - ‘ | ‘ - ‘OSClEN OSCOEN MCSEL

¢ OSCI1EN: Oscillator 1 Enable
1: Oscillator 1 is enabled

0: Oscillator 1 is disabled

¢ OSCOEN: Oscillator 0 Enable
1: Oscillator 0 is enabled

0: Oscillator 0 is disabled
¢ MCSEL: Main Clock Select

This field contains the clock selected as the main clock.

MCSEL Selected Clock
0b00 Slow Clock
0b01 Oscillator 0
0b10 PLL O

Ob11 Reserved

32072H-AVR32-10/2012

ATMEL

Y 5

56

7.6.2 Clock Select Register

Name: CKSEL

Access Type: Read/Write

Offset: 0x04

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ PBBDIV ‘ - | - ‘ - ‘ - ‘ PBBSEL ‘
23 22 21 20 19 18 17 16

‘ PBADIV ‘ - | - ‘ - ‘ - ‘ PBASEL ‘
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

‘ CPUDIV ‘ - | - ‘ - ‘ - ‘ CPUSEL ‘

« PBBDIV: PBB Division Enable
PBBDIV = 0: PBB clock equals main clock.

PBBDIV = 1: PBB clock equals main clock divided by 2(PBBSEL*D),

« PBADIV, PBASEL: PBA Division and Clock Select
PBADIV = 0: PBA clock equals main clock.

PBADIV = 1: PBA clock equals main clock divided by 2(PBASEL+D),

« CPUDIV, CPUSEL: CPU/HSB Division and Clock Select
CPUDIV = 0: CPU/HSB clock equals main clock.

CPUDIV = 1: CPU/HSB clock equals main clock divided by 2(CPUSEL+D),
Note that if xxxDIV is written to 0, xxxSEL should also be written to 0 to ensure correct operation.

Also note that writing this register clears POSCSR.CKRDY. The register must not be re-written until CKRDY goes high.

AIMEL 57

32072H-AVR32-10/2012 I ©

7.6.3
Name:

Access Type:
Offset:

Clock Mask Registers

CPU/HSB/PBA/PBBMASK

Read/Write
0x08-0x14

Reset Value: 0x00000003/0x00000FFF/0x001FFFFF/0x000003FF
31 30 29 28 27 26 25 24

‘ MASK[31:24] ‘
23 22 21 20 19 18 17 16

‘ MASK[23:16] ‘
15 14 13 12 11 10 9 8

‘ MASK[15:8] ‘
7 6 5 4 3 2 1 0

‘ MASK[7:0]

¢ MASK: Clock Mask
If bit n is written to zero, the clock for module n is stopped. If bit n is writen to one, the clock for module n is enabled according to

the current power mode. The number of implemented bits in each mask register, as well as which module clock is controlled by
each bit, is shown in Table 7-7 on page 58.

Table 7-7. Maskable module clocks in AT32UC3AS.
Bit CPUMASK HSBMASK PBAMASK PBBMASK
0 - FLASHC INTC HMATRIX
1 ocpW PBA Bridge 110 USBB
2 - PBB Bridge PDCA FLASHC
3 - USBB PM/RTC/EIC SMC
4 - PDCA ADC SDRAMC
5 - EBI SPIO ECCHRS
6 - PBC Bridge SPI1 MCI
7 - DMACA TWIMO BUSMON
8 - BUSMON TWIM1 MSI
9 - HRAMCO TWISO AES
10 - HRAMC1 TWIS1 -
11 - @ USARTO -
12 - - USART1 -
13 - - USART2 -
14 - - USART3 -
15 - - ssc -

AIMEL

32072H-AVR32-10/2012

58

Table 7-7. Maskable module clocks in AT32UC3AS.

Bit CPUMASK HSBMASK PBAMASK PBBMASK

16 SYSTIMER - TCO -
(compare/count
registers clk)

17 - - TC1 -

18 - - ABDAC -

19 . . @ B

20 - - @ -

31:21 | - - - -

32072H-AVR32-10/2012

Note:

1. This bit must be set to one if the user wishes to debug the device with a JTAG debugger.

2. This bits must be set to one

ATMEL

Y 5

59

7.6.4 PLL Control Registers

Name: PLLO,1

Access Type: Read/Write

Offset: 0x20-0x24

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ PLLTEST ‘ - | PLLCOUNT ‘
23 22 21 20 19 18 17 16

| i | i | i | i | PLLMUL |
15 14 13 12 11 10 9 8

| i | i | i | i | PLLDIV |
7 6 5 4 3 2 1 0

‘ - ‘ - | - ‘ PLLOPT PLLOSC PLLEN

e PLLTEST: PLL Test

Reserved for internal use. Always write to O.

* PLLCOUNT: PLL Count

Specifies the number of slow clock cycles before ISR.LOCKn will be set after PLLn has been written, or after PLLn has been

automatically re-enabled after exiting a sleep mode.

e« PLLMUL: PLL Multiply Factor
e PLLDIV: PLL Division Factor

These fields determine the ratio of the PLL output frequency to the source oscillator frequency. Formula is detallied in Section

7.54.1
e PLLOPT: PLL Option

Select the operating range for the PLL.
PLLOPT[O]: Select the VCO frequency range
PLLOPT[1]: Enable the extra output divider
PLLOPT[2]: Disable the Wide-Bandwidth mode (Wide-Bandwidth mode allows a faster startup time and out-of-lock time)

Description
PLLOPTI[O]: VCO frequency 80MHz<f,.,<180MHz

160MHz<f,.,<240MHz
PLLOPTI[1]: Output divider foLL = fuco

fPLL = fvc:o/2

PLLOPT[2]

Wide Bandwidth Mode enabled

| O|F | O |+ |O

Wide Bandwidth Mode disabled

¢ PLLOSC: PLL Oscillator Select

0: Oscillator 0 is the source for the PLL.
1: Oscillator 1 is the source for the PLL.

32072H-AVR32-10/2012

ATMEL

Y 5

60

¢ PLLEN: PLL Enable
0: PLL is disabled.

1: PLL is enabled.

ATMEL o

32072H-AVR32-10/2012

7.6.5 Oscillator 0/1 Control Registers

Name: OSCCTRLO,1
Access Type: Read/Write
Offset: 0x28-0x2C
Reset Value: 0x00000000

31 30 29 28 27 26 25 24
- r - - - - & - [- @ - |
23 22 21 20 19 18 17 16
- r - - - - & - [- @ - |
15 14 13 12 11 10 9 8
| i | i | i | i | i | STARTUP |
7 6 5 4 3 2 1 0
- r - - - [- | vope |

e STARTUP: Oscillator Startup Time
Select startup time for the oscillator.

Number of RC oscillator Approximative Equivalent time
STARTUP clock cycle (RCSYS =115 kHz)
0 0 0
1 64 560 us
2 128 1.1ms
3 2048 18 ms
4 4096 36 ms
5 8192 71 ms
6 16384 142 ms
7 Reserved Reserved

¢ MODE: Oscillator Mode
Choose between crystal, or external clock

0: External clock connected on XIN, XOUT can be used as an I/O (no crystal)

1 to 3: reserved

4: Crystal is connected to XIN/XOUT - Oscillator is used with gain GO (XIN from 0.4 MHz to 0.9 MHz).
5: Crystal is connected to XIN/XOUT - Oscillator is used with gain G1 (XIN from 0.9 MHz to 3.0 MHz).
6: Crystal is connected to XIN/XOUT - Oscillator is used with gain G2 (XIN from 3.0 MHz to 8.0 MHz).
7: Crystal is connected to XIN/XOUT - Oscillator is used with gain G3 (XIN from 8.0 Mhz).

AIMEL 62

32072H-AVR32-10/2012 I ©

7.6.6 32 KHz Oscillator Control Register

Name: OSCCTRL32
Access Type: Read/Write
Offset: 0x30
Reset Value: 0x00000000
31 30 29 28 27 26 25 24
- - - N - -
23 22 21 20 19 18 17 16
‘ - ‘ - | - - ‘ - ‘ STARTUP ‘
15 14 13 12 11 10 9 8
- - - N vope
7 6 5 4 3 2 1 0
| i | i | i i | i | i i OSC32EN

e STARTUP: Oscillator Startup Time
Select startup time for 32 KHz oscillator

Number of RC oscillator Approximative Equivalent time
STARTUP clock cycle (RCSYS =115 kHz)
0 0 0
1 128 1.1ms
2 8192 72.3 ms
3 16384 143 ms
4 65536 570 ms
5 131072 11s
6 262144 23s
7 524288 46s

Note: This register is only reset by Power-On Reset
* MODE: Oscillator Mode

Choose between crystal, or external clock
0: External clock connected on XIN32, XOUT32 can be used as a I/O (no crystal)
1: Crystal is connected to XIN32/XOUT32 - Oscillator is used with automatic gain control

2 to 7: Reserved

¢ OSC32EN: Enable the 32 KHz oscillator
0: 32 KHz Oscillator is disabled

1: 32 KHz Oscillator is enabled

32072H-AVR32-10/2012

ATMEL

Y 5

63

7.6.7 Interrupt Enable Register

Name: IER

Access Type: Write-only

Offset: 0x40

Reset Value: 0x00000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

‘ - | - ‘ - ‘ - | - ‘ - | BOD33DET ‘ BODDET ‘
15 14 13 12 11 10 9 8

‘ - | - ‘ - ‘ - | - ‘ - | OSC32RDY ‘ OSC1RDY ‘
7 6 5 4 3 2 1 0

‘ OSCORDY | MSKRDY ‘ CKRDY ‘ - | - ‘ - | LOCK1 ‘ LOCKO ‘

Writing a one to a bit in this register will set the corresponding bit in IMR.
Writing a zero to a bit in this register has no effect.

ATMEL o

32072H-AVR32-10/2012

7.6.8 Interrupt Disable Register

Name: IDR

Access Type: Write-only

Offset: 0x44

Reset Value: 0x00000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

‘ - | - ‘ - ‘ - | - ‘ - | BOD33DET ‘ BODDET ‘
15 14 13 12 11 10 9 8

‘ - | - ‘ - ‘ - | - ‘ - | OSC32RDY ‘ OSC1RDY ‘
7 6 5 4 3 2 1 0

‘ OSCORDY | MSKRDY ‘ CKRDY ‘ - | - ‘ - | LOCK1 ‘ LOCKO ‘

Writing a one to a bit in this register will clear the corresponding bit in IMR.
Writing a zero to a bit in this register has no effect.

ATMEL o

32072H-AVR32-10/2012

7.6.9 Interrupt Mask Register

Name: IMR

Access Type: Read-only

Offset: 0x48

Reset Value: 0x00000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

‘ - | - ‘ - ‘ - | - ‘ - | BOD33DET ‘ BODDET ‘
15 14 13 12 11 10 9 8

‘ - | - ‘ - ‘ - | - ‘ - | OSC32RDY ‘ OSC1RDY ‘
7 6 5 4 3 2 1 0

‘ OSCORDY | MSKRDY ‘ CKRDY ‘ - | - ‘ - | LOCK1 ‘ LOCKO ‘

0: The corresponding interrupt is disabled.

1: The corresponding interrupt is enabled.

A bit in this register is cleared when the corresponding bit in IDR is written to one.
A bit in this register is set when the corresponding bit in IER is written to one.

ATMEL o

32072H-AVR32-10/2012

7.6.10 Interrupt Status Register

Name: ISR

Access Type: Read-only

Offset: 0x4C

Reset Value: 0x00000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

‘ - | - ‘ - ‘ - | - ‘ - | BOD33DET ‘ BODDET ‘
15 14 13 12 11 10 9 8

‘ - | - ‘ - ‘ - | - ‘ - | OSC32RDY ‘ OSC1RDY ‘
7 6 5 4 3 2 1 0

‘ OSCORDY | MSKRDY ‘ CKRDY ‘ - | - ‘ - | LOCK1 ‘ LOCKO ‘

 BOD33DET: Brown out detection
This bit is set when a 0 to 1 transition on POSCSR.BOD33DET bit is detected: BOD33 has detected that power supply is

going below BOD33 reference value.
This bit is cleared when the corresponding bit in ICR is written to one.
« BODDET: Brown out detection
This bit is set when a 0 to 1 transition on POSCSR.BODDET hit is detected: BOD has detected that power supply is going
below BOD reference value.
This bit is cleared when the corresponding bit in ICR is written to one.

* OSC32RDY: 32 KHz oscillator Ready
This bit is set when a 0 to 1 transition on the POSCSR.OSC32RDY bit is detected: The 32 KHz oscillator is stable and

ready to be used as clock source.
This bit is cleared when the corresponding bit in ICR is written to one.

¢ OSCI1RDY: Oscillator 1 Ready
This bit is set when a 0 to 1 transition on the POSCSR.OSC1RDY bit is detected: Oscillator 1 is stable and ready to be used

as clock source.
This bit is cleared when the corresponding bit in ICR is written to one.

*« OSCORDY: Oscillator 0 Ready
This bit is set when a 0 to 1 transition on the POSCSR.OSC1RDY bit is detected: Oscillator 1 is stable and ready to be used

as clock source.
This hit is cleared when the corresponding bit in ICR is written to one.

¢ MSKRDY: Mask Ready
This bit is set when a 0 to 1 transition on the POSCSR.MSKRDY bit is detected: Clocks are now masked according to the

(CPU/HSB/PBA/PBB)_MASK registers.
This bit is cleared when the corresponding bit in ICR is written to one.

« CKRDY: Clock Ready
0: The CKSEL register has been written, and the new clock setting is not yet effective.

1: The synchronous clocks have frequencies as indicated in the CKSEL register.
Note: Writing a one to ICR.CKRDY has no effect.

AIMEL 67

32072H-AVR32-10/2012 I ©

¢ LOCK1: PLL1 locked
This bit is set when a 0 to 1 transition on the POSCSR.LOCK1 bit is detected: PLL 1 is locked and ready to be selected as

clock source.
This bit is cleared when the corresponding bit in ICR is written to one.

* LOCKO: PLLO locked
This bit is set when a 0 to 1 transition on the POSCSR.LOCKO bit is detected: PLL O is locked and ready to be selected as

clock source.
This bit is cleared when the corresponding bit in ICR is written to one.

AIMEL 68

32072H-AVR32-10/2012 I ©

7.6.11 Interrupt Clear Register

Name: ICR

Access Type: Write-only

Offset: 0x50

Reset Value: 0x00000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

‘ - | - ‘ - ‘ - | - ‘ - | BOD33DET ‘ BODDET ‘
15 14 13 12 11 10 9 8

‘ - | - ‘ - ‘ - | - ‘ - | OSC32RDY ‘ OSC1RDY ‘
7 6 5 4 3 2 1 0

‘ OSCORDY | MSKRDY ‘ CKRDY ‘ - | - ‘ - | LOCK1 ‘ LOCKO ‘

Writing a zero to a bit in this register has no effect.
Writing a one to a bit in this register will clear the corresponding bit in ISR and the corresponding interrupt request.

ATMEL o

32072H-AVR32-10/2012

7.6.12 Power and Oscillators Status Register

Name: POSCSR

Access Type: Read-only

Offset: 0x54

Reset Value: 0x00000020
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

‘ - ‘ - | - ‘ - ‘ - ‘ - | BOD33DET ‘ BODDET ‘
15 14 13 12 11 10 9 8

‘ - ‘ - | - ‘ - ‘ - ‘ - | OSC32RDY ‘ OSC1RDY ‘
7 6 5 4 3 2 1 0

‘ OSCORDY ‘ MSKRDY | CKRDY ‘ - ‘ - ‘ - | LOCK1 ‘ LOCKO ‘

« BOD33DET: Brown out 3V3 detection
0: No BOD33 event

1: BOD33 has detected that power supply is going below BOD33 reference value.

« BODDET: Brown out detection
0: No BOD event

1: BOD has detected that power supply is going below BOD reference value.

e OSC32RDY: 32 KHz oscillator Ready
0: The 32 KHz oscillator is not enabled or not ready.

1: The 32 KHz oscillator is stable and ready to be used as clock source.

¢ OSCI1RDY: OSC1 ready
0: Oscillator 1 not enabled or not ready.

1: Oscillator 1 is stable and ready to be used as clock source.

¢« OSCORDY: OSCO ready
0: Oscillator 0 not enabled or not ready.

1: Oscillator 0 is stable and ready to be used as clock source.

¢ MSKRDY: Mask ready
0: Mask register has been changed, masking in progress.

1: Clock are masked according to xxx_MASK

¢ CKRDY:
0: The CKSEL register has been written, and the new clock setting is not yet effective.

1: The synchronous clocks have frequencies as indicated in the CKSEL register.

¢ LOCK1: PLL 1 locked
0:PLL 1 is unlocked

1:PLL 1 is locked, and ready to be selected as clock source.

¢ LOCKO: PLL Olocked
0: PLL O is unlocked

1: PLL O is locked, and ready to be selected as clock source.

AIMEL 70

32072H-AVR32-10/2012 I ©

7.6.13 Generic Clock Control Register

Name: GCCTRLx

Access Type: Read/Write

Offset: 0x60 - 0x74

Reset Value: 0x00000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8

‘ DIV[7:0]
7 6 5 4 3 2 1 0

‘ - - - DIVEN - CEN PLLSEL OSCSEL

There is one GCCTRL register per generic clock in the design.

« DIV: Division Factor
* DIVEN: Divide Enable

0: The generic clock equals the undivided source clock.
1: The generic clock equals the source clock divided by 2*(DIV+1).

¢ CEN: Clock Enable
0: Clock is stopped.

1: Clock is running.
¢ PLLSEL: PLL Select

0: Oscillator is source for the generic clock.
1: PLL is source for the generic clock.

¢ OSCSEL: Oscillator Select

0: Oscillator (or PLL) 0 is source for the generic clock.
1: Oscillator (or PLL) 1 is source for the generic clock.

32072H-AVR32-10/2012

ATMEL

Y 5

71

7.6.14 RC Oscillator Calibration Register

Name: RCCR

Access Type: Read/Write

Offset: 0xCO

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ KEY ‘
23 22 21 20 19 18 17 16

- r - - - - 1 - [- Feo |
15 14 13 12 11 10 9 8

- r - - rr - [- 7 -] oA |
7 6 5 4 3 2 1 0

‘ CALIB ‘

« KEY: Register Write protection
This field must be written twice, first with key value 0x55, then OxAA, for a write operation to have an effect.

¢ FCD: Flash Calibration Done
Set to 1 when CTRL, HYST, and LEVEL fields have been updated by the Flash fuses after power-on reset, or after Flash fuses

are reprogrammed. The CTRL, HYST and LEVEL values will not be updated again by the Flash fuses until a new power-on
reset or the FCD field is written to zero.

¢ CALIB: Calibration Value
Calibration Value for the RC oscillator.

AIMEL 72

32072H-AVR32-10/2012 I ©

7.6.15 Bandgap Calibration Register

Name: BGCR

Access Type: Read/Write

Offset: 0xC4

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ KEY ‘
23 22 21 20 19 18 17 16

- < - - - - @ - [- | ro |
15 14 13 12 11 10 9 8

- < - - - - - [- 7 - |
7 6 5 4 3 2 1 0

- < - - & - [- | caLe |

« KEY: Register Write protection
This field must be written twice, first with key value 0x55, then OxAA, for a write operation to have an effect.

¢ FCD: Flash Calibration Done
Set to 1 when the CALIB field has been updated by the Flash fuses after power-on reset or when the Flash fuses are

reprogrammed. The CALIB field will not be updated again by the Flash fuses until a new power-on reset or the FCD field is
written to zero.

e CALIB: Calibration value
Calibration value for Bandgap. See Electrical Characteristics for voltage values.

It is not recommended to override default factory settings in the BGCR register. Flash reliability is not guaranted if this value is
modified by the user

AIMEL 73

32072H-AVR32-10/2012 I ©

7.6.16 PM Voltage Regulator Calibration Register

Name: VREGCR

Access Type: Read/Write

Offset: 0xC8

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ KEY ‘
23 22 21 20 19 18 17 16

- < - - - - @ - [- | ro |
15 14 13 12 11 10 9 8

- < - - - - - [- 7 - |
7 6 5 4 3 2 1 0

- < - - & - [- | caLe |

« KEY: Register Write protection
This field must be written twice, first with key value 0x55, then OxAA, for a write operation to have an effect.

Calibration value for Voltage Regulator. See Electrical Characteristics for voltage values.

* FCD: Flash Calibration Done
Set to 1 when the CALIB field has been updated by the Flash fuses after power-on reset or when the Flash fuses are

reprogrammed. The CALIB field will not be updated again by the Flash fuses until a new power-on reset or the FCD field is
written to zero.
e CALIB: Calibration value

AIMEL 4

32072H-AVR32-10/2012 I ©

7.6.17 BOD Control Register

Name: BOD

Access Type: Read/Write

Offset: 0xDO

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ KEY ‘
23 22 21 20 19 18 17 16

. - r - r - tr -t - [- [- Feo |
15 14 13 12 11 10 9 8

. - r - r - r - ¢ - [- | cTRL |
7 6 5 4 3 2 1 0

‘ - ‘ HYST | LEVEL ‘

« KEY: Register Write protection
This field must be written twice, first with key value 0x55, then OxAA, for a write operation to have an effect.
e« FCD: BOD Fuse calibration done
Set to 1 when CTRL, HYST and LEVEL fields has been updated by the Flash fuses after power-on reset or Flash fuses update
If one, the CTRL, HYST and LEVEL values will not be updated again by Flash fuses
Can be cleared to allow subsequent overwriting of the value by Flash fuses
« CTRL: BOD Control
0: BOD is off
1: BOD is enabled and can reset the chip
2: BOD is enabled and but cannot reset the chip. Only interrupt will be sent to interrupt controller, if enabled in the IMR register.
3: BOD is off
« HYST: BOD Hysteresis
0: No hysteresis
1: Hysteresis On
e LEVEL: BOD Level
This field sets the triggering threshold of the BOD. See Electrical Characteristics for actual voltage levels.
Note that any change to the LEVEL field of the BOD register should be done with the BOD deactivated to avoid spurious reset
or interrupt.

AIMEL 75

32072H-AVR32-10/2012 I ©

7.6.18 BOD33 Control Register

Name: BOD33

Access Type: Read/Write

Offset: 0xD4

Reset Value: 0x0000010X
31 30 29 28 27 26 25 24

‘ KEY ‘
23 22 21 20 19 18 17 16

- r - - - - 1 - [- Feo |
15 14 13 12 11 10 9 8

- r - - rr - [- 7 -] cTRL |
7 6 5 4 3 2 1 0

I | | Level |

« KEY: Register Write protection
This field must be written twice, first with key value 0x55, then OxAA, for a write operation to have an effect.

« FCD: BOD33 Fuse calibration done
Set to 1 when LEVEL field has been updated by the Flash fuses after power-on reset or Flash fuses update

If one, the LEVEL value will not be updated again by Flash fuses
Can be cleared to allow subsequent overwriting of the value by Flash fuses

« CTRL: BOD33 Control
0: BOD33 is off

1: BOD33 is enabled and can reset the chip

2: BOD33 is enabled and but cannot reset the chip. Only interrupt will be sent to interrupt controller, if enabled in the IMR
register.

3: BOD33 is off

e LEVEL: BOD33 Level
This field sets the triggering threshold of the BOD33. See Electrical Characteristics for actual voltage levels.

Note that any change to the LEVEL field of the BOD33 register should be done with the BOD33 deactivated to avoid spurious
reset or interrupt.

AIMEL 76

32072H-AVR32-10/2012 I ©

7.6.19 Reset Cause Register

Name: RCAUSE
Access Type: Read-only
Offset: 0x140
Reset Value: 0x00000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
- T - [- T T - T eoom | - ocorsT |
7 6 5 4 3 2 1 0
‘ CPUERR ‘ - | - ‘ JTAG ‘ wDT ‘ EXT | BOD POR

« BOD33: Brown-out 3V3 Reset

The CPU was reset due to the supply voltage 3V3 being lower than the brown-out threshold level.

¢ OCDRST: OCD Reset

The CPU was reset because the RES strobe in the OCD Development Control register has been written to one.

¢ CPUERR: CPU Error
The CPU was reset because it had detected an illegal access.
e JTAG: JTAG reset
The CPU was reset by setting the bit RC_CPU in the JTAG reset register.
< WDT: Watchdog Reset
The CPU was reset because of a watchdog timeout.
e EXT: External Reset Pin
The CPU was reset due to the RESET pin being asserted.
« BOD: Brown-out Reset

The CPU was reset due to the supply voltage 1V8 being lower than the brown-out threshold level.

* POR Power-on Reset
The CPU was reset due to the supply voltage being lower than the power-on threshold level.

ATMEL

32072H-AVR32-10/2012 I ©

77

7.6.20 Asynchronous Wake Up Enable

Name: AWEN
Access Type: Read/Write
Offset: 0x144

Reset Value:

31 30 29 28 27 26 25 24
| | | | | | | | |
23 22 21 20 19 18 17 16
| | | | | | | | |
15 14 13 12 1 10 9 8
| | | | | | | | |
7 6 5 4 3 2 1 0
- - r - - - b - - [usswaken]

* USB_WAKEN : Wake Up Enable Register
Writing a zero to this bit will disable the USB wake up.

Writing a one to this bit will enable the USB wake up.

ATMEL 7

32072H-AVR32-10/2012

7.6.21 General Purpose Low-power Register

Name: GPLP

Access Type: Read/Write

Offset: 0x200

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ GPLP ‘
23 22 21 20 19 18 17 16

‘ GPLP ‘
15 14 13 12 11 10 9 8

‘ GPLP
7 6 5 4 3 2 1 0

‘ GPLP

These registers are general purpose 32-bit registers that are reset only by power-on-reset. Any other reset will keep the content
of these registers untouched. User software can use these register to save context variables in a very low power mode.
Two GPLP register are implemented in AT32UC3A3.

32072H-AVR32-10/2012

ATMEL

Y 5

79

8. Real Time Counter (RTC)
Rev: 2.4.0.1

8.1 Features
e 32-bit real-time counter with 16-bit prescaler
* Clocked from RC oscillator or 32KHz oscillator
* Long delays
— Max timeout 272years
* High resolution: Max count frequency 16KHz
* Extremely low power consumption
¢ Available in all sleep modes except Static
* Interrupt on wrap

8.2 Overview
The Real Time Counter (RTC) enables periodic interrupts at long intervals, or accurate mea-
surement of real-time sequences. The RTC is fed from a 16-bit prescaler, which is clocked from
the system RC oscillator or the 32KHz crystal oscillator. Any tapping of the prescaler can be
selected as clock source for the RTC, enabling both high resolution and long timeouts. The pres-
caler cannot be written directly, but can be cleared by the user.

The RTC can generate an interrupt when the counter wraps around the value stored in the top
register (TOP), producing accurate periodic interrupts.

8.3 Block Diagram

Figure 8-1. Real Time Counter Block Diagram

CTRL TOP
[| [l
CLK32 EN PSEL
A4 Y
—CLK_32
16-bit Prescaler —»{ 32-bit counter [—» TOPI| [—IRQ—»
—RCSYS ¢
VAL

8.4 Product Dependencies

In order to use this module, other parts of the system must be configured correctly, as described
below.

AIMEL 80

32072H-AVR32-10/2012 I ©

8.4.1 Power Management

8.4.2 Clocks

8.4.3 Interrupts

The RTC remains operating in all sleep modes except Static mode. Interrupts are not available
in DeepStop mode.

The RTC can use the system RC oscillator as clock source. This oscillator is always enabled
whenever this module is active. Please refer to the Electrical Characteristics chapter for the
characteristic frequency of this oscillator (fz¢).

The RTC can also use the 32 KHz crystal oscillator as clock source. This oscillator must be
enabled before use. Please refer to the Power Manager chapter for details.

The clock for the RTC bus interface (CLK_RTC) is generated by the Power Manager. This clock
is enabled at reset, and can be disabled in the Power Manager. It is recommended to disable the
RTC before disabling the clock, to avoid freezing the RTC in an undefined state.

The RTC interrupt request line is connected to the interrupt controller. Using the RTC interrupt
requires the interrupt controller to be programmed first.

8.4.4 Debug Operation

The RTC prescaler is frozen during debug operation, unless the OCD system keeps peripherals
running in debug operation.

8.5 Functional Description

8.5.1 RTC Operation

8.5.1.1 Source clock

The RTC is enabled by writing a one to the Enable bit in the Control Register (CTRL.EN). The
16-bit prescaler will then increment on the selected clock. The prescaler cannot be read or writ-
ten, but it can be reset by writing a one to the Prescaler Clear bit in CTRL register (CTRL.PCLR).

The 32KHz Oscillator Select bit in CTRL register (CTRL.CLK32) selects either the RC oscillator
or the 32KHz oscillator as clock source (defined as INPUT in the formula below) for the
prescaler.

The Prescale Select field in CTRL register (CTRL.PSEL) selects the prescaler tapping, selecting
the source clock for the RTC:

Jrre = f11vPUT/2(PSEL -

8.5.1.2 Counter operation

32072H-AVR32-10/2012

When enabled, the RTC will increment until it reaches TOP, and then wraps to 0x0. The status
bit TOPI in Interrupt Status Register (ISR) is set to one when this occurs. From 0x0 the counter
will count TOP+1 cycles of the source clock before it wraps back to 0xO.

AIMEL 81

Y 5

The RTC count value can be read from or written to the Value register (VAL). Due to synchroni-
zation, continuous reading of the VAL register with the lowest prescaler setting will skip every
other value.

8.5.1.3 RTC interrupt

8.5.14 RTC wakeup

8.5.1.5 Busy bit

32072H-AVR32-10/2012

The RTC interrupt is enabled by writing a one to the Top Interrupt bit in the Interrupt Enable Reg-
ister (IER.TOPI), and is disabled by writing a one to the Top Interrupt bit in the Interrupt Disable
Register (IDR.TOPI). The Interrupt Mask Register (IMR) can be read to see whether or not the
interrupt is enabled. If enabled, an interrupt will be generated if the TOPI bit in the Interrupt Sta-
tus Register (ISR) is set. The TOPI bit in ISR can be cleared by writing a one to the TOPI bit in
the Interrupt Clear Register (ICR.TOPI).

The RTC interrupt can wake the CPU from all sleep modes except DeepStop and Static modes.

The RTC can also wake up the CPU directly without triggering an interrupt when the ISR.TOPI
bit is set. In this case, the CPU will continue executing from the instruction following the sleep
instruction.

This direct RTC wake-up is enabled by writing a one to the Wake Enable bit in the CTRL register
(CTRL.WAKEN). When the CPU wakes from sleep, the CTRL.WAKEN bit must be written to
zero to clear the internal wake signal to the sleep controller, otherwise a new sleep instruction
will have no effect.

The RTC wakeup is available in all sleep modes except Static mode. The RTC wakeup can be
configured independently of the RTC interrupt.

Due to the crossing of clock domains, the RTC uses a few clock cycles to propagate the values
stored in CTRL, TOP, and VAL to the RTC. The RTC Busy bit in CTRL (CTRL.BUSY) indicates
that a register write is still going on and all writes to TOP, CTRL, and VAL will be discarded until
the CTRL.BUSY bit goes low again.

AIMEL 62

Y 5

8.6 User Interface

Table 8-1. RTC Register Memory Map

Offset Register Register Name Access Reset

0x00 Control Register CTRL Read/Write 0x00010000
0x04 Value Register VAL Read/Write 0x00000000
0x08 Top Register TOP Read/Write OXFFFFFFFF
0x10 Interrupt Enable Register IER Write-only 0x00000000
0x14 Interrupt Disable Register IDR Write-only 0x00000000
0x18 Interrupt Mask Register IMR Read-only 0x00000000
0x1C Interrupt Status Register ISR Read-only 0x00000000
0x20 Interrupt Clear Register ICR Write-only 0x00000000

32072H-AVR32-10/2012

ATMEL

83

8.6.1 Control Register

Name: CTRL

Access Type: Read/Write

Offset: 0x00

Reset Value: 0x00010000
31 30 29 28 27 26 25 24

[R R SRR]
23 22 21 20 19 18 17 16

. - r - r - [r - [. - | - CLKEN |
15 14 13 12 11 10 9 8

I R R |
7 6 5 4 3 2 1 0

‘ - ‘ - ‘ - ‘ BUSY ‘ CLK32 WAKEN PCLR EN ‘

¢ CLKEN: Clock Enable
1: The clock is enabled.

0: The clock is disabled.

e PSEL: Prescale Select
Selects prescaler bit PSEL as source clock for the RTC.

¢ BUSY: RTC Busy

This bit is set when the RTC is busy and will discard writes to TOP, VAL, and CTRL.

This bit is cleared when the RTC accepts writes to TOP, VAL, and CTRL.

¢ CLK32: 32 KHz Oscillator Select
1: The RTC uses the 32 KHz oscillator as clock source.

0: The RTC uses the RC oscillator as clock source.

« WAKEN: Wakeup Enable
1: The RTC wakes up the CPU from sleep modes.

0: The RTC does not wake up the CPU from sleep modes.

¢« PCLR: Prescaler Clear
Writing a one to this bit clears the prescaler.

Writing a zero to this bit has no effect.
This bit always reads as zero.

« EN: Enable
1: The RTC is enabled.

0: The RTC is disabled.

ATMEL

32072H-AVR32-10/2012 I ©

84

8.6.2 Value Register

Name: VAL

Access Type: Read/Write

Offset: 0x04

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ VAL[31:24] ‘
23 22 21 20 19 18 17 16

‘ VAL[23:16] ‘
15 14 13 12 11 10 9 8

‘ VAL[15:8] ‘
7 6 5 4 3 2 1 0

‘ VAL[7:0] ‘

¢ VAL[31:0]: RTC Value
This value is incremented on every rising edge of the source clock.

AIMEL 85

32072H-AVR32-10/2012 I ©

8.6.3 Top Register

Name: TOP

Access Type: Read/Write

Offset: 0x08

Reset Value: OXFFFFFFFF
31 30 29 28 27 26 o5 ”

‘ VAL[31:24] ‘
23 22 21 20 19 18 17 16

‘ VAL[23:16] ‘
o 14 13 12 1 10 9 8

‘ VAL[15:8] ‘
7 6 5 4 3 2 1 0

‘ VAL[7:0] ‘

¢ VAL[31:0]: RTC Top Value
VAL wraps at this value.

Alm l 86

32072H-AVR32-10/2012 I ©

8.6.4 Interrupt Enable Register

Name: IER

Access Type: Write-only

Offset: 0x10

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | R | | |
23 22 21 20 19 18 17 16

| | | | I | | |
15 14 13 12 11 10 9 8

| | | | - | | |
7 6 5 4 3 2 1 0

Writing a zero to a bit in this register has no effect.
Writing a one to a bit in this register will set the corresponding bit in IMR.

ATMEL o

32072H-AVR32-10/2012

8.6.5 Interrupt Disable Register

Name: IDR

Access Type: Write-only

Offset: 0x14

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | R | | |
23 22 21 20 19 18 17 16

| | | | I | | |
15 14 13 12 11 10 9 8

| | | | - | | |
7 6 5 4 3 2 1 0

Writing a zero to a bit in this register has no effect.
Writing a one to a bit in this register will clear the corresponding bit in IMR.

ATMEL s

32072H-AVR32-10/2012

8.6.6 Interrupt Mask Register

Name: IMR

Access Type: Read-only

Offset: 0x18

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | R | | |
23 22 21 20 19 18 17 16

| | | | I | | |
15 14 13 12 11 10 9 8

| | | | - | | |
7 6 5 4 3 2 1 0

e e R A R I N U

0: The corresponding interrupt is disabled.

1: The corresponding interrupt is enabled.

A bit in this register is cleared when the corresponding bit in IDR is written to one.
A bit in this register is set when the corresponding bit in IER is written to one.

ATMEL 5

32072H-AVR32-10/2012

8.6.7 Interrupt Status Register

Name: ISR

Access Type: Read-only

Offset: 0x1C

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | R | | |
23 22 21 20 19 18 17 16

| | | | I | | |
15 14 13 12 11 10 9 8

| | | | - | | |
7 6 5 4 3 2 1 0

e e O B R I N U

e TOPI: Top Interrupt
This bit is set when VAL has wrapped at its top value.

This bit is cleared when the corresponding bit in ICR is written to one.

ATMEL s

32072H-AVR32-10/2012

8.6.8 Interrupt Clear Register

Name: ICR

Access Type: Write-only

Offset: 0x20

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | R | | |
23 22 21 20 19 18 17 16

| | | | I | | |
15 14 13 12 11 10 9 8

| | | | - | | |
7 6 5 4 3 2 1 0

e e O B R I N U

Writing a zero to a bit in this register has no effect.
Writing a one to a bit in this register will clear the corresponding bit in SR and the corresponding interrupt request.

ATMEL o

32072H-AVR32-10/2012

9. Watchdog Timer (WDT)

9.1

9.2

9.3

9.4

9.4.1

9.4.2

9.4.3

Rev: 2.4.0.1
Features

* Watchdog timer counter with 32-bit prescaler

* Clocked from the system RC oscillator (RCSYS)
Overview

The Watchdog Timer (WDT) has a prescaler generating a time-out period. This prescaler is
clocked from the RC oscillator. The watchdog timer must be periodically reset by software within
the time-out period, otherwise, the device is reset and starts executing from the boot vector. This
allows the device to recover from a condition that has caused the system to be unstable.

Block Diagram

Figure 9-1. WDT Block Diagram

CLR

RCSYS—p 32-bit [5 Watchdog L Watchdog Reset—>
Prescaler Detector
EN——— CTRL

Product Dependencies

In order to use this module, other parts of the system must be configured correctly, as described
below.

Power Management
When the WDT is enabled, the WDT remains clocked in all sleep modes, and it is not possible to
enter Static mode.

Clocks

The WDT can use the system RC oscillator (RCSYS) as clock source. This oscillator is always
enabled whenever these modules are active. Please refer to the Electrical Characteristics chap-
ter for the characteristic frequency of this oscillator (fzc).

Debug Operation
The WDT prescaler is frozen during debug operation, unless the On-Chip Debug (OCD) system
keeps peripherals running in debug operation.

AIMEL 92

32072H-AVR32-10/2012 I ©

9.5 Functional Description

9.6 User Interface

The WDT is enabled by writing a one to the Enable bit in the Control register (CTRL.EN). This
also enables the system RC clock (CLK_RCSYS) for the prescaler. The Prescale Select field
(PSEL) in the CTRL register selects the watchdog time-out period:

TWDT - 2(PSEL+1) / fRC

The next time-out period will begin as soon as the watchdog reset has occurred and count down
during the reset sequence. Care must be taken when selecting the PSEL field value so that the
time-out period is greater than the startup time of the chip, otherwise a watchdog reset can reset
the chip before any code has been run.

To avoid accidental disabling of the watchdog, the CTRL register must be written twice, first with
the KEY field set to 0x55, then OxAA without changing the other bits. Failure to do so will cause
the write operation to be ignored, and the CTRL register value will not change.

The Clear register (CLR) must be written with any value with regular intervals shorter than the
watchdog time-out period. Otherwise, the device will receive a soft reset, and the code will start
executing from the boot vector.

When the WDT is enabled, it is not possible to enter Static mode. Attempting to do so will result
in entering Shutdown mode, leaving the WDT operational.

Table 9-1. WDT Register Memory Map

Offset Register Register Name Access Reset
0x00 Control Register CTRL Read/Write 0x00000000
0x04 Clear Register CLR Write-only 0x00000000

32072H-AVR32-10/2012

AIMEL 93

Y 5

9.6.1 Control Register

Name: CTRL

Access Type: Read/Write

Offset: 0x00

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ KEY ‘
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8

- - [- | PSEL |
7 6 5 4 3 2 1 0

* KEY: Write protection key
This field must be written twice, first with key value 0x55, then OxAA, for a write operation to be effective.
This field always reads as zero.
* PSEL: Prescale Select
PSEL is used as watchdog timeout period.
* EN: WDT Enable
1: WDT is enabled.
0: WDT is disabled.

AIMEL o4

32072H-AVR32-10/2012 I ©

9.6.2 Clear Register

Name: CLR

Access Type: Write-only

Offset: 0x04

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| CLR[31:24] |
23 22 21 20 19 18 17 16

‘ CLR[23:16] ‘
15 14 13 12 11 10 9 8

‘ CLR[15:8] ‘
7 6 5 4 3 2 1 0

‘ CLR[7:0] ‘

¢ CLR:

Writing periodically any value to this field when the WDT is enabled, within the watchdog time-out period, will prevent a
watchdog reset.
This field always reads as zero.

AIMEL 95

32072H-AVR32-10/2012 I ©

10. Interrupt Controller (INTC)
Rev: 1.0.1.5

10.1 Features
e Autovectored low latency interrupt service with programmable priority
— 4 priority levels for regular, maskable interrupts
— One Non-Maskable Interrupt
* Up to 64 groups of interrupts with up to 32 interrupt requests in each group

10.2 Overview

The INTC collects interrupt requests from the peripherals, prioritizes them, and delivers an inter-
rupt request and an autovector to the CPU. The AVR32 architecture supports 4 priority levels for
regular, maskable interrupts, and a Non-Maskable Interrupt (NMI).

The INTC supports up to 64 groups of interrupts. Each group can have up to 32 interrupt request
lines, these lines are connected to the peripherals. Each group has an Interrupt Priority Register
(IPR) and an Interrupt Request Register (IRR). The IPRs are used to assign a priority level and
an autovector to each group, and the IRRs are used to identify the active interrupt request within
each group. If a group has only one interrupt request line, an active interrupt group uniquely
identifies the active interrupt request line, and the corresponding IRR is not needed. The INTC
also provides one Interrupt Cause Register (ICR) per priority level. These registers identify the
group that has a pending interrupt of the corresponding priority level. If several groups have a
pending interrupt of the same level, the group with the lowest number takes priority.

10.3 Block Diagram

Figure 10-1 gives an overview of the INTC. The grey boxes represent registers that can be
accessed via the user interface. The interrupt requests from the peripherals (IREQn) and the
NMI are input on the left side of the figure. Signals to and from the CPU are on the right side of
the figure.

AIMEL 9%

32072H-AVR32-10/2012 I ©

AT32UC3A3

Figure 10-1. INTC Block Diagram

Interrupt Controller CPU
NMIREQ
Masks SREG
v Masks
_ I[3-0]M
i ValRegN o GM
T g
iE= N
[1| RRn - ' ' INTLEVEL _
. Request : : o) -
IREQ63 - Masking ValReq1 : <}
gy === <Dt
IREGS3 H—> IPR iig ~ | AUTOVECTOR
| we g
IREQ31 > ValReq0 _
IREQ? ! < OR TNT_Tevel -
keSS = IPRO J’D
1| reo —
IRR Registers IPR Registers ICR Registers

10.4 Product Dependencies

In order to use this module, other parts of the system must be configured correctly, as described
below.

104.1 Power Management

If the CPU enters a sleep mode that disables CLK_SYNC, the INTC will stop functioning and
resume operation after the system wakes up from sleep mode.

10.4.2 Clocks

The clock for the INTC bus interface (CLK_INTC) is generated by the Power Manager. This
clock is enabled at reset, and can be disabled in the Power Manager.

The INTC sampling logic runs on a clock which is stopped in any of the sleep modes where the
system RC oscillator is not running. This clock is referred to as CLK_SYNC. This clock is
enabled at reset, and only turned off in sleep modes where the system RC oscillator is stopped.

10.4.3 Debug Operation

When an external debugger forces the CPU into debug mode, the INTC continues normal
operation.

10.5 Functional Description
All of the incoming interrupt requests (IREQs) are sampled into the corresponding Interrupt
Request Register (IRR). The IRRs must be accessed to identify which IREQ within a group that
is active. If several IREQs within the same group are active, the interrupt service routine must
prioritize between them. All of the input lines in each group are logically ORed together to form
the GrpReqgN lines, indicating if there is a pending interrupt in the corresponding group.

The Request Masking hardware maps each of the GrpReq lines to a priority level from INTO to
INT3 by associating each group with the Interrupt Level (INTLEVEL) field in the corresponding

AIMEL o7

32072H-AVR32-10/2012 I ©

Interrupt Priority Register (IPR). The GrpReq inputs are then masked by the mask bits from the
CPU status register. Any interrupt group that has a pending interrupt of a priority level that is not
masked by the CPU status register, gets its corresponding ValReq line asserted.

Masking of the interrupt requests is done based on five interrupt mask bits of the CPU status
register, namely Interrupt Level 3 Mask (I3M) to Interrupt Level 0 Mask (I0OM), and Global Inter-
rupt Mask (GM). An interrupt request is masked if either the GM or the corresponding interrupt
level mask bit is set.

The Prioritizer hardware uses the ValReq lines and the INTLEVEL field in the IPRs to select the
pending interrupt of the highest priority. If an NMI interrupt request is pending, it automatically
gets the highest priority of any pending interrupt. If several interrupt groups of the highest pend-
ing interrupt level have pending interrupts, the interrupt group with the lowest number is
selected.

The INTLEVEL and handler autovector offset (AUTOVECTOR) of the selected interrupt are
transmitted to the CPU for interrupt handling and context switching. The CPU does not need to
know which interrupt is requesting handling, but only the level and the offset of the handler
address. The IRR registers contain the interrupt request lines of the groups and can be read via
user interface registers for checking which interrupts of the group are actually active.

The delay through the INTC from the peripheral interrupt request is set until the interrupt request
to the CPU is set is three cycles of CLK_SYNC.

10.5.1 Non-Maskable Interrupts
A NMI request has priority over all other interrupt requests. NMI has a dedicated exception vec-
tor address defined by the AVR32 architecture, so AUTOVECTOR is undefined when
INTLEVEL indicates that an NMl is pending.

10.5.2 CPU Response

When the CPU receives an interrupt request it checks if any other exceptions are pending. If no
exceptions of higher priority are pending, interrupt handling is initiated. When initiating interrupt
handling, the corresponding interrupt mask bit is set automatically for this and lower levels in sta-
tus register. E.g, if an interrupt of level 3 is approved for handling, the interrupt mask bits I3M,
12M, I1M, and I0M are set in status register. If an interrupt of level 1 is approved, the masking
bits 1M and IOM are set in status register. The handler address is calculated by logical OR of
the AUTOVECTOR to the CPU system register Exception Vector Base Address (EVBA). The
CPU will then jump to the calculated address and start executing the interrupt handler.

Setting the interrupt mask bits prevents the interrupts from the same and lower levels to be
passed through the interrupt controller. Setting of the same level mask bit prevents also multiple
requests of the same interrupt to happen.

It is the responsibility of the handler software to clear the interrupt request that caused the inter-
rupt before returning from the interrupt handler. If the conditions that caused the interrupt are not
cleared, the interrupt request remains active.

10.5.3 Clearing an Interrupt Request
Clearing of the interrupt request is done by writing to registers in the corresponding peripheral
module, which then clears the corresponding NMIREQ/IREQ signal.

The recommended way of clearing an interrupt request is a store operation to the controlling
peripheral register, followed by a dummy load operation from the same register. This causes a

AIMEL 9%

32072H-AVR32-10/2012 I ©

pipeline stall, which prevents the interrupt from accidentally re-triggering in case the handler is
exited and the interrupt mask is cleared before the interrupt request is cleared.

Alm l 99

32072H-AVR32-10/2012 I ©

10.6 User Interface

Table 10-1. INTC Register Memory Map

Offset Register Register Name Access Reset
0x000 Interrupt Priority Register O IPRO Read/Write 0x00000000
0x004 Interrupt Priority Register 1 IPR1 Read/Write 0x00000000
0x0FC Interrupt Priority Register 63 IPR63 Read/Write 0x00000000
0x100 Interrupt Request Register 0 IRRO Read-only N/A
0x104 Interrupt Request Register 1 IRR1 Read-only N/A
0x1FC Interrupt Request Register 63 IRR63 Read-only N/A
0x200 Interrupt Cause Register 3 ICR3 Read-only N/A
0x204 Interrupt Cause Register 2 ICR2 Read-only N/A
0x208 Interrupt Cause Register 1 ICR1 Read-only N/A
0x20C Interrupt Cause Register 0 ICRO Read-only N/A

AIMEL 100

32072H-AVR32-10/2012 I ©

10.6.1 Interrupt Priority Registers

Name: IPRO...IPR63

Access Type: Read/Write

Offset: 0x000 - OxOFC

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| INTLEVEL I N N D D .
23 22 21 20 19 18 17 16

- r - -+ - - & - [- § - |
15 14 13 12 11 10 9 8

‘ . ‘ - | AUTOVECTORJ[13:8] ‘
7 6 5 4 3 2 1 0

‘ AUTOVECTORJ7:0] ‘

e INTLEVEL: Interrupt Level
Indicates the EVBA-relative offset of the interrupt handler of the corresponding group:

00: INTO: Lowest priority
01: INT1
10: INT2
11: INT3: Highest priority
¢ AUTOVECTOR: Autovector Address
Handler offset is used to give the address of the interrupt handler. The least significant bit should be written to zero to give
halfword alignment.

AIMEL 101

32072H-AVR32-10/2012 I ©

10.6.2 Interrupt Request Registers

Name: IRRO...IRR63
Access Type: Read-only
Offset: OXOFF - OX1FC
Reset Value: N/A
31 30 29 28 27 26 25 24

| IRR[32%+31] | IRR[32x+30] | IRR[32"%+29] | IRR[32*x+28] | IRR[32x+27] | IRR[32*x+26] | IRR[32*x+25] | IRR[32"x+24] |

23 22 21 20 19 18 17 16

‘ IRR[32*x+23] ‘ IRR[32*x+22] | IRR[32*x+21] ‘ IRR[32*x+20] ‘ IRR[32*x+19] ‘ IRR[32*x+18] | IRR[32*x+17] ‘ IRR[32*x+16] ‘

15 14 13 12 11 10 9 8

‘ IRR[32*x+15] ‘ IRR[32*x+14] | IRR[32*x+13] ‘ IRR[32*x+12] ‘ IRR[32*x+11] ‘ IRR[32*x+10] | IRR[32*x+9] ‘ IRR[32*x+8] ‘

7 6 5 4 3 2 1 0

‘ IRR[32*x+7] ‘ IRR[32*x+6] | IRR[32*x+5] ‘ IRR[32*x+4] ‘ IRR[32*x+3] ‘ IRR[32*x+2] | IRR[32*x+1] ‘ IRR[32*x+0] ‘

¢ IRR: Interrupt Request line
This bit is cleared when no interrupt request is pending on this input request line.

This bit is set when an interrupt request is pending on this input request line.

The are 64 IRRs, one for each group. Each IRR has 32 bits, one for each possible interrupt request, for a total of 2048 possible
input lines. The IRRs are read by the software interrupt handler in order to determine which interrupt request is pending. The
IRRs are sampled continuously, and are read-only.

AIMEL 102

32072H-AVR32-10/2012 I ©

10.6.3 Interrupt Cause Registers

Name: ICRO...ICR3

Access Type: Read-only

Offset: 0x200 - 0x20C

Reset Value: N/A
31 30 29 28 27 26 25 24

| | | | | | | | |
23 22 21 20 19 18 17 16

| | | | | | | | |
15 14 13 12 11 10 9 8

| | | | | | | | |
7 6 5 4 3 2 1 0

‘ - ‘ - | CAUSE ‘

e CAUSE: Interrupt Group Causing Interrupt of Priority n
ICRn identifies the group with the highest priority that has a pending interrupt of level n. This value is only defined when at least

one interrupt of level n is pending.

A mE|,® 103

32072H-AVR32-10/2012

10.7 Interrupt Request Signal Map
The various modules may output Interrupt request signals. These signals are routed to the Inter-
rupt Controller (INTC), described in a later chapter. The Interrupt Controller supports up to 64
groups of interrupt requests. Each group can have up to 32 interrupt request signals. All interrupt
signals in the same group share the same autovector address and priority level. Refer to the
documentation for the individual submodules for a description of the semantics of the different

32072H-AVR32-10/2012

interrupt requests.

The interrupt request signals are connected to the INTC as follows.

Table 10-2. Interrupt Request Signal Map

Group Line Module Signal
0 0 CPU with optional MPU and optional OCD SYSREG
COMPARE
0 External Interrupt Controller EICO
1 External Interrupt Controller EIC1
2 External Interrupt Controller EIC 2
3 External Interrupt Controller EIC 3
4 External Interrupt Controller EIC 4
! 5 External Interrupt Controller EIC5
6 External Interrupt Controller EIC 6
7 External Interrupt Controller EIC7
8 Real Time Counter RTC
9 Power Manager PM
0 General Purpose Input/Output Controller GPIO O
1 General Purpose Input/Output Controller GPIO 1
2 General Purpose Input/Output Controller GPIO 2
3 General Purpose Input/Output Controller GPIO 3
4 General Purpose Input/Output Controller GPIO 4
5 General Purpose Input/Output Controller GPIO 5
6 General Purpose Input/Output Controller GPIO 6
2 7 General Purpose Input/Output Controller GPIO 7
8 General Purpose Input/Output Controller GPIO 8
9 General Purpose Input/Output Controller GPIO 9
10 General Purpose Input/Output Controller GPIO 10
11 General Purpose Input/Output Controller GPIO 11
12 General Purpose Input/Output Controller GPIO 12
13 General Purpose Input/Output Controller GPIO 13

ATMEL

Y 5

104

Table 10-2. Interrupt Request Signal Map
0 Peripheral DMA Controller PDCAO
1 Peripheral DMA Controller PDCA 1
2 Peripheral DMA Controller PDCA 2
3 Peripheral DMA Controller PDCA 3
’ 4 Peripheral DMA Controller PDCA 4
5 Peripheral DMA Controller PDCAS
6 Peripheral DMA Controller PDCA 6
7 Peripheral DMA Controller PDCA 7
4 0 Flash Controller FLASHC
5 0 Unive_rsal Synchr_onous/Asynchronous USARTO
Receiver/Transmitter
6 0 Unive_rsal Synchr_onous/Asynchronous USART1
Receiver/Transmitter
7 0 Unive_rsal Synchr_onous/Asynchronous USART?2
Receiver/Transmitter
8 0 Unive_rsal Synchr_onous/Asynchronous USART3
Receiver/Transmitter
9 0 Serial Peripheral Interface SPIO
10 0 Serial Peripheral Interface SPI1
11 0 Two-wire Master Interface TWIMO
12 0 Two-wire Master Interface TWIM1
13 0 Synchronous Serial Controller SsC
0 Timer/Counter TCO0
14 1 Timer/Counter TCO1
2 Timer/Counter TCO02
15 0 Analog to Digital Converter ADC
0 Timer/Counter TC10
16 1 Timer/Counter TC11
2 Timer/Counter TC12
17 0 USB 2.0 OTG Interface USBB
18 0 SDRAM Controller SDRAMC
19 0 Audio Bitstream DAC ABDAC
20 0 Mulitmedia Card Interface MCI
21 0 Advanced Encryption Standard AES

32072H-AVR32-10/2012

ATMEL

Y 5

105

Table 10-2. Interrupt Request Signal Map

0 DMA Controller DMACA BLOCK
1 DMA Controller DMACA DSTT

22 2 DMA Controller DMACA ERR
3 DMA Controller DMACA SRCT
4 DMA Controller DMACA TFR

26 0 Memory Stick Interface MSI

27 0 Two-wire Slave Interface TWISO

28 0 Two-wire Slave Interface TWIS1

29 0 ggrl(;rn::c()):e corrector Hamming and Reed ECCHRS

AIMEL 106

32072H-AVR32-10/2012

Y 5

11. External Interrupt Controller (EIC)

11.1 Features

11.2 Overview

32072H-AVR32-10/2012

Rev: 2.4.0.0

* Dedicated interrupt request for each interrupt

¢ Individually maskable interrupts

* Interrupt on rising or falling edge

e Interrupt on high or low level

e Asynchronous interrupts for sleep modes without clock
 Filtering of interrupt lines

* Maskable NMl interrupt

* Keypad scan support

The External Interrupt Controller (EIC) allows pins to be configured as external interrupts. Each
external interrupt has its own interrupt request and can be individually masked. Each external
interrupt can generate an interrupt on rising or falling edge, or high or low level. Every interrupt
input has a configurable filter to remove spikes from the interrupt source. Every interrupt pin can
also be configured to be asynchronous in order to wake up the part from sleep modes where the
CLK_SYNC clock has been disabled.

A Non-Maskable Interrupt (NMI) is also supported. This has the same properties as the other
external interrupts, but is connected to the NMI request of the CPU, enabling it to interrupt any
other interrupt mode.

The EIC can wake up the part from sleep modes without triggering an interrupt. In this mode,
code execution starts from the instruction following the sleep instruction.

The External Interrupt Controller has support for keypad scanning for keypads laid out in rows
and columns. Columns are driven by a separate set of scanning outputs, while rows are sensed
by the external interrupt lines. The pressed key will trigger an interrupt, which can be identified
through the user registers of the module.

AIMEL 107

Y 5

11.3 Block Diagram

Figure 11-1. EIC Block Diagram

LEVEL
MODE ASYNC
ED*GE
ElN - Polarity .| Asynchronus | IC|R
Dis control o detector CI‘L
|| LEVEL
=1 Enable FILTER MODE - [N T n
EXTINTn EDSE |
A CTRL Ed /L | 5
. elLeve
- Filter [9
i Detector *
—CLK_SYNC ? ?
—C|_K_Rcsys—¢
Prescaler - Shifter -
T PRESC * PIN

IER

o M ask ——IR Q n —

W ake

——EIC_W AKE —
detect -

11.4 1/O Lines Description

EN

| v
[SCAN]

Table 11-1. I/O Lines Description

Pin Name Pin Description Type
NMI Non-Maskable Interrupt Input
EXTINTN External Interrupt Input
SCANm Keypad scan pin m Output

11.5 Product Dependencies
In order to use this module, other parts of the system must be configured correctly, as described

1151 I/O Lines

below.

SCANmM

The external interrupt pins (EXTINTn and NMI) are multiplexed with 1/O lines. To generate an
external interrupt from an external source the source pin must be configured as an input pins by
the 1/0O Controller. It is also possible to trigger the interrupt by driving these pins from registers in
the 1/0O Controller, or another peripheral output connected to the same pin.

11.5.2 Power Management
All interrupts are available in all sleep modes as long as the EIC module is powered. However, in
sleep modes where CLK_SYNC is stopped, the interrupt must be configured to asynchronous

mode.

32072H-AVR32-10/2012

ATMEL

Y 5

108

11.5.3 Clocks

1154 Interrupts

The clock for the EIC bus interface (CLK_EIC) is generated by the Power Manager. This clock is
enabled at reset, and can be disabled in the Power Manager.

The filter and synchronous edge/level detector runs on a clock which is stopped in any of the
sleep modes where the system RC oscillator is not running. This clock is referred to as
CLK_SYNC. Refer to the Module Configuration section at the end of this chapter for details.

The Keypad scan function operates on the system RC oscillator clock CLK_RCSYS.

The external interrupt request lines are connected to the interrupt controller. Using the external
interrupts requires the interrupt controller to be programmed first.

Using the Non-Maskable Interrupt does not require the interrupt controller to be programmed.

1155 Debug Operation

The EIC is frozen during debug operation, unless the OCD system keeps peripherals running
during debug operation.

11.6 Functional Description

11.6.1 External Interrupts

32072H-AVR32-10/2012

The external interrupts are not enabled by default, allowing the proper interrupt vectors to be set
up by the CPU before the interrupts are enabled.

Each external interrupt INTnh can be configured to produce an interrupt on rising or falling edge,
or high or low level. External interrupts are configured by the MODE, EDGE, and LEVEL regis-
ters. Each interrupt n has a bit INTn in each of these registers. Writing a zero to the INTn bit in
the MODE register enables edge triggered interrupts, while writing a one to the bit enables level
triggered interrupts.

If INTn is configured as an edge triggered interrupt, writing a zero to the INTn bit in the EDGE
register will cause the interrupt to be triggered on a falling edge on EXTINTnN, while writing a one
to the bit will cause the interrupt to be triggered on a rising edge on EXTINTN.

If INTn is configured as a level triggered interrupt, writing a zero to the INTn bit in the LEVEL
register will cause the interrupt to be triggered on a low level on EXTINTN, while writing a one to
the bit will cause the interrupt to be triggered on a high level on EXTINTn.

Each interrupt has a corresponding bit in each of the interrupt control and status registers. Writ-
ing a one to the INTn bit in the Interrupt Enable Register (IER) enables the external interrupt
from pin EXTINTN to propagate from the EIC to the interrupt controller, while writing a one to
INTn bit in the Interrupt Disable Register (IDR) disables this propagation. The Interrupt Mask
Register (IMR) can be read to check which interrupts are enabled. When an interrupt triggers,
the corresponding bit in the Interrupt Status Register (ISR) will be set. This bit remains set until a
one is written to the corresponding bit in the Interrupt Clear Register (ICR) or the interrupt is
disabled.

Writing a one to the INTn bit in the Enable Register (EN) enables the external interrupt on pin
EXTINTnN, while writing a one to INTn bit in the Disable Register (DIS) disables the external inter-
rupt. The Control Register (CTRL) can be read to check which interrupts are enabled. If a bit in
the CTRL register is set, but the corresponding bit in IMR is not set, an interrupt will not propa-

Alm L 109

Y 5

gate to the interrupt controller. However, the corresponding bit in ISR will be set, and
EIC_WAKE will be set.

If the CTRL.INTn bit is zero, then the corresponding bit in ISR will always be zero. Disabling an
external interrupt by writing to the DIS.INTn bit will clear the corresponding bit in ISR.

11.6.2 Synchronization and Filtering of External Interrupts

In synchronous mode the pin value of the EXTINTnN pin is synchronized to CLK_SYNC, so
spikes shorter than one CLK_SYNC cycle are not guaranteed to produce an interrupt. The syn-
chronization of the EXTINTn to CLK_SYNC will delay the propagation of the interrupt to the
interrupt controller by two cycles of CLK_SYNC, see Figure 11-2 on page 110 and Figure 11-3
on page 110 for examples (FILTER off).

It is also possible to apply a filter on EXTINTnN by writing a one to INTn bit in the FILTER register.
This filter is a majority voter, if the condition for an interrupt is true for more than one of the latest
three cycles of CLK_SYNC the interrupt will be set. This will additionally delay the propagation of
the interrupt to the interrupt controller by one or two cycles of CLK_SYNC, see Figure 11-2 on
page 110 and Figure 11-3 on page 110 for examples (FILTER on).

Figure 11-2. Timing Diagram, Synchronous Interrupts, High Level or Rising Edge

CLK_SYNC

EXTINTn/NMI

ISR.INTn:
FILTER off

ISR.INTn:
FILTER on

Figure 11-3. Timing Diagram, Synchronous Interrupts, Low Level or Falling Edge

CLK_SYNC

EXTINTn/NMI

ISR.INTn:
FILTER off

ISR.INTn:
FILTER on

32072H-AVR32-10/2012

Alm L 110

Y 5

11.6.3 Non-Maskable Interrupt

The NMI supports the same features as the external interrupts, and is accessed through the
same registers. The description in Section 11.6.1 should be followed, accessing the NMI bit
instead of the INTn bits.

The NMI is non-maskable within the CPU in the sense that it can interrupt any other execution
mode. Still, as for the other external interrupts, the actual NMI input can be enabled and disabled
by accessing the registers in the EIC.

1164 Asynchronous Interrupts

Each external interrupt can be made asynchronous by writing a one to INTn in the ASYNC reg-
ister. This will route the interrupt signal through the asynchronous path of the module. All edge
interrupts will be interpreted as level interrupts and the filter is disabled. If an interrupt is config-
ured as edge triggered interrupt in asynchronous mode, a zero in EDGE.INTn will be interpreted
as low level, and a one in EDGE.INTn will be interpreted as high level.

EIC_WAKE will be set immediately after the source triggers the interrupt, while the correspond-
ing bit in ISR and the interrupt to the interrupt controller will be set on the next rising edge of
CLK_SYNC. Please refere to Figure 11-4 on page 111 for details.

When CLK_SYNC is stopped only asynchronous interrupts remain active, and any short spike
on this interrupt will wake up the device. EIC_WAKE will restart CLK_SYNC and ISR will be
updated on the first rising edge of CLK_SYNC.

Figure 11-4. Timing Diagram, Asynchronous Interrupts

11.6.5 Wakeup

32072H-AVR32-10/2012

CLK_SYNC I_ CLK_SYNC I_

I
EXTINTn/NMI | EXTINTH/NMI |
ISR.INTR: | ISR.INTn: |
rising EDGE or high | rising EDGE or high |
LEVEL | LEVEL |
EIC_WAKE: EIC_WAKE:
rising EDGE or high rising EDGE or high
LEVEL E— LEVEL

The external interrupts can be used to wake up the part from sleep modes. The wakeup can be
interpreted in two ways. If the corresponding bit in IMR is one, then the execution starts at the
interrupt handler for this interrupt. If the bit in IMR is zero, then the execution starts from the next
instruction after the sleep instruction.

Alm L 111

Y 5

11.6.6 Keypad scan support

32072H-AVR32-10/2012

The External Interrupt Controller also includes support for keypad scanning. The keypad scan
feature is compatible with keypads organized as rows and columns, where a row is shorted
against a column when a key is pressed.

The rows should be connected to the external interrupt pins with pull-ups enabled in the I/O Con-
troller. These external interrupts should be enabled as low level or falling edge interrupts. The
columns should be connected to the available scan pins. The I/O Controller must be configured
to let the required scan pins be controlled by the EIC. Unused external interrupt or scan pins can
be left controlled by the I/O Controller or other peripherals.

The Keypad Scan function is enabled by writing SCAN.EN to 1, which starts the keypad scan
counter. The SCAN outputs are tri-stated, except SCANJ[0], which is driven to zero. After
2(SCANPRESC+1) RC clock cycles this pattern is left shifted, so that SCAN[1] is driven to zero while
the other outputs are tri-stated. This sequence repeats infinitely, wrapping from the most signifi-
cant SCAN pin to SCANJO0].

When a key is pressed, the pulled-up row is driven to zero by the column, and an external inter-
rupt triggers. The scanning stops, and the software can then identify the key pressed by the
interrupt status register and the SCAN.PINS value.

The scanning stops whenever there is an active interrupt request from the EIC to the CPU.
When the CPU clears the interrupt flags, scanning resumes.

Alm L 112

Y 5

11.7 User Interface

Table 11-2. EIC Register Memory Map

Offset Register Register Name Access Reset

0x000 Interrupt Enable Register IER Write-only 0x00000000
0x004 Interrupt Disable Register IDR Write-only 0x00000000
0x008 Interrupt Mask Register IMR Read-only 0x00000000
0x00C Interrupt Status Register ISR Read-only 0x00000000
0x010 Interrupt Clear Register ICR Write-only 0x00000000
0x014 Mode Register MODE Read/Write 0x00000000
0x018 Edge Register EDGE Read/Write 0x00000000
0x01C Level Register LEVEL Read/Write 0x00000000
0x020 Filter Register FILTER Read/Write 0x00000000
0x024 Test Register TEST Read/Write 0x00000000
0x028 Asynchronous Register ASYNC Read/Write 0x00000000
0x2C Scan Register SCAN Read/Write 0x00000000
0x030 Enable Register EN Write-only 0x00000000
0x034 Disable Register DIS Write-only 0x00000000
0x038 Control Register CTRL Read-only 0x00000000

32072H-AVR32-10/2012

ATMEL

113

11.7.1 Interrupt Enable Register

Name: IER

Access Type: Write-only

Offset: 0x000

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | - | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

e O O T
7 6 5 4 3 2 1 0

‘ INT7 ‘ INT6 ‘ INTS ‘ INT4 ‘ INT3 ‘ INT2 ‘ INT1 ‘ INTO ‘

¢ INTn: External Interrupt n
Writing a zero to this bit has no effect.

Writing a one to this bit will set the corresponding bit in IMR.

¢ NMI: Non-Maskable Interrupt
Writing a zero to this bit has no effect.

Writing a one to this bit will set the corresponding bit in IMR.

A mE|,® 114

32072H-AVR32-10/2012

11.7.2 Interrupt Disable Register

Name: IDR

Access Type: Write-only

Offset: 0x004

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | - | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

e O O T
7 6 5 4 3 2 1 0

‘ INT7 ‘ INT6 ‘ INTS ‘ INT4 ‘ INT3 ‘ INT2 ‘ INT1 ‘ INTO ‘

¢ INTn: External Interrupt n
Writing a zero to this bit has no effect.

Writing a one to this bit will clear the corresponding bit in IMR.

¢ NMI: Non-Maskable Interrupt
Writing a zero to this bit has no effect.

Writing a one to this bit will clear the corresponding bit in IMR.

A mE|,® 115

32072H-AVR32-10/2012

11.7.3 Interrupt Mask Register

Name: IMR

Access Type: Read-only

Offset: 0x008

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

- - rr - r - r - - - ;- ;- |
23 22 21 20 19 18 17 16

- ! - r - r - r - ;- ;-]} - |
15 14 13 12 11 10 9 8

A e O I
7 6 5 4 3 2 1 0

‘ INT7 ‘ INT6 ‘ INTS ‘ INT4 ‘ INT3 ‘ INT2 ‘ INT1 ‘ INTO ‘

¢ INTn: External Interrupt n
0: The corresponding interrupt is disabled.

1: The corresponding interrupt is enabled.
This bit is cleared when the corresponding bit in IDR is written to one.
This bit is set when the corresponding bit in IER is written to one.

« NMI: Non-Maskable Interrupt
0: The Non-Maskable Interrupt is disabled.

1: The Non-Maskable Interrupt is enabled.
This bit is cleared when the corresponding bit in IDR is written to one.
This bit is set when the corresponding bit in IER is written to one.

AIMEL 116

32072H-AVR32-10/2012 I ©

11.7.4 Interrupt Status Register

Name: ISR

Access Type: Read-only

Offset: 0x00C

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

- - rr - r - r - - - ;- ;- |
23 22 21 20 19 18 17 16

- ! - r - r - r - ;- ;-]} - |
15 14 13 12 11 10 9 8

e O O T
7 6 5 4 3 2 1 0

‘ INT7 ‘ INT6 ‘ INTS ‘ INT4 ‘ INT3 ‘ INT2 ‘ INT1 ‘ INTO ‘

¢ INTn: External Interrupt n
0: An interrupt event has not occurred

1: An interrupt event has occurred
This bit is cleared by writing a one to the corresponding bit in ICR.

¢ NMI: Non-Maskable Interrupt
0: An interrupt event has not occurred

1: An interrupt event has occurred
This bit is cleared by writing a one to the corresponding bit in ICR.

AIMEL 17

32072H-AVR32-10/2012 I ©

11.7.5 Interrupt Clear Register

Name: ICR

Access Type: Write-only

Offset: 0x010

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | - | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

e O O T
7 6 5 4 3 2 1 0

‘ INT7 ‘ INT6 ‘ INTS ‘ INT4 ‘ INT3 ‘ INT2 ‘ INT1 ‘ INTO ‘

¢ INTn: External Interrupt n
Writing a zero to this bit has no effect.

Writing a one to this bit will clear the corresponding bit in ISR.

¢ NMI: Non-Maskable Interrupt
Writing a zero to this bit has no effect.

Writing a one to this bit will clear the corresponding bit in ISR.

A mE|,® 118

32072H-AVR32-10/2012

11.7.6 Mode Register

Name: MODE

Access Type: Read/Write

Offset: 0x014

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | - | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

e O O T
7 6 5 4 3 2 1 0

‘ INT7 ‘ INT6 ‘ INTS ‘ INT4 ‘ INT3 ‘ INT2 ‘ INT1 ‘ INTO ‘

¢ INTn: External Interrupt n
0: The external interrupt is edge triggered.

1: The external interrupt is level triggered.

¢ NMI: Non-Maskable Interrupt
0: The Non-Maskable Interrupt is edge triggered.

1: The Non-Maskable Interrupt is level triggered.

A mE|,® 119

32072H-AVR32-10/2012

11.7.7 Edge Register
Name: EDGE
Access Type: Read/Write
Offset: 0x018
Reset Value: 0x00000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| | | |
7 6 5 4 3 2 1 0
‘ INT7 ‘ INT6 INTS INT4 ‘ INT3 INT2 INT1 INTO ‘

¢ INTn: External Interrupt n

0: The external interrupt triggers on falling edge.

1: The external interrupt triggers on rising edge.
¢ NMI: Non-Maskable Interrupt

0: The Non-Maskable Interrupt triggers on falling edge.
1: The Non-Maskable Interrupt triggers on rising edge.

32072H-AVR32-10/2012

ATMEL

120

11.7.8 Level Register

Name: LEVEL

Access Type: Read/Write

Offset: 0x01C

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | - | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

e O O T
7 6 5 4 3 2 1 0

‘ INT7 ‘ INT6 ‘ INTS ‘ INT4 ‘ INT3 ‘ INT2 ‘ INT1 ‘ INTO ‘

¢ INTn: External Interrupt n
0: The external interrupt triggers on low level.

1: The external interrupt triggers on high level.

¢ NMI: Non-Maskable Interrupt
0: The Non-Maskable Interrupt triggers on low level.

1: The Non-Maskable Interrupt triggers on high level.

A mE|,® 121

32072H-AVR32-10/2012

11.7.9 Filter Register

Name: FILTER

Access Type: Read/Write

Offset: 0x020

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | I | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

A e O
7 6 5 4 3 2 1 0

‘ INT7 ‘ INT6 ‘ INTS ‘ INT4 ‘ INT3 ‘ INT2 ‘ INT1 ‘ INTO ‘

¢ INTn: External Interrupt n
0: The external interrupt is not filtered.

1: The external interrupt is filtered.

« NMI: Non-Maskable Interrupt
0: The Non-Maskable Interrupt is not filtered.

1: The Non-Maskable Interrupt is filtered.

A mE|,® 122

32072H-AVR32-10/2012

11.7.10 Test Register

Name: TEST

Access Type: Read/Write

Offset: 0x024

Reset Value: 0x00000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8

T - - - -]
7 6 5 4 3 2 1 0

‘ INT7 ‘ INT6 INTS INT4 INT3 INT2 INT1 INTO ‘

« TESTEN: Test Enable

0: This bit disables external interrupt test mode.
1: This bit enables external interrupt test mode.
¢ INTn: External Interruptn

If TESTEN is 1, the value written to this bit will be the value to the interrupt detector and the value on the pad will be ignored.

« NMI: Non-Maskable Interrupt

If TESTEN is 1, the value written to this bit will be the value to the interrupt detector and the value on the pad will be ignored.

32072H-AVR32-10/2012

ATMEL

123

11.7.11 Asynchronous Register

Name: ASYNC

Access Type: Read/Write

Offset: 0x028

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | I | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

A e O
7 6 5 4 3 2 1 0

‘ INT7 ‘ INT6 ‘ INTS ‘ INT4 ‘ INT3 ‘ INT2 ‘ INT1 ‘ INTO ‘

¢ INTn: External Interrupt n
0: The external interrupt is synchronized to CLK_SYNC.

1: The external interrupt is asynchronous.

« NMI: Non-Maskable Interrupt
0: The Non-Maskable Interrupt is synchronized to CLK_SYNC

1: The Non-Maskable Interrupt is asynchronous.

A mE|,® 124

32072H-AVR32-10/2012

11.7.12 Scan Register

Name: SCAN
Access Type: Read/Write
Offset: 0x2C
Reset Value: 0x0000000
31 30 29 28 27 26 25 24
. - - [-7 - [- /] PIN[2) |
23 22 21 20 19 18 17 16
[I I B R -]
15 14 13 12 11 10 9 8
‘] ‘] ‘] ‘ PRESC[4:0] ‘
7 6 5 4 3 2 1 0
I R R - - - o
* EN

0: Keypad scanning is disabled
1: Keypad scanning is enabled
* PRESC
Prescale select for the keypad scan rate:
Scan rate = 2(SCAN.PRESC+1) Tre
The RC clock period can be found in the Electrical Characteristics section.
* PIN
The index of the currently active scan pin. Writing to this bitfield has no effect.

AIMEL 125

32072H-AVR32-10/2012 I ©

11.7.13 Enable Register

Name: EN

Access Type: Write-only

Offset: 0x030

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | I | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

A e O
7 6 5 4 3 2 1 0

‘ INT7 ‘ INT6 ‘ INTS ‘ INT4 ‘ INT3 ‘ INT2 ‘ INT1 ‘ INTO ‘

¢ INTn: External Interrupt n
Writing a zero to this bit has no effect.

Writing a one to this bit will enable the corresponding external interrupt.

« NMI: Non-Maskable Interrupt
Writing a zero to this bit has no effect.

Writing a one to this bit will enable the Non-Maskable Interrupt.

A mE|,® 126

32072H-AVR32-10/2012

11.7.14 Disable Register

Name: DIS

Access Type: Write-only

Offset: 0x034

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | I | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

A e O
7 6 5 4 3 2 1 0

‘ INT7 ‘ INT6 ‘ INTS ‘ INT4 ‘ INT3 ‘ INT2 ‘ INT1 ‘ INTO ‘

¢ INTn: External Interrupt n
Writing a zero to this bit has no effect.

Writing a one to this bit will disable the corresponding external interrupt.

« NMI: Non-Maskable Interrupt
Writing a zero to this bit has no effect.

Writing a one to this bit will disable the Non-Maskable Interrupt.

A mE|,® 127

32072H-AVR32-10/2012

11.7.15 Control Register

Name: CTRL

Access Type: Read-only

Offset: 0x038

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | I | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

A e O
7 6 5 4 3 2 1 0

‘ INT7 ‘ INT6 ‘ INTS ‘ INT4 ‘ INT3 ‘ INT2 ‘ INT1 ‘ INTO ‘

¢ INTn: External Interrupt n
0: The corresponding external interrupt is disabled.

1: The corresponding external interrupt is enabled.

« NMI: Non-Maskable Interrupt
0: The Non-Maskable Interrupt is disabled.

1: The Non-Maskable Interrupt is enabled.

A mE|,® 128

32072H-AVR32-10/2012

11.8 Module Configuration
The specific configuration for each EIC instance is listed in the following tables.The module bus
clocks listed here are connected to the system bus clocks. Please refer to the Power Manager
chapter for detalils.

Table 11-3. Module Configuration
Feature EIC

Number of external interrupts, including NMI 9

Table 11-4. Module Clock Name

Module Name | Clock Name

EIC CLK_EIC

AIMEL 129

32072H-AVR32-10/2012 I ©

12. Flash Controller (FLASHC)
Rev: 2.2.1.3

12.1 Features

e Controls flash block with dual read ports allowing staggered reads.

e Supports 0 and 1 wait state bus access.

* Allows interleaved burst reads for systems with one wait state, outputting one 32-bit word per
clock cycle.

* 32-bit HSB interface for reads from flash array and writes to page buffer.

e 32-bit PB interface for issuing commands to and configuration of the controller.

* 16 lock bits, each protecting a region consisting of (total number of pages in the flash block / 16)
pages.

* Regions can be individually protected or unprotected.

* Additional protection of the Boot Loader pages.

* Supports reads and writes of general-purpose NVM bits.

* Supports reads and writes of additional NVM pages.

e Supports device protection through a security bit.

* Dedicated command for chip-erase, first erasing all on-chip volatile memories before erasing
flash and clearing security bit.

* Interface to Power Manager for power-down of flash-blocks in sleep mode.

12.2 Overview

The flash controller (None) interfaces a flash block with the 32-bit internal HSB bus. Perfor-
mance for uncached systems with high clock-frequency and one wait state is increased by
placing words with sequential addresses in alternating flash subblocks. Having one read inter-
face per subblock allows them to be read in parallel. While data from one flash subblock is being
output on the bus, the sequential address is being read from the other flash subblock and will be
ready in the next clock cycle.

The controller also manages the programming, erasing, locking and unlocking sequences with
dedicated commands.

12.3 Product dependencies

12.3.1 Power Manager
The FLASHC has two bus clocks connected: One High speed bus clock (CLK_FLASHC_HSB)
and one Peripheral bus clock (CLK_FLASHC_PB). These clocks are generated by the Power
manager. Both clocks are turned on by default, but the user has to ensure that
CLK_FLASHC_HSB is not turned off before reading the flash or writing the pagebuffer and that
CLK_FLASHC_PB is not turned of before accessing the FLASHC configuration and control
registers.

12.3.2 Interrupt Controller

The FLASHC interrupt lines are connected to internal sources of the interrupt controller. Using
FLASHC interrutps requires the interrupt controller to be programmed first.

AIMEL 130

32072H-AVR32-10/2012 I ©

12.4 Functional description

1241

12.4.2

12.4.3

12.4.4

Bus interfaces

The None has two bus interfaces, one High-Speed Bus (HSB) interface for reads from the flash
array and writes to the page buffer, and one Peripheral Bus (PB) interface for writing commands
and control to and reading status from the controller.

Memory organization

User page

To maximize performance for high clock-frequency systems, None interfaces to a flash block
with two read ports. The flash block has several parameters, given by the design of the flash
block. Refer to the “Memories” chapter for the device-specific values of the parameters.

* p pages (FLASH_P)

< w words in each page and in the page buffer (FLASH_W)

e pw words in total (FLASH_PW)

« f general-purpose fuse bits (FLASH_F)

« 1 security fuse bit

« 1 User Page

The User page is an additional page, outside the regular flash array, that can be used to store
various data, like calibration data and serial numbers. This page is not erased by regular chip
erase. The User page can only be written and erased by proprietary commands. Read accesses
to the User page is performed just as any other read access to the flash. The address map of the
User page is given in Figure 12-1.

Read operations

32072H-AVR32-10/2012

The None provides two different read modes:

« 0 wait state (Ows) for clock frequencies < (access time of the flash plus the bus delay)
« 1 wait state (1ws) for clock frequencies < (access time of the flash plus the bus delay)/2

Higher clock frequencies that would require more wait states are not supported by the flash
controller.

The programmer can select the wait states required by writing to the FWS field in the Flash Con-
trol Register (FCR). It is the responsibility of the programmer to select a number of wait states
compatible with the clock frequency and timing characteristics of the flash block.

In Ows mode, only one of the two flash read ports is accessed. The other flash read port is idle.
In 1ws mode, both flash read ports are active. One read port reading the addressed word, and
the other reading the next sequential word.

If the clock frequency allows, the user should use Ows mode, because this gives the lowest
power consumption for low-frequency systems as only one flash read port is read. Using 1ws
mode has a power/performance ratio approaching Ows mode as the clock frequency
approaches twice the max frequency of Ows mode. Using two flash read ports use twice the
power, but also give twice the performance.

Alm L 131

Y 5

The flash controller supports flash blocks with up to 2*21 word addresses, as displayed in Figure
12-1. Reading the memory space between address pw and 2*21-1 returns an undefined result.
The User page is permanently mapped to word address 2"21.

Table 12-1. User page addresses

Memory type Start address, byte sized Size
Main array 0 pw words = 4pw bytes
User 2723 = 8388608 128 words = 512 bytes

Figure 12-1. Memory map for the Flash memories

All addresses are word addresses

21215139 Hoersdae
g
C
>
pw -y
9
®
S
3
T
0
Flash with

extra page

Figure 12-2.

12.4.5 High Speed Read Mode
The flash provides a High Speed Read Mode, offering slightly higher flash read speed at the
cost of higher power consumption. Two dedicated commands, High Speed Read Mode Enable
(HSEN) and High Speed Read Mode Disable (HSDIS) control the speed mode. When a High
Speed Read Mode command is detected, the FLASHC automatically inserts additional wait
states until it is ready for the next read in flash. After reset, the High Speed Mode is disabled,
and must be manually enabled if the user wants to.

Refer to the Electrical Characteristics chapter at the end of this datasheet for details on the max-
imum clock frequencies in Normal and High Speed Read Mode.

Alm L 132

32072H-AVR32-10/2012 I ©

Figure 12-3. High Speed Mode

Frequency
A -
1 wait state
- 0 wait state
Y Frequency limit
for O wait state
operation
» Speed mode
%, %,
25 y

12.4.6 Quick Page Read
A dedicated command, Quick Page Read (QPR), is provided to read all words in an addressed
page. All bits in all words in this page are AND’ed together, returning a 1-bit result. This result is
placed in the Quick Page Read Result (QPRR) bit in Flash Status Register (FSR). The QPR
command is useful to check that a page is in an erased state. The QPR instruction is much
faster than performing the erased-page check using a regular software subroutine.

12.4.7 Write page buffer operations
The internal memory area reserved for the embedded flash can also be written through a write-
only page buffer. The page buffer is addressed only by the address bits required to address w
words (since the page buffer is word addressable) and thus wrap around within the internal
memory area address space and appear to be repeated within it.

When writing to the page buffer, the PAGEN field in the FCMD register is updated with the page
number corresponding to page address of the latest word written into the page buffer.

The page buffer is also used for writes to the User page.

Write operations can be prevented by programming the Memory Protection Unit of the CPU.
Writing 8-bit and 16-bit data to the page buffer is not allowed and may lead to unpredictable data
corruption.

Page buffer write operations are performed with 2.2.0 wait states.

Writing to the page buffer can only change page buffer bits from one to zero, ie writing
Oxaaaaaaaa to a page buffer location that has the value 0x00000000, will not change the page
buffer value. The only way to change a bit from zero to one, is to reset the entire page buffer with
the Clear Page Buffer command.

Alm L 133

32072H-AVR32-10/2012 I ©

The page buffer is not automatically reset after a page write. The programmer should do this
manually by issuing the Clear Page Buffer flash command. This can be done after a page write,
or before the page buffer is loaded with data to be stored to the flash page.

Example: Writing a word into word address 130 of a flash with 128 words in the page buffer.
PAGEN will be updated with the value 1, and the word will be written into word 2 in the page
buffer.

12.4.8 Writing words to a page that is not completely erased
This can be used for EEPROM emulation, i.e. writes with granularity of one word instead of an
entire page. Only words that are in an completely erased state (OxFFFFFFFF) can be changed.
The procedure is as follows:

1. Clear page buffer

2. Write to the page buffer the result of the logical bitwise AND operation between the
contents of the flash page and the new data to write. Only words that were in an erased
state can be changed from the original page.

3. Write Page.

12.5 Flash commands

The None offers a command set to manage programming of the flash memory, locking and
unlocking of regions, and full flash erasing. See chapter 12.8.3 for a complete list of commands.

To run a command, the field CMD of the Flash Command Register (FCMD) has to be written
with the command number. As soon as the FCMD register is written, the FRDY flag is automati-
cally cleared. Once the current command is complete, the FRDY flag is automatically set. If an
interrupt has been enabled by setting the bit FRDY in FCR, the interrupt line of the flash control-
ler is activated. All flash commands except for Quick Page Read (QPR) will generate an interrupt
request upon completion if FRDY is set.

After a command has been written to FCMD, the programming algorithm should wait until the
command has been executed before attempting to read instructions or data from the flash or
writing to the page buffer, as the flash will be busy. The waiting can be performed either by poll-
ing the Flash Status Register (FSR) or by waiting for the flash ready interrupt. The command
written to FCMD s initiated on the first clock cycle where the HSB bus interface in FLASHC is
IDLE. The user must make sure that the access pattern to the FLASHC HSB interface contains
an IDLE cycle so that the command is allowed to start. Make sure that no bus masters such as
DMA controllers are performing endless burst transfers from the flash. Also, make sure that the
CPU does not perform endless burst transfers from flash. This is done by letting the CPU enter
sleep mode after writing to FCMD, or by polling FSR for command completion. This polling will
result in an access pattern with IDLE HSB cycles.

All the commands are protected by the same keyword, which has to be written in the eight high-
est bits of the FCMD register. Writing FCMD with data that does not contain the correct key
and/or with an invalid command has no effect on the flash memory; however, the PROGE flag is
set in the Flash Status Register (FSR). This flag is automatically cleared by a read access to the
FSR register.

Writing a command to FCMD while another command is being executed has no effect on the
flash memory; however, the PROGE flag is set in the Flash Status Register (FSR). This flag is
automatically cleared by a read access to the FSR register.

Alm L 134

32072H-AVR32-10/2012 I ©

1251

12.5.2

32072H-AVR32-10/2012

If the current command writes or erases a page in a locked region, or a page protected by the
BOOTPROT fuses, the command has no effect on the flash memory; however, the LOCKE flag
is set in the FSR register. This flag is automatically cleared by a read access to the FSR register.

Write/erase page operation

Flash technology requires that an erase must be done before programming. The entire flash can
be erased by an Erase All command. Alternatively, pages can be individually erased by the
Erase Page command.

The User page can be written and erased using the mechanisms described in this chapter.

After programming, the page can be locked to prevent miscellaneous write or erase sequences.
Locking is performed on a per-region basis, so locking a region locks all pages inside the region.
Additional protection is provided for the lowermost address space of the flash. This address
space is allocated for the Boot Loader, and is protected both by the lock bit(s) corresponding to
this address space, and the BOOTPROT][2:0] fuses.

Data to be written are stored in an internal buffer called page buffer. The page buffer contains w
words. The page buffer wraps around within the internal memory area address space and
appears to be repeated by the number of pages in it. Writing of 8-bit and 16-bit data to the page
buffer is not allowed and may lead to unpredictable data corruption.

Data must be written to the page buffer before the programming command is written to the Flash
Command Register FCMD. The sequence is as follows:

» Reset the page buffer with the Clear Page Buffer command.
« Fill the page buffer with the desired contents, using only 32-bit access.

« Programming starts as soon as the programming key and the programming command are
written to the Flash Command Register. The PAGEN field in the Flash Command Register
(FCMD) must contain the address of the page to write. PAGEN is automatically updated
when writing to the page buffer, but can also be written to directly. The FRDY bit in the Flash
Status Register (FSR) is automatically cleared when the page write operation starts.

* When programming is completed, the bit FRDY in the Flash Status Register (FSR) is set. If
an interrupt was enabled by setting the bit FRDY in FCR, the interrupt line of the flash
controller is set.

Two errors can be detected in the FSR register after a programming sequence:
» Programming Error: A bad keyword and/or an invalid command have been written in the
FCMD register.

« Lock Error: The page to be programmed belongs to a locked region. A command must be
executed to unlock the corresponding region before programming can start.

Erase All operation

The entire memory is erased if the Erase All command (EA) is written to the Flash Command
Register (FCMD). Erase All erases all bits in the flash array. The User page is not erased. All
flash memory locations, the general-purpose fuse bits, and the security bit are erased (reset to
OxFF) after an Erase All.

The EA command also ensures that all volatile memories, such as register file and RAMs, are
erased before the security bit is erased.

Erase All operation is allowed only if no regions are locked, and the BOOTPROT fuses are pro-
grammed with a region size of 0. Thus, if at least one region is locked, the bit LOCKE in FSR is

Alm L 135

Y 5

set and the command is cancelled. If the bit LOCKE has been written to 1 in FCR, the interrupt
line rises.

When the command is complete, the bit FRDY bit in the Flash Status Register (FSR) is set. If an
interrupt has been enabled by setting the bit FRDY in FCR, the interrupt line of the flash control-
ler is set. Two errors can be detected in the FSR register after issuing the command:

« Programming Error: A bad keyword and/or an invalid command have been written in the
FCMD register.

« Lock Error: At least one lock region to be erased is protected, or BOOTPROT is different from
0. The erase command has been refused and no page has been erased. A Clear Lock Bit
command must be executed previously to unlock the corresponding lock regions.

12.5.3 Region lock bits

The flash block has p pages, and these pages are grouped into 16 lock regions, each region
containing p/16 pages. Each region has a dedicated lock bit preventing writing and erasing
pages in the region. After production, the device may have some regions locked. These locked
regions are reserved for a boot or default application. Locked regions can be unlocked to be
erased and then programmed with another application or other data.

To lock or unlock a region, the commands Lock Region Containing Page (LP) and Unlock
Region Containing Page (UP) are provided. Writing one of these commands, together with the
number of the page whose region should be locked/unlocked, performs the desired operation.

One error can be detected in the FSR register after issuing the command:

* Programming Error: A bad keyword and/or an invalid command have been written in the
FCMD register.

The lock bits are implemented using the lowest 16 general-purpose fuse bits. This means that
lock bits can also be set/cleared using the commands for writing/erasing general-purpose fuse
bits, see chapter 12.6. The general-purpose bit being in an erased (1) state means that the
region is unlocked.

The lowermost pages in the Flash can additionally be protected by the BOOTPROT fuses, see
Section 12.6.

12.6 General-purpose fuse bits

32072H-AVR32-10/2012

Each flash block has a number of general-purpose fuse bits that the application programmer can
use freely. The fuse bits can be written and erased using dedicated commands, and read

Alm L 136

Y 5

through a dedicated Peripheral Bus address. Some of the general-purpose fuse bits are
reserved for special purposes, and should not be used for other functions.:

Table 12-2. General-purpose fuses with special functions

General-

Purpose fuse

number Name Usage

15:0 LOCK Region lock bits.
External Privileged Fetch Lock. Used to prevent the CPU from
fetching instructions from external memories when in privileged
mode. This bit can only be changed when the security bit is
cleared. The address range corresponding to external
memories is device-specific, and not known to the flash
controller. This fuse bit is simply routed out of the CPU or bus
system, the flash controller does not treat this fuse in any
special way, except that it can not be altered when the security

16 EPFL bit is set.

If the security bit is set, only an external JTAG Chip Erase can
clear EPFL. No internal commands can alter EPFL if the
security bit is set.

When the fuse is erased (i.e. "1"), the CPU can execute
instructions fetched from external memories. When the fuse is
programmed (i.e. "0"), instructions can not be executed from
external memories.

Used to select one of eight different bootloader sizes. Pages
included in the bootloader area can not be erased or
programmed except by a JTAG chip erase. BOOTPROT can
only be changed when the security bit is cleared.

19:17 BOOTPROT If the security bit is set, only an external JTAG Chip Erase can
clear BOOTPROT, and thereby allow the pages protected by
BOOTPROT to be programmed. No internal commands can
alter BOOTPROT or the pages protected by BOOTPROT if the
security bit is set.

The BOOTPROT fuses protects the following address space for the Boot Loader:

Table 12-3. Boot Loader area specified by BOOTPROT

Pages protected by Size of protected

BOOTPROT BOOTPROT memory

7 None 0

6 0-1 1kByte

5 0-3 2kByte

4 0-7 4kByte

3 0-15 8kByte

2 0-31 16kByte

1 0-63 32kByte

0 0-127 64kByte

AIMEL 187

32072H-AVR32-10/2012 I ©

12.7 Security bit

32072H-AVR32-10/2012

To erase or write a general-purpose fuse bit, the commands Write General-Purpose Fuse Bit
(WGPB) and Erase General-Purpose Fuse Bit (EGPB) are provided. Writing one of these com-
mands, together with the number of the fuse to write/erase, performs the desired operation.

An entire General-Purpose Fuse byte can be written at a time by using the Program GP Fuse
Byte (PGPFB) instruction. A PGPFB to GP fuse byte 2 is not allowed if the flash is locked by the
security bit. The PFB command is issued with a parameter in the PAGEN field:

¢ PAGEN][2:0] - byte to write

« PAGEN][10:3] - Fuse value to write
All General-Purpose fuses can be erased by the Erase All General-Purpose fuses (EAGP) com-
mand. An EAGP command is not allowed if the flash is locked by the security bit.
Two errors can be detected in the FSR register after issuing these commands:

« Programming Error: A bad keyword and/or an invalid command have been written in the

FCMD register.

« Lock Error: A write or erase of any of the special-function fuse bits in Table 12-3 was
attempted while the flash is locked by the security bit.

The lock bits are implemented using the lowest 16 general-purpose fuse bits. This means that
the 16 lowest general-purpose fuse bits can also be written/erased using the commands for
locking/unlocking regions, see Section 12.5.3.

The security bit allows the entire chip to be locked from external JTAG or other debug access for
code security. The security bit can be written by a dedicated command, Set Security Bit (SSB).
Once set, the only way to clear the security bit is through the JTAG Chip Erase command.

Once the Security bit is set, the following Flash controller commands will be unavailable and
return a lock error if attempted:

« Write General-Purpose Fuse Bit (WGPB) to BOOTPROT or EPFL fuses
» Erase General-Purpose Fuse Bit (EGPB) to BOOTPROT or EPFL fuses
» Program General-Purpose Fuse Byte (PGPFB) of fuse byte 2
» Erase All General-Purpose Fuses (EAGPF)

One error can be detected in the FSR register after issuing the command:

« Programming Error: A bad keyword and/or an invalid command have been written in the
FCMD register.

Alm L 138

Y 5

12.8 User interface

12.8.1

Address map

32072H-AVR32-10/2012

The following addresses are used by the None. All offsets are relative to the base address allo-
cated to the flash controller.

Table 12-4. Flash controller register mapping

Reset
Offset Register Name Access state
0x0 Flash Control Register FCR R/W 0
Ox4 Flash Command Register FCMD R/W 0
0x8 Flash Status Register FSR R/W 0™
Oxc Flash General Purpose Fuse Register Hi | FGPFRHI NA (*)
0x10 Flash General Purpose Fuse Register Lo | FGPFRLO NA (*)

(*) The value of the Lock bits is dependent of their programmed state. All other bits in FSR are 0.
All bits in FGPFR and FCFR are dependent on the programmed state of the fuses they map to.
Any bits in these registers not mapped to a fuse read 0.

ATMEL

Y 5

139

12.8.2 Flash Control Register

Name: FCR

Access Type: Read/Write

Offset: 0x00

Reset value: 0x00000000
31 30 29 28 27 26 25 24

- - - r - - & - [- [- /|
23 22 21 20 19 18 17 16

I S D I e e
15 14 13 12 11 10 9 8

- - - r - - & - [- [- /|
7 6 5 4 3 2 1 0

‘ - ‘ FWS ‘ - ‘ - ‘PROGE ‘ LOCKE ‘ - ‘ FRDY ‘

¢ FRDY: Flash Ready Interrupt Enable
0: Flash Ready does not generate an interrupt.

1: Flash Ready generates an interrupt.

¢« LOCKE: Lock Error Interrupt Enable
0: Lock Error does not generate an interrupt.

1: Lock Error generates an interrupt.

¢ PROGE: Programming Error Interrupt Enable
0: Programming Error does not generate an interrupt.

1: Programming Error generates an interrupt.

¢ FWS: Flash Wait State
0: The flash is read with 0 wait states.

1: The flash is read with 1 wait state.

AIMEL 140

32072H-AVR32-10/2012 I ©

12.8.3 Flash Command Register

Name: FCMD
Access Type: Read/Write
Offset: 0x04

Reset value: 0x00000000

The FCMD can not be written if the flash is in the process of performing a flash command. Doing
so will cause the FCR write to be ignored, and the PROGE bit to be set.

31 30 29 28 27 26 25 24

‘ KEY ‘
23 22 21 20 19 18 17 16

‘ PAGEN [15:8] ‘
15 14 13 12 11 10 9 8

‘ PAGEN [7:0] ‘
7 6 5 4 3 2 1 0

‘ - - CMD ‘

¢ CMD: Command
This field defines the flash command. Issuing any unused command will cause the Programming Error flag to be set, and the

corresponding interrupt to be requested if the PROGE bit in FCR is set.

Table 12-5. Set of commands

Command Value Mnemonic
No operation 0 NOP
Write Page 1 WP
Erase Page 2 EP
Clear Page Buffer 3 CPB
Lock region containing given Page 4 LP
Unlock region containing given Page 5 UP
Erase All 6 EA
Write General-Purpose Fuse Bit 7 WGPB
Erase General-Purpose Fuse Bit 8 EGPB
Set Security Bit 9 SSB
Program GP Fuse Byte 10 PGPFB
Erase All GPFuses 11 EAGPF
Quick Page Read 12 QPR
Write User Page 13 WUP
Erase User Page 14 EUP

AIMEL 141

32072H-AVR32-10/2012 I ©

Table 12-5. Set of commands

Command Value Mnemonic
Quick Page Read User Page 15 QPRUP
Read High Speed Enable 16 HSEN
Read High Speed Disable 17 HSDIS

¢ PAGEN: Page number

The PAGEN field is used to address a page or fuse bit for certain operations. In order to simplify programming, the PAGEN field
is automatically updated every time the page buffer is written to. For every page buffer write, the PAGEN field is updated with the

page number of the address being written to. Hardware automatically masks writes to the PAGEN field so that only bits
representing valid page numbers can be written, all other bits in PAGEN are always 0. As an example, in a flash with 1024

pages (page 0 - page 1023), bits 15:10 will always be 0.

Table 12-6. Semantic of PAGEN field in different commands

Command

PAGEN description

No operation

Not used

Write Page

The number of the page to write

Clear Page Buffer

Not used

Lock region containing given Page

Page number whose region should be locked

Unlock region containing given Page

Page number whose region should be unlocked

Erase All Not used
Write General-Purpose Fuse Bit GPFUSE #
Erase General-Purpose Fuse Bit GPFUSE #
Set Security Bit Not used

Program GP Fuse Byte

WriteData[7:0], ByteAddress[2:0]

Erase All GP Fuses

Not used

Quick Page Read

Page number

Write User Page Not used
Erase User Page Not used
Quick Page Read User Page Not used

* KEY: Write protection key

This field should be written with the value OxA5 to enable the command defined by the bits of the register. If the field is written
with a different value, the write is not performed and no action is started.

This field always reads as 0.

32072H-AVR32-10/2012

ATMEL

Y 5

142

12.8.4 Flash Status Register

Name: FSR

Access Type: Read/Write

Offset: 0x08

Reset value: 0x00000000
31 30 29 28 27 26 25 24

‘ LOCK15 ‘ LOCK14 ‘ LOCK13 ‘ LOCK12 ‘ LOCK11 ‘ LOCK10 ‘ LOCK9 ‘ LOCK8 ‘
23 22 21 20 19 18 17 16

‘ LOCK7 ‘ LOCK®6 ‘ LOCK5 ‘ LOCK4 ‘ LOCK3 ‘ LOCK2 ‘ LOCK1 ‘ LOCKO ‘
15 14 13 12 11 10 9 8

| Fsz - - - [- | |

7 6 5 4 3 2 1 0

‘ - QPRR ‘ SECURITY ‘ PROGE ‘ LOCKE ‘ - ‘ FRDY ‘

¢ FRDY: Flash Ready Status
0: The flash controller is busy and the application must wait before running a new command.

1: The flash controller is ready to run a new command.

« LOCKE: Lock Error Status
Automatically cleared when FSR is read.

0: No programming of at least one locked lock region has happened since the last read of FSR.
1: Programming of at least one locked lock region has happened since the last read of FSR.

« PROGE: Programming Error Status
Automatically cleared when FSR is read.

0: No invalid commands and no bad keywords were written in the Flash Command Register FCMD.
1: An invalid command and/or a bad keyword was/were written in the Flash Command Register FCMD.

 SECURITY: Security Bit Status
0: The security bit is inactive.

1: The security bit is active.

¢« QPRR: Quick Page Read Result
0: The result is zero, i.e. the page is not erased.

1: The result is one, i.e. the page is erased.

AIMEL 143

32072H-AVR32-10/2012 I ©

* FSZ: Flash Size
The size of the flash. Not all device families will provide all flash sizes indicated in the table.

Table 12-7. Flash size
FSz Flash Size
32 KByte
64 kByte
128 kByte
256 kByte
384 kByte
512 kByte
768 kByte
1024 kByte

N o | o~ WwWIN |k | O

« LOCKXx: Lock Region x Lock Status
0: The corresponding lock region is not locked.

1: The corresponding lock region is locked.

AIMEL 144

32072H-AVR32-10/2012 I ©

12.8.5 Flash General Purpose Fuse Register High

Name: FGPFRHI

Access Type: Read

Offset: 0x0C

Reset value: N/A
31 30 29 28 27 26 25 24

‘ GPF63 ‘ GPF62 ‘ GPF61 ‘ GPF60 ‘ GPF59 GPF58 GPF57 GPF56 ‘
23 22 21 20 19 18 17 16

‘ GPF55 ‘ GPF54 ‘ GPF53 ‘ GPF52 ‘ GPF51 GPF50 GPF49 GPF48 ‘
15 14 13 12 11 10 9 8

‘ GPF47 ‘ GPF46 ‘ GPF45 ‘ GPF44 ‘ GPF43 GPF42 GPF41 GPF40 ‘
7 6 5 4 3 2 1 0

‘ GPF39 ‘ GPF38 ‘ GPF37 ‘ GPF36 ‘ GPF35 GPF34 GPF33 GPF32 ‘

This register is only used in systems with more than 32 GP fuses.
¢ GPFxx: General Purpose Fuse xx

0: The fuse has a written/programmed state.

1: The fuse has an erased state.

32072H-AVR32-10/2012

ATMEL

Y 5

145

12.8.6 Flash General Purpose Fuse Register Low

Name: FGPFRLO

Access Type: Read

Offset: 0x10

Reset value: N/A
31 30 29 28 27 26 25 24

‘ GPF31 ‘ GPF30 ‘ GPF29 ‘ GPF28 GPF27 GPF26 GPF25 GPF24 ‘
23 22 21 20 19 18 17 16

‘ GPF23 ‘ GPF22 ‘ GPF21 ‘ GPF20 GPF19 GPF18 GPF17 GPF16 ‘
15 14 13 12 11 10 9 8

‘ GPF15 ‘ GPF14 ‘ GPF13 ‘ GPF12 GPF11 GPF10 GPF09 GPF08 ‘
7 6 5 4 3 2 1 0

‘ GPFO7 ‘ GPF06 ‘ GPF05 ‘ GPF04 GPF03 GPF02 GPFO1 GPFO00 ‘

¢ GPFxx: General Purpose Fuse xx
0: The fuse has a written/programmed state.

1: The fuse has an erased state.

32072H-AVR32-10/2012

ATMEL

146

12.9 Fuses Settings

The flash block contains 32 general purpose fuses. These 32 fuses can be found in the Flash
General Purpose Fuse Register Low (FGPFRLO) of the Flash Controller (FLASHC).

Some of the FGPFRLO fuses have defined meanings outside the FLASHC and are described in
this section.

The general purpose fuses are set by a JTAG chip erase.

12.9.1 Flash General Purpose Fuse Register Low (FGPFRLO)

Table 12-8. FGPFRLO Register Description

31 30 29 28 27 26 25 24

‘ GPF31 GPF30 GPF29 BODEN BODHYST BODLEVEL[5:4] ‘
23 22 21 20 19 18 17 16

‘ BODLEVEL([3:0] BOOTPROT EPFL ‘
15 14 13 12 11 10 9 8

‘ LOCK[15:8] ‘
7 6 5 4 3 2 1 0

‘ LOCK][7:0] ‘

« BODEN: Brown Out Detector Enable

Table 12-9. BODEN Field Description

BODEN Description

0x0 Brown Out Detector (BOD) disabled
ox1 BOD enabled, BOD reset enabled
0x2 BOD enabled, BOD reset disabled
0x3 BOD disabled

« BODHYST: Brown Out Detector Hystersis
0: The BOD hysteresis is disabled

1: The BOD hysteresis is enabled

« BODLEVEL: Brown Out Detector Trigger Level
This controls the voltage trigger level for the Brown out detector. For value description refer to Electrical Characteristics chapter.

If the BODLEVEL is set higher than VDDCORE and enabled by fuses, the part will be in constant reset. To recover from this
situation, apply an external voltage on VDDCORE that is higher than the BOD Trigger level and disable the BOD.

« LOCK, EPFL, BOOTPROT
These are Flash controller fuses and are described in the FLASHC chapter.

12.9.2 Default Fuse Value
The devices are shipped with the FGPFRLO register value: OXFFF7FFFF:

* GPF31 reserved for future use

AIMEL 147

32072H-AVR32-10/2012 I ©

* GPF30 reserved for future use

* GPF29 reserved for future use

* BODEN fuses set to Ob11. BOD is disabled.

« BODHYST fuse set to Obl. The BOD hystersis is enabled.

« BODLEVEL fuses set to Ob111111. This is the minimum voltage trigger level. BOD will never
trigger as this level is below the POR level.

« BOOTPROT fuses set to 0b011. The bootloader protected size is 8KBytes.
* EPFL fuse set to Ob1. External privileged fetch is not locked.
* LOCK fuses setto 0b1111111111111111. No region locked.
The devices are shipped with 2 bootloader configuration words in the flash user pages:

at adress 808001F8h and 808001FCh. See also the USB DFU bootloader user guide document.
After the JTAG chip erase command, the FGPFRLO register value is OXFFFFFFFF.

12.10 Serial number in the factory page

Each device has a unique 120 bits serial number located in the factory page and readable from
address 0x80800204 to 0x80800212.

12.11 Module configuration

32072H-AVR32-10/2012

The specific configuration for the FLASHC instance is listed in the following tables.The module
bus clocks listed here are connected to the system bus clocks according to the table in the
Power Manager section.

Table 12-10. Module Configuration

Feature FLASH

Devices ATUC3A3256S | ATUC3A3128S | ATUC3A364S
ATUC3A3256 ATUC3A3128 ATUC3A364
ATUC3A4256S | ATUC3A4128S | ATUC3A464
ATUC3A4256 ATUC3A4128 ATUC3A464

Flash size 256Kbytes 128Kbytes 64Kbytes

Numberof | 59, 256 128

pages

Page size 512 bytes 512 bytes 512 bytes

Table 12-11. Module Clock Name
Module name Clock name Clock name

FLASHC

CLK_FLASHC_HSB

CLK_FLASHC_PB

ATMEL

Y 5

148

13. HSB Bus Matrix (HMATRIX)
Rev: 2.3.0.2

13.1 Features
e User Interface on peripheral bus
¢ Configurable Number of Masters (Up to sixteen)
* Configurable Number of Slaves (Up to sixteen)
* One Decoder for Each Master

* Programmable Arbitration for Each Slave
— Round-Robin
— Fixed Priority
* Programmable Default Master for Each Slave
— No Default Master
— Last Accessed Default Master
— Fixed Default Master
* One Cycle Latency for the First Access of a Burst
* Zero Cycle Latency for Default Master
* One Special Function Register for Each Slave (Not dedicated)

13.2 Overview

The Bus Matrix implements a multi-layer bus structure, that enables parallel access paths
between multiple High Speed Bus (HSB) masters and slaves in a system, thus increasing the
overall bandwidth. The Bus Matrix interconnects up to 16 HSB Masters to up to 16 HSB Slaves.
The normal latency to connect a master to a slave is one cycle except for the default master of
the accessed slave which is connected directly (zero cycle latency). The Bus Matrix provides 16
Special Function Registers (SFR) that allow the Bus Matrix to support application specific
features.

13.3 Product Dependencies

In order to use this module, other parts of the system must be configured correctly, as described
below.

13.31 Clocks
The clock for the HMATRIX bus interface (CLK_HMATRIX) is generated by the Power Manager.
This clock is enabled at reset, and can be disabled in the Power Manager. It is recommended to
disable the HMATRIX before disabling the clock, to avoid freezing the HMATRIX in an undefined
state.

13.4 Functional Description

13.4.1 Special Bus Granting Mechanism
The Bus Matrix provides some speculative bus granting techniques in order to anticipate access
requests from some masters. This mechanism reduces latency at first access of a burst or single
transfer. This bus granting mechanism sets a different default master for every slave.

AIMEL 149

32072H-AVR32-10/2012 I ©

13411

13.4.1.2

13.4.1.3

13.4.2

13421

At the end of the current access, if no other request is pending, the slave remains connected to
its associated default master. A slave can be associated with three kinds of default masters: no
default master, last access master and fixed default master.

No Default Master
At the end of the current access, if no other request is pending, the slave is disconnected from
all masters. No Default Master suits low-power mode.

Last Access Master

At the end of the current access, if no other request is pending, the slave remains connected to
the last master that performed an access request.

Fixed Default Master
At the end of the current access, if no other request is pending, the slave connects to its fixed
default master. Unlike last access master, the fixed master does not change unless the user
modifies it by a software action (field FIXED_DEFMSTR of the related SCFG).

To change from one kind of default master to another, the Bus Matrix user interface provides the
Slave Configuration Registers, one for each slave, that set a default master for each slave. The
Slave Configuration Register contains two fields: DEFMSTR_TYPE and FIXED_DEFMSTR. The
2-bit DEFMSTR_TYPE field selects the default master type (no default, last access master, fixed
default master), whereas the 4-bit FIXED_DEFMSTR field selects a fixed default master pro-
vided that DEFMSTR_TYPE is set to fixed default master. Please refer to the Bus Matrix user
interface description.

Arbitration

The Bus Matrix provides an arbitration mechanism that reduces latency when conflict cases
occur, i.e. when two or more masters try to access the same slave at the same time. One arbiter
per HSB slave is provided, thus arbitrating each slave differently.

The Bus Matrix provides the user with the possibility of choosing between 2 arbitration types for
each slave:

1. Round-Robin Arbitration (default)
2. Fixed Priority Arbitration
This choice is made via the field ARBT of the Slave Configuration Registers (SCFG).

Each algorithm may be complemented by selecting a default master configuration for each
slave.

When a re-arbitration must be done, specific conditions apply. See Section 13.4.2.1 "Arbitration
Rules” on page 150.

Arbitration Rules
Each arbiter has the ability to arbitrate between two or more different master requests. In order
to avoid burst breaking and also to provide the maximum throughput for slave interfaces, arbitra-
tion may only take place during the following cycles:

1. Idle Cycles: When a slave is not connected to any master or is connected to a master
which is not currently accessing it.

2. Single Cycles: When a slave is currently doing a single access.

Alm L 150

32072H-AVR32-10/2012 I ©

3. End of Burst Cycles: When the current cycle is the last cycle of a burst transfer. For
defined length burst, predicted end of burst matches the size of the transfer but is man-
aged differently for undefined length burst.

4. Slot Cycle Limit: When the slot cycle counter has reached the limit value indicating that
the current master access is too long and must be broken.

» Undefined Length Burst Arbitration

In order to avoid long slave handling during undefined length bursts (INCR), the Bus Matrix pro-
vides specific logic in order to re-arbitrate before the end of the INCR transfer. A predicted end
of burst is used as a defined length burst transfer and can be selected from among the following
five possibilities:

1. Infinite: No predicted end of burst is generated and therefore INCR burst transfer will
never be broken.
2. One beat bursts: Predicted end of burst is generated at each single transfer inside the
INCP transfer.
3. Four beat bursts: Predicted end of burst is generated at the end of each four beat
boundary inside INCR transfer.
4. Eight beat bursts: Predicted end of burst is generated at the end of each eight beat
boundary inside INCR transfer.
5. Sixteen beat bursts: Predicted end of burst is generated at the end of each sixteen beat
boundary inside INCR transfer.
This selection can be done through the field ULBT of the Master Configuration Registers
(MCFG).

« Slot Cycle Limit Arbitration

The Bus Matrix contains specific logic to break long accesses, such as very long bursts on a
very slow slave (e.g., an external low speed memory). At the beginning of the burst access, a
counter is loaded with the value previously written in the SLOT_CYCLE field of the related Slave
Configuration Register (SCFG) and decreased at each clock cycle. When the counter reaches
zero, the arbiter has the ability to re-arbitrate at the end of the current byte, half word or word
transfer.

13.4.2.2 Round-Robin Arbitration

32072H-AVR32-10/2012

This algorithm allows the Bus Matrix arbiters to dispatch the requests from different masters to
the same slave in a round-robin manner. If two or more master requests arise at the same time,
the master with the lowest number is first serviced, then the others are serviced in a round-robin
manner.

There are three round-robin algorithms implemented:

1. Round-Robin arbitration without default master
2. Round-Robin arbitration with last default master
3. Round-Robin arbitration with fixed default master
* Round-Robin Arbitration without Default Master

This is the main algorithm used by Bus Matrix arbiters. It allows the Bus Matrix to dispatch
requests from different masters to the same slave in a pure round-robin manner. At the end of

Alm L 151

Y 5

the current access, if no other request is pending, the slave is disconnected from all masters.
This configuration incurs one latency cycle for the first access of a burst. Arbitration without
default master can be used for masters that perform significant bursts.

* Round-Robin Arbitration with Last Default Master

This is a biased round-robin algorithm used by Bus Matrix arbiters. It allows the Bus Matrix to
remove the one latency cycle for the last master that accessed the slave. In fact, at the end of
the current transfer, if no other master request is pending, the slave remains connected to the
last master that performed the access. Other non privileged masters still get one latency cycle if
they want to access the same slave. This technique can be used for masters that mainly perform
single accesses.

* Round-Robin Arbitration with Fixed Default Master

This is another biased round-robin algorithm. It allows the Bus Matrix arbiters to remove the one
latency cycle for the fixed default master per slave. At the end of the current access, the slave
remains connected to its fixed default master. Every request attempted by this fixed default mas-
ter will not cause any latency whereas other non privileged masters will still get one latency
cycle. This technique can be used for masters that mainly perform single accesses.

13.4.2.3 Fixed Priority Arbitration

This algorithm allows the Bus Matrix arbiters to dispatch the requests from different masters to
the same slave by using the fixed priority defined by the user. If two or more master requests are
active at the same time, the master with the highest priority number is serviced first. If two or
more master requests with the same priority are active at the same time, the master with the
highest number is serviced first.

For each slave, the priority of each master may be defined through the Priority Registers for
Slaves (PRAS and PRBS).

13.4.3 Slave and Master assignation

32072H-AVR32-10/2012

The index number assigned to Bus Matrix slaves and masters are described in Memories
chapter.

AIMEL 152

Y 5

13.5 User Interface

Table 13-1. HMATRIX Register Memory Map
Offset Register Name Access Reset Value
0x0000 Master Configuration Register 0 MCFGO Read/Write 0x00000002
0x0004 Master Configuration Register 1 MCFG1 Read/Write 0x00000002
0x0008 Master Configuration Register 2 MCFG2 Read/Write 0x00000002
0x000C Master Configuration Register 3 MCFG3 Read/Write 0x00000002
0x0010 Master Configuration Register 4 MCFG4 Read/Write 0x00000002
0x0014 Master Configuration Register 5 MCFG5 Read/Write 0x00000002
0x0018 Master Configuration Register 6 MCFG6 Read/Write 0x00000002
0x001C Master Configuration Register 7 MCFG7 Read/Write 0x00000002
0x0020 Master Configuration Register 8 MCFG8 Read/Write 0x00000002
0x0024 Master Configuration Register 9 MCFG9 Read/Write 0x00000002
0x0028 Master Configuration Register 10 MCFG10 Read/Write 0x00000002
0x002C Master Configuration Register 11 MCFG11 Read/Write 0x00000002
0x0030 Master Configuration Register 12 MCFG12 Read/Write 0x00000002
0x0034 Master Configuration Register 13 MCFG13 Read/Write 0x00000002
0x0038 Master Configuration Register 14 MCFG14 Read/Write 0x00000002
0x003C Master Configuration Register 15 MCFG15 Read/Write 0x00000002
0x0040 Slave Configuration Register 0 SCFGO Read/Write 0x00000010
0x0044 Slave Configuration Register 1 SCFG1 Read/Write 0x00000010
0x0048 Slave Configuration Register 2 SCFG2 Read/Write 0x00000010
0x004C Slave Configuration Register 3 SCFG3 Read/Write 0x00000010
0x0050 Slave Configuration Register 4 SCFG4 Read/Write 0x00000010
0x0054 Slave Configuration Register 5 SCFG5 Read/Write 0x00000010
0x0058 Slave Configuration Register 6 SCFG6 Read/Write 0x00000010
0x005C Slave Configuration Register 7 SCFG7 Read/Write 0x00000010
0x0060 Slave Configuration Register 8 SCFG8 Read/Write 0x00000010
0x0064 Slave Configuration Register 9 SCFG9 Read/Write 0x00000010
0x0068 Slave Configuration Register 10 SCFG10 Read/Write 0x00000010
0x006C Slave Configuration Register 11 SCFG11 Read/Write 0x00000010
0x0070 Slave Configuration Register 12 SCFG12 Read/Write 0x00000010
0x0074 Slave Configuration Register 13 SCFG13 Read/Write 0x00000010
0x0078 Slave Configuration Register 14 SCFG14 Read/Write 0x00000010
0x007C Slave Configuration Register 15 SCFG15 Read/Write 0x00000010
0x0080 Priority Register A for Slave 0 PRASO Read/Write 0x00000000
0x0084 Priority Register B for Slave 0 PRBSO Read/Write 0x00000000
0x0088 Priority Register A for Slave 1 PRAS1 Read/Write 0x00000000
AIMEL 153
32072H-AVR32-10/2012 O

Table 13-1. HMATRIX Register Memory Map (Continued)

Offset Register Name Access Reset Value
0x008C Priority Register B for Slave 1 PRBS1 Read/Write 0x00000000
0x0090 Priority Register A for Slave 2 PRAS2 Read/Write 0x00000000
0x0094 Priority Register B for Slave 2 PRBS2 Read/Write 0x00000000
0x0098 Priority Register A for Slave 3 PRAS3 Read/Write 0x00000000
0x009C Priority Register B for Slave 3 PRBS3 Read/Write 0x00000000
0x00A0 Priority Register A for Slave 4 PRAS4 Read/Write 0x00000000
0x00A4 Priority Register B for Slave 4 PRBS4 Read/Write 0x00000000
0x00A8 Priority Register A for Slave 5 PRAS5 Read/Write 0x00000000
0x00AC Priority Register B for Slave 5 PRBS5 Read/Write 0x00000000
0x00B0O Priority Register A for Slave 6 PRAS6 Read/Write 0x00000000
0x00B4 Priority Register B for Slave 6 PRBS6 Read/Write 0x00000000
0x00B8 Priority Register A for Slave 7 PRAS7 Read/Write 0x00000000
0x00BC Priority Register B for Slave 7 PRBS7 Read/Write 0x00000000
0x00CO0 Priority Register A for Slave 8 PRAS8 Read/Write 0x00000000
0x00C4 Priority Register B for Slave 8 PRBS8 Read/Write 0x00000000
0x00C8 Priority Register A for Slave 9 PRAS9 Read/Write 0x00000000
0x00CC Priority Register B for Slave 9 PRBS9 Read/Write 0x00000000
0x00DO0 Priority Register A for Slave 10 PRAS10 Read/Write 0x00000000
0x00D4 Priority Register B for Slave 10 PRBS10 Read/Write 0x00000000
0x00D8 Priority Register A for Slave 11 PRAS11 Read/Write 0x00000000
0x00DC Priority Register B for Slave 11 PRBS11 Read/Write 0x00000000
0x00EO Priority Register A for Slave 12 PRAS12 Read/Write 0x00000000
O0x00E4 Priority Register B for Slave 12 PRBS12 Read/Write 0x00000000
OxO0E8 Priority Register A for Slave 13 PRAS13 Read/Write 0x00000000
O0x00EC Priority Register B for Slave 13 PRBS13 Read/Write 0x00000000
0x00FO0 Priority Register A for Slave 14 PRAS14 Read/Write 0x00000000
0x00F4 Priority Register B for Slave 14 PRBS14 Read/Write 0x00000000
0x00F8 Priority Register A for Slave 15 PRAS15 Read/Write 0x00000000
0x00FC Priority Register B for Slave 15 PRBS15 Read/Write 0x00000000
0x0110 Special Function Register 0 SFRO Read/Write -

0x0114 Special Function Register 1 SFR1 Read/Write -

0x0118 Special Function Register 2 SFR2 Read/Write -

0x011C Special Function Register 3 SFR3 Read/Write -

0x0120 Special Function Register 4 SFR4 Read/Write -

0x0124 Special Function Register 5 SFR5 Read/Write -

0x0128 Special Function Register 6 SFR6 Read/Write -

AIMEL 154
32072H-AVR32-10/2012 O

Table 13-1. HMATRIX Register Memory Map (Continued)

Offset Register Name Access Reset Value
0x012C Special Function Register 7 SFR7 Read/Write -
0x0130 Special Function Register 8 SFR8 Read/Write -
0x0134 Special Function Register 9 SFR9 Read/Write -
0x0138 Special Function Register 10 SFR10 Read/Write -
0x013C Special Function Register 11 SFR11 Read/Write -
0x0140 Special Function Register 12 SFR12 Read/Write -
0x0144 Special Function Register 13 SFR13 Read/Write -
0x0148 Special Function Register 14 SFR14 Read/Write -
0x014C Special Function Register 15 SFR15 Read/Write -

AIMEL 155

32072H-AVR32-10/2012 I ©

13.5.1 Master Configuration Registers

Name: MCFGO...MCFG15

Access Type: Read/Write

Offset: 0x00 - 0x3C

Reset Value: 0x00000002
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

- I - I - I - I - I uLBT

e ULBT: Undefined Length Burst Type

0: Infinite Length Burst
No predicted end of burst is generated and therefore INCR bursts coming from this master cannot be broken.
1: Single Access

The undefined length burst is treated as a succession of single accesses, allowing re-arbitration at each beat of the INCR burst.

2: Four Beat Burst

The undefined length burst is split into a four-beat burst, allowing re-arbitration at each four-beat burst end.

3: Eight Beat Burst

The undefined length burst is split into an eight-beat burst, allowing re-arbitration at each eight-beat burst end.

4: Sixteen Beat Burst

The undefined length burst is split into a sixteen-beat burst, allowing re-arbitration at each sixteen-beat burst end.

ATMEL

32072H-AVR32-10/2012 I ©

156

13.5.2 Slave Configuration Registers

Name: SCFGO0...SCFG15

Access Type: Read/Write

Offset: 0x40 - 0x7C

Reset Value: 0x00000010
31 30 29 28 27 26 25 24

- T -1 - - - — - ARET |
23 22 21 20 19 18 17 16

| - [- | FIXED_DEFMSTR [DEFMSTR_TYPE |
15 14 13 12 11 10 9 8

- T - T = - - G]
7 6 5 4 3 2 1 0

SLOT_CYCLE

* ARBT: Arbitration Type

* FIXE

0: Round-Robin Arbitration
1: Fixed Priority Arbitration
D_DEFMSTR: Fixed Default Master
This is the number of the Default Master for this slave. Only used if DEFMSTR_TYPE is 2. Specifying the number of a master
which is not connected to the selected slave is equivalent to setting DEFMSTR_TYPE to 0.
The size of this field depends on the number of masters. This size is log2(number of masters).

* DEFMSTR_TYPE: Default Master Type

0: No Default Master

At the end of the current slave access, if no other master request is pending, the slave is disconnected from all masters.

This results in a one cycle latency for the first access of a burst transfer or for a single access.

1: Last Default Master

At the end of the current slave access, if no other master request is pending, the slave stays connected to the last master having
accessed it.

This results in not having one cycle latency when the last master tries to access the slave again.

2: Fixed Default Master

At the end of the current slave access, if no other master request is pending, the slave connects to the fixed master the number
that has been written in the FIXED_DEFMSTR field.

This results in not having one cycle latency when the fixed master tries to access the slave again.

e SLOT_CYCLE: Maximum Number of Allowed Cycles for a Burst

When the SLOT_CYCLE limit is reached for a burst, it may be broken by another master trying to access this slave.

This limit has been placed to avoid locking a very slow slave when very long bursts are used.

This limit must not be very small. Unreasonably small values break every burst and the Bus Matrix arbitrates without performing
any data transfer. 16 cycles is a reasonable value for SLOT_CYCLE.

32072H-AVR32-10/2012 I ©

Alm L 157

13.5.3 Priority Registers A For Slaves

Name: PRASO...PRAS15

Access Type: Read/Write

Offset: -

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| - | - [M7PR | - - M6PR |
23 22 21 20 19 18 17 16

| - | - [M5PR | - - M4PR |
15 14 13 12 11 10 9 8

| - | - [M3PR | - - M2PR |
7 6 5 4 3 2 1 0

- [M1PR [- - MOPR |

* MxPR: Master x Priority

Fixed priority of Master x for accessing the selected slave. The higher the number, the higher the priority.

32072H-AVR32-10/2012

ATMEL

Y 5

158

1354 Priority Registers B For Slaves

Name: PRBSO0...PRBS15

Access Type: Read/Write

Offset: -

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| - | - [M15PR | - - M14PR |
23 22 21 20 19 18 17 16

| - [- | M13PR [- - M12PR |
15 14 13 12 11 10 9 8

| - [- [M11PR [- - M10PR |
7 6 5 4 3 2 1 0

| - [- [MOPR [- - M8PR |

* MxPR: Master x Priority

Fixed priority of Master x for accessing the selected slave. The higher the number, the higher the priority.

32072H-AVR32-10/2012

ATMEL

Y 5

159

13.5.5 Special Function Registers

Name: SFRO...SFR15

Access Type: Read/Write

Offset: 0x110 - 0x115

Reset Value: -
31 30 29 28 27 26 25 24

| SFR |
23 22 21 20 19 18 17 16

| SFR |
15 14 13 12 11 10 9 8

| SFR |
7 6 5 4 3 2 1 0

SFR |

* SFR: Special Function Register Fields

Those registers are not a HMATRIX specific register. The field of those will be defined where they are used.

32072H-AVR32-10/2012

ATMEL

Y 5

160

13.6 Bus Matrix Connections
Accesses to unused areas returns an error result to the master requesting such an access.
The bus matrix has the several masters and slaves. Each master has its own bus and its own
decoder, thus allowing a different memory mapping per master. The master number in the table

below can be used to index the HMATRIX control registers. For example, HMATRIX MCFGO
register is associated with the CPU Data master interface.

Table 13-2. High Speed Bus masters

Master O CPU Data

Master 1 CPU Instruction
Master 2 CPU SAB

Master 3 PDCA

Master 4 DMACA HSB Master 1
Master 5 DMACA HSB Master 2
Master 6 USBB DMA

Each slave has its own arbiter, thus allowing a different arbitration per slave. The slave number
in the table below can be used to index the HMATRIX control registers. For example, HMATRIX
SCFG4 register is associated with the Embedded CPU SRAM Slave Interface.

Table 13-3. High Speed Bus slaves

Slave 0 Internal Flash

Slave 1 HSB-PB Bridge A
Slave 2 HSB-PB Bridge B
Slave 3 AES

Slave 4 Embedded CPU SRAM
Slave 5 USBB DPRAM

Slave 6 EBI

Slave 7 DMACA Slave

Slave 8 HRAMCO

Slave 9 HRAMC1

AIMEL 161

32072H-AVR32-10/2012 I ©

Figure 13-1. HMATRIX Master / Slave Connections

HMATRIX SLAVES

? < oM 3 % -
8 lp< p 82 | 8e
T gf gd 8 32 5 B 25 -
g | Td | fo % 2 ® |z |
0 1 2 3 4 5 6 7 8 9
CPU Data 0 D D C >
CPU 1 = >
Instruction
& CPU SAB 2 D) C C >
=
% PDCA 3 D >
g DMACA P - -
= Master 0 4 >
DMACA 5
Master 1 N o .
USBB
DMA 6 >

A|III L 162

32072H-AVR32-10/2012 I ©

14. External Bus Interface (EBI)
Rev.:1.7.0.1

14.1 Features
e Optimized for application memory space support
* Integrates three external memory controllers:
— Static Memory Controller (SMC)
— SDRAM Controller (SDRAMC)
— Error Corrected Code (ECCHRS) controller
 Additional logic for NAND Flash/SmartMedia™ and CompactFlash™ support
— NAND Flash support: 8-bit as well as 16-bit devices are supported
— CompactFlash support: Attribute Memory, Common Memory, I/O modes are supported but
the signal _10IS16 (/O mode) is not handled.
* Optimized external bus:16-bit data bus
— Up to 24-bit Address Bus, Up to 8-Mbytes Addressable
— Optimized pin multiplexing to reduce latencies on external memories
* Up to 6 Chip Selects, Configurable Assignment:
— Static Memory Controller on Chip Select 0
— SDRAM Controller or Static Memory Controller on Chip Select 1
— Static Memory Controller on Chip Select 2, Optional NAND Flash support
— Static Memory Controller on Chip Select 3, Optional NAND Flash support
— Static Memory Controller on Chip Select 4, Optional CompactFlash™ support
— Static Memory Controller on Chip Select 5, Optional CompactFlash™ support

14.2 Overview

The External Bus Interface (EBI) is designed to ensure the successful data transfer between
several external devices and the embedded memory controller of an 32-bit AVR device. The
Static Memory, SDRAM and ECCHRS Controllers are all featured external memory controllers
on the EBI. These external memory controllers are capable of handling several types of external
memory and peripheral devices, such as SRAM, PROM, EPROM, EEPROM, Flash, and
SDRAM.

The EBI also supports the CompactFlash and the NAND Flash/SmartMedia protocols via inte-
grated circuitry that greatly reduces the requirements for external components. Furthermore, the
EBI handles data transfers with up to six external devices, each assigned to six address spaces
defined by the embedded memory controller. Data transfers are performed through a 16-bit, an
address bus of up to 23 bits, up to six chip select lines (NCS[5:0]), and several control pins that
are generally multiplexed between the different external memory controllers.

AIMEL 163

32072H-AVR32-10/2012 I ©

14.3 Block Diagram

32072H-AVR32-10/2012

Figure 14-1. EBI Block Diagram

INTC
SDRAMC _irq & 4 ECCHRS_irq
HMATRIX EBI
A
_a
HSB a—»| SDRAM
™| Controller |<mm———]-
Static
Memory < >
Controller
— >
o
A
ECCHRS
i | | Controller MUX
t Logic]
NAND Flash
»| SmartMedia
SFR Logic
registers
> Compact
™ FLash
> Logic
Address > Chip Select
Decoders Assignor
HSB-PB [
Bridge

110
Controller

> DATA[15:0]
«»[] NWE1
«»[] NWEO
«»[] NRD
«»[] NCS[5:0]
«»[] ADDR[23:0]

e»[] CAS
le»[] RAS
le»[] SDA10
e»[] SDWE
le»[] SDCK
«»[] SDCKE
le»[] NANDOE
e»] NANDWE
le»[] CFRNW
le»[] CFCE1
le»[] CFCE2
e»] NWAIT

Y Peripheral Bus

ATMEL

Y 5

164

14.4

32072H-AVR32-10/2012

I/O Lines Description

Table 14-1. EBI I/O Lines Description
Alternate Active
Pin Name Name Pin Description Type Level
EBI common lines
DATA[15:0] Data Bus I/0
SMC dedicated lines
ADDRI1] SMC Address Bus Line 1 Output
ADDRJ[12] SMC Address Bus Line 12 Output
ADDRJ[15] SMC Address Bus Line 15 Output
ADDRJ[23:18] SMC Address Bus Line [23:18] Output
NCS[0] SMC Chip Select Line 0 Output Low
NWAIT SMC External Wait Signal Input Low
SDRAMC dedicated lines
SDCK SDRAM Clock Output
SDCKE SDRAM Clock Enable Output High
SDWE SDRAM Write Enable Output Low
SDA10 SDRAM Address Bus Line 10 Output Low
RAS - CAS Row and Column Signal Output Low
CompactFlash dedicated lines
CFCE1 - .
CECE2 CompactFlash Chip Enable Output Low
CFRNW CompactFlash Read Not Write Signal Output
NAND Flash/SmartMedia dedicated lines
NANDOE NAND Flash Output Enable Output Low
NANDWE NAND Flash Write Enable Output Low
SMC/SDRAMC shared lines
NCS[1] SMC Chip Select Line 1
NCS[1]) . Output Low
SDCSO0 SDRAMC Chip Select Line 0
DQMO SDRAMC DQM1
ADDRIO0] . Output
ADDRI[0]-NBSO | SMC Address Bus Line 0 or Byte Select 1
ADDRJ[9:0] SDRAMC Address Bus Lines [9:0]
ADDRJ[11:2] . Output
ADDRJ[11:2] SMC Address Bus Lines [11:2]
ADDRJ[9:0] SDRAMC Address Bus Lines [12:11]
ADDRJ[14:13] . Output
ADDRJ[14:13] SMC Address Bus Lines [14:13]
BAO SDRAMC Bank 0
ADDRJ[16] . Output
ADDRJ[16] SMC Address Bus Line 16
AIMEL 165

Y 5

Alternate Active
Pin Name Name Pin Description Type Level
BA1l SDRAMC Bank 1
ADDRJ[17] . Output
ADDRJ[17] SMCAddress Bus Line 17
SMC/CompactFlash shared lines
NRD SMC Read Signal
NRD Output Low
CFNOE CompactFlash CFNOE
NWEO-NWE SMC Write Enable10 or Write enable
NWEO Output Low
CFNWE CompactFlash CFNWE
NCS[4 SMC Chip Select Line 4
NCS[4] [4] P . _ Output | Low
CFCS[0] CompactFlash Chip Select Line 0
NCS[5 SMC Chip Select Line 5
NCSI5] [5] P . _ output | Low
CFCS[1] CompactFlash Chip Select Line 1
SMC/NAND Flash/SmartMedia shared lines
NCS[2] SMC Chip Select Line 2
NCS[2 i i i Output Low
[2] NANDCSI0] glANDFIash/SmartMedla Chip Select Line p
NCS[3] SMC Chip Select Line 3
NCS[3 i i i Output Low
[3] NANDCS[1] IIIANDFIash/SmartMedla Chip Select Line p
SDRAMC/SMC/CompactFlash shared lines
DQM1/ SDRAMC DQM1
NWE1 NWE1-NBS1/ | SMC Write Enablel or Byte Select 1 Output
CFNIORD CompactFlash CFNIORD

14.5 Product Dependencies

In order to use this module, other parts of the system must be configured correctly, as described

below.

145.1 I/O Lines
The pins used for interfacing the compliant external devices may be multiplexed with I/O Con-
troller lines. The user must first configure the 1/O Controller to assign the EBI pins to their
peripheral functions.

145.2 Power Management
To prevent bus errors EBI operation must be terminated before entering sleep mode.

145.3 Clocks

A number of clocks can be selected as source for the EBI. The selected clock must be enabled
by the Power Manager.
The following clock sources are available:

« CLK_EBI

* CLK_SDRAMC

« CLK_SMC

AIMEL 166

32072H-AVR32-10/2012 I ©

« CLK_ECCHRS
Refer to Table 14-2 on page 167 to configure those clocks.

Table 14-2. EBI Clocks Configuration

Type of the Interfaced Device
Clocks name Clocks SRAM, PROM, NandFlash
type SDRAM EPROM, SmartMedi CompactFlash
EEPROM, Flash martMedia
CLK_EBI HSB X X X X
CLK_SDRAMC PB
CLK_SMC PB X X X
CLK_ECCHRS PB

14.5.4 Interrupts
The EBI interface has two interrupt lines connected to the Interrupt Controller:
« SDRAMC_IRQ: Interrupt signal coming from the SDRAMC
* ECCHRS_IRQ: Interrupt signal coming from the ECCHRS
Handling the EBI interrupt requires configuring the interrupt controller before configuring the EBI.

14.5.5 HMATRIX

The EBI interface is connected to the HMATRIX Special Function Register 6 (SFR6). The user
must first write to this HMATRIX.SFR6 to configure the EBI correctly.

Table 14-3. EBI Special Function Register Fields Description

SFR6 Bit
Number Bit name Description

[31:6] Reserved

0 = Chip Select 5 (NCS[5]) is connected to a Static Memory device. For each
access to the NCS[5] memory space, all related pins act as SMC pins

5 CS5A 1 = Chip Select 5 (NCS[5]) is connected to a CompactFlash device. For each
access to the NCS[5] memory space, all related pins act as CompactFlash
pins

0 = Chip Select 4 (NCS[4]) is connected to a Static Memory device. For each
access to the NCS[4] memory space, all related pins act as SMC pins

4 CS4A 1 = Chip Select 4 (NCSJ[4]) is connected to a CompactFlash device. For each
access to the NCS[4] memory space, all related pins act as CompactFlash
pins

0 = Chip Select 3 (NCS[3]) is connected to a Static Memory device. For each
access to the NCS[3] memory space, all related pins act as SMC pins

3 CS3A 1 = Chip Select 3 (NCS[3]) is connected to a NandFlash or a SmartMedia
device. For each access to the NCS[3] memory space, all related pins act as
NandFlash or SmartMedia pins

AIMEL 167

32072H-AVR32-10/2012 I ©

Table 14-3. EBI Special Function Register Fields Description

SFR6 Bit
Number Bit name Description

0 = Chip Select 2 (NCS[2]) is connected to a Static Memory device. For each
access to the NCS[2] memory space, all related pins act as SMC pins

2 CS2A 1 = Chip Select 2 (NCS[2]) is connected to a NandFlash or a SmartMedia
device. For each access to the NCS[2] memory space, all related pins act as
NandFlash or SmartMedia pins

0 = Chip Select 1 (NCS[1]) is connected to a Static Memory device. For each
access to the NCS[1] memory space, all related pins act as SMC pins

1 CS1A
1 = Chip Select 1 (NCS[1]) is connected to a SDRAM device. For each access
to the NCS[1] memory space, all related pins act as SDRAM pins

0 Reserved

14.6 Functional Description
The EBI transfers data between the internal HSB bus (handled by the HMATRIX) and the exter-
nal memories or peripheral devices. It controls the waveforms and the parameters of the
external address, data and control busses and is composed of the following elements:
» The Static Memory Controller (SMC)
* The SDRAM Controller (SDRAMC)
e The ECCHRS Controller (ECCHRS)
« A chip select assignment feature that assigns an HSB address space to the external devices
« A multiplex controller circuit that shares the pins between the different memory controllers
» Programmable CompactFlash support logic
* Programmable SmartMedia and NAND Flash support logic

14.6.1 Bus Multiplexing
The EBI offers a complete set of control signals that share the 16-bit data lines, the address
lines of up to 24 bits and the control signals through a multiplex logic operating in function of the
memory area requests.

Multiplexing is specifically organized in order to guarantee the maintenance of the address and
output control lines at a stable state while no external access is being performed. Multiplexing is
also designed to respect the data float times defined in the Memory Controllers. Furthermore,
refresh cycles of the SDRAM are executed independently by the SDRAMC without delaying the
other external memory controller accesses.

14.6.2 Static Memory Controller
For information on the Static Memory Controller, refer to the Static Memory Controller Section.

14.6.3 SDRAM Controller
Writing a one to the HMATRIX.SFR6.CS1A bit enables the SDRAM logic.

For information on the SDRAM Controller, refer to the SDRAM Section.

14.6.4 ECCHRS Controller
For information on the ECCHRS Controller, refer to the ECCHRS Section.

AIMEL 168

32072H-AVR32-10/2012 I ©

14.6.5 CompactFlash Support
The External Bus Interface integrates circuitry that interfaces to CompactFlash devices.

The CompactFlash logic is driven by the SMC on the NCS[4] and/or NCS[5] address space.
Writing to the HMATRIX.SFR6.CS4A and/or HMATRIX.SFR6.CS5A bits the appropriate value
enables this logic. Access to an external CompactFlash device is then made by accessing the
address space reserved to NCS[4] and/or NCSJ[5].

Attribute Memory, Common Memory, I/O modes are supported but the signals _IOWR, _10IS16
(I/O mode) are not handled.

14.6.5.1 I/0O Mode, Common Memory Mode, Attribute Memory Mode

Within the NCSJ[4] and/or NCS[5] address space, the current transfer address is used to distin-
guish I/O mode, common memory mode andattribute memory mode.

The different modes are accessed through a specific memory mapping as illustrated on Figure
14-2 on page 169. ADDR[23:21] bits of the transfer address are used to select the desired mode
as described in Table 14-4 on page 169.

Figure 14-2. CompactFlash Memory Mapping

Y I/Ol\/bdeSpaoe.
Offset 0000 (Read operations)
CF Address Space Common Mermory Mode Space
Offset 0x0040 0000
I/O_I\/bdeSpeoe
Offset 0x0020 0000 (VWite operations)
Attribute Memory Mode Space
. — — Y Offset 0x0000 0000

Note: The ADDRJ[22] I/O line is used to drive the REG signal of the CompactFlash Device.

Table 14-4. CompactFlash Mode Selection

ADDR[23:21] Mode Base Address
000 Attribute Memory
001 I/O Mode (Write operations)
010 Common Memory
100 I/O Mode (Read operations)

14.6.5.2 CFCEL1 and CFCE2 signals
To cover all types of access, the SMC must be alternatively set to drive 8-bit data bus or 16-bit
data bus. The odd byte access on the DATA[7:0] bus is only possible when the SMC is config-

Alm L 169

32072H-AVR32-10/2012 I ©

ured to drive 8-bit memory devices on the corresponding NCS pin (NCS[4] or NCS[5]). The Data
Bus Width (DBW) field in the SMC Mode (MODE) register of the NCS[4] and/or NCS[5] address
space must be written as shown in Table 14-5 on page 170 to enable the required access type.

NBS1 and NBSO are the byte selection signals from SMC and are available when the SMC is set
in Byte Select mode on the corresponding Chip Select.

The CFCE1 and CFCE2 waveforms are identical to the corresponding NCSx waveform. For
details on these waveforms and timings, refer to the SMC Section.

Table 14-5. CFCE1 and CFCE2 Truth Table

SMC Access
Mode CFCE2 | CFCE1 DBW Comment Mode

Access to Even Byte on

Attribute Memory NBS1 NBSO 16 bits DATA[7:0]

Byte Select

Access to Even Byte on

. DATA[7:0]

NBS1 NBSO 16bits Byte Select
Access to Odd Byte on

Common Memory DATA[15:8]

Access to Odd Byte on

L 0 8bits | Harar7:0]

Access to Even Byte on

NBS1 NBSO | 16 bits DATA[7:0] Byte Select
Access to Odd Byte on y

/O Mode DATA[15:8]

Access to Odd Byte on

1 0 8bits | patar7:0]

14.6.5.3 Read/Write signals

32072H-AVR32-10/2012

During read operations, in /O mode, the CompactFlash logic drives the read command signals
of the SMC on CFNIORD signal, while the CFNOE is deactivated. Likewise, in common memory
mode and attribute memory mode, the SMC signals are driven on the CFNOE signal, while the
CFNIORD is deactivated. Figure 14-3 on page 171 demonstrates a schematic representation of
this logic.

During write operations, in all modes, the CompactFlash logic drives the write command signal
of the SMC on CFNWE signal. Addtionnal external logic is required to drive _WE and _IOWR
compact flash signals based on CFNWE. Figure 14-3 on page 171 demonstrates a schematic
representation of this logic. No external logic is required if I/O mode is not used (in this case,
CNFWE signal can drive directly _WE compact flash signal).

Attribute memory mode, common memory mode and I/O mode are supported by writing the
address setup and hold time on the NCS[4] (and/or NCSJ[5]) chip select to the appropriate val-
ues. For details on these signal waveforms, please refer to the section: Setup and Hold Cycles
of the SMC Section.

Alm L 170

Y 5

AT32UC3A3

Figure 14-3. CompactFlash Read/Write Control Signals

EBI
SMC Compact Flash Logic
A23
=1
(1) >loyl cenoe |
1 >, CENWE | o
A22 >/
NRD » N
NWRO/NWE 0] CFNIORD | ,
T—4
)/
Table 14-6. CompactFlash Mode Selection
Mode Base Address CFNOE CFNWE CFENIORD

Attribute Memory

I/O Mode (Write operations) NRD_NOE NWRO_NWE 1
Common Memory

I/O Mode (Read operations) 1 1 NRD_NOE

14.6.5.4 Multiplexing of CompactFlash signals on EBI pins

Table 14-7 on page 171 and Table on page 171 illustrate the multiplexing of the CompactFlash
logic signals with other EBI signals on the EBI pins. The EBI pins in Table 14-7 on page 171 are
strictly dedicated to the CompactFlash interface as soon as the HMATRIX.SFR6.CS4A and/or

HMATRIX.SFR6.CS5A bits is/are written. These pins must not be used to drive any other mem-
ory devices.

The EBI pins in Table 14-8 on page 172 remain shared between all memory areas when the cor-
responding CompactFlash interface is enabled (CS4A = 1 and/or CS5A =1).

Table 14-7. Dedicated CompactFlash Interface Multiplexing

) CompactFlash Signals EBI Signals
Pins CS4A =1 CS5A =1 CS4A =0 CS5A =0
NCS[4] CFCSO NCS[4]
NCS[5] CFCS1 NCS[5]

Alm L 171

32072H-AVR32-10/2012 I ©

Table 14-8. Shared CompactFlash Interface Multiplexing

Access to
CompactFlash Device
Pins CompactFlash Signals
NRD CFNOE
NWEO CFNWE
NWE1 CFNIORD
CFRNW CFRNW

14.6.5.5 Application example

Figure 14-4 on page 172 illustrates an example of a CompactFlash application. CFCS0 and
CFRNW signals are not directly connected to the CompactFlash slot 0, but do control the direc-
tion and the output enable of the buffers between the EBI and the CompactFlash Device. The
timing of the CFCSO signal is identical to the NCS[4] signal. The CFRNW signal remains valid
throughout the transfer, as does the address bus. The CompactFlash _WAIT signal is con-
nected to the NWAIT input of the Static Memory Controller. For details on these waveforms and
timings, refer to the SMC Section.

Figure 14-4. CompactFlash Application Example with I/O mode
CompactFlash

EBI Connector
DATA[15:0] '|D 'I D[15:0]
DIR /OE
CFRNW |
NCS[4] ﬁ
—F _CD1
Pxx l { (_cp2
IOE
ADDR[10:0] > A[10:0]
ADDR[22] > _REG
NRD > _CE
NWEO)) > _WE
NWE1 — > _IORD
> IOWR
ADDR[21] @ v -
CFCE1 > _CE1
CFCE2 > _CE2
NWAIT < _WAIT

Alm L 172

32072H-AVR32-10/2012 I ©

AT32UC3A3

Figure 14-5. CompactFlash Application Example without I/O mode
CompactFlash

EBI Connector
DATA[15:0] '|D 'I D[15:0]
DIR /OE
CFRNW |
NCS[4] ﬁ
r—l _CD1
Pxx l { (_cp2
IOE
ADDR[10:0] > A[10:0]
ADDR[22] > _REG
NRD > _OE
NWEO)) > _WE
NWE1 — > _IORD
> IOWR
ADDRI[21] ® v -
CFCE1 > _CE1
CFCE2 > _CE2
NWAIT <} _WAIT

14.6.6 SmartMedia and NAND Flash Support

32072H-AVR32-10/2012

The EBI integrates circuitry that interfaces to SmartMedia and NAND Flash devices.

The NAND Flash logic is driven by the Static Memory Controller on the NCS[2] (and/or NCSJ[3])
address space. Writing to the HMATRIX.SFR6.CS2A (and/or HMATRIX.SFR6.CS3A) bit the
appropriate value enables the NAND Flash logic. Access to an external NAND Flash device is
then made by accessing the address space reserved to NCS[2] (and/or NCS[3]).

The NAND Flash logic drives the read and write command signals of the SMC on the NANDOE
and NANDWE signals when the NCS[2] (and/or NCSJ3]) signal is active. NANDOE and
NANDWE are invalidated as soon as the transfer address fails to lie in the NCSJ[2] (and/or
NCS[3]) address space. See Figure 14-6 on page 174 for more informations. For details on
these waveforms, refer to the SMC Section.

The SmartMedia device is connected the same way as the NAND Flash device.

Alm L 173

Y 5

AT32UC3A3

Figure 14-6. NAND Flash Signal Multiplexing on EBI Pins

EBI
SMC NandFlash
Logic
NCS[2/[3] \ | NANDOEL
NRD ,)

NANDWE
i —F—»
NWRO_NWE

14.6.6.1 NAND Flash signals

The address latch enable and command latch enable signals on the NAND Flash device are
driven by address bits ADDR[22] and ADDR[21] of the EBI address bus. The user should note
that any bit on the EBI address bus can also be used for this purpose. The command, address or
data words on the data bus of the NAND Flash device are distinguished by using their address
within the NCSx address space. The chip enable (CE) signal of the device and the ready/busy
(R/B) signals are connected to 1/O Controller lines. The CE signal then remains asserted even
when NCSx is not selected, preventing the device from returning to standby mode.

Figure 14-7. NAND Flash Application Example

DATA[7:0] |- - AD[7:0]
ADDR[22] p| ALE
ADDR[21] »| cLE
NandFlash
EBI
NANDOE | NOE
NANDWE | NWE
NCS[2/3]
Or /0O line - CE
/0 line | R/B

Note: The External Bus Interfaces is also able to support 16-bits devices.

Alm L 174

32072H-AVR32-10/2012 I ©

14.7 Application Example

1471

32072H-AVR32-10/2012

Hardware Interface

Table 14-9. EBI Pins and External Static Devices Connections
Pins of the Interfaced Device
8-bit Static 2 x 8-bit 16-bit Static
. Static)
Pins name Device Devices Device
Controller SMC
DATA[7:0] D[7:0] D[7:0] D[7:0]
DATA[15:0 - D[15:8] D[15:8]
ADDRI0] A[0] - NBS0®
ADDRJ[1] A[1] A[0] A[0]
ADDR[23:2] A[23:2] A[22:1] A[22:1]
NCS[0] - NCS[5] cs cs cSs
NRD OE OE OE
NWEO WE WE®W WE
NWE1 - WE® NBS1@
Note: 1. NWEL1 enables upper byte writes. NWEO enables lower byte writes.
2. NBS1 enables upper byte writes. NBSO enables lower byte writes.
Table 14-10. EBI Pins and External Devices Connections
Pins of the Interfaced Device
Smart Media
SDRAM Compact or
Pins name Flash NAND Flash
Controller SDRAMC SMC
DATA[7:0] D[7:0] D[7:0] AD[7:0]
DATA[15:8] D[15:8] D[15:8] AD[15:8]
ADDR[0] DQMO A[0] -
ADDRJ[1] - A[l] -
ADDRJ[10:2] A[8:0] A[10:2] -
ADDRJ[11] Al9] - -
SDA10 A[10] - -
ADDRJ[12] - - -
ADDR[14:13] A[12:11] - -
ADDRJ[15] - - -
ADDR][16] BAO - -
ADDR([17] BAl - -
ADDR[20:18] - - -

ATMEL

Y 5

175

Table 14-10. EBI Pins and External Devices Connections (Continued)

Pins of the Interfaced Device
Smart Media

SDRAM Compact or
Pins name Flash NAND Flash
Controller SDRAMC SMC
ADDR[21] - - CLE®
ADDR[22] - REG ALE®
NCSI[0] - - _
NCSI[1] SDCSI0] - -
NCS[2] - - CEO
NCSI[3] - - CE1
NCS[4] - CFcso® -
NCSI[5] - CFcs1® -
NANDOE - - OE
NANDWE - - WE
NRD - OE -
NWEOQ - WE -
NWE1 DQM1 IOR -
CFRNW - CFRNW® -
CFCE1 - CE1 -
CFCE2 - CE2 -
SDCK CLK - -
SDCKE CKE - -
RAS RAS - _
CAS CAS - -
SDWE WE - -
NWAIT - WAIT -
Pxx® - CD1 or CD2 -
Pxx®@ - - RDY

Note: 1. Not directly connected to the CompactFlash slot. Permits the control of the bidirectional buffer
between the EBI data bus and the CompactFlash slot.

2. Any I/O Controller line.

3. The CLE and ALE signals of the NAND Flash device may be driven by any address bit. For
details, see Section 14.6.6.

Alm L 176

32072H-AVR32-10/2012 I ©

14.7.2 Connection Examples
Figure 14-8 on page 177shows an example of connections between the EBI and external

devices.

Figure 14-8. EBI Connections to Memory Devices

32072H-AVR32-10/2012

ATMEL

Y 5

EBI
DATA[15:0]
RAS — \
CAS F—n SDRAM SDRAM
SDCK [— DATA[7:0] DATA[15:8]
S&f\EE 7o) 2Mx8 o701 2Mx8
ADDR[0] — cs .1 [ADDR[11:2] cs .1 [ADDR[11:2]
WD —— W A foore "en0
RAS BA1 [ARCRIT] BA1
ADDRI0] géfll
SDA10 \
\, (\
ADDRI17:1] =\ N
NCS[]
NCS[0]
\, /
(V4 /
§ SRAM SRAM
g 128Kx8 128Kx8
D[7:0] A[16:0] fADDR17:1] D[7:0] A[16:0] ADDRI17:1]
NCS[0] cs NCS[0] cs
\ NRD NRD
__NWEO S\IIIEE NWET %EE

177

15. Static Memory Controller (SMC)
Rev. 1.0.6.5

15.1 Features
* 6 chip selects available
* 16-Mbytes address space per chip select
e 8- or 16-bit data bus
* Word, halfword, byte transfers
* Byte write or byte select lines
* Programmable setup, pulse and hold time for read signals per chip select
* Programmable setup, pulse and hold time for write signals per chip select
* Programmable data float time per chip select
e Compliant with LCD module
* External wait request
* Automatic switch to slow clock mode
* Asynchronous read in page mode supported: page size ranges from 4 to 32 bytes

15.2 Overview

The Static Memory Controller (SMC) generates the signals that control the access to the exter-
nal memory devices or peripheral devices. It has 6 chip selects and a 24-bit address bus. The
16-bit data bus can be configured to interface with 8-16-bit external devices. Separate read and
write control signals allow for direct memory and peripheral interfacing. Read and write signal
waveforms are fully parametrizable.

The SMC can manage wait requests from external devices to extend the current access. The
SMC is provided with an automatic slow clock mode. In slow clock mode, it switches from user-
programmed waveforms to slow-rate specific waveforms on read and write signals. The SMC
supports asynchronous burst read in page mode access for page size up to 32 bytes.

AIMEL 178

32072H-AVR32-10/2012 I ©

15.3 Block Diagram

Figure 15-1. SMC Block Diagram (AD_MSB=23)

SMC
HMatrix Chip Select |
Power CLK_SMC
Manager

15.4

SMC

User Interface

4

NCS[5:0]

NRD

Y

Y

NWRO/NWE

Y

AO0/NBSO

A 4

Y

NWR1/NBS1

Y

Y

Y

A1/NWR2/NBS2 - EBI -l
"IMux Logic i
A[AD_MSB:2]
_ D[15:0] N
P NWAIT

A

<

Peripheral Bus i

I/O Lines Description

110
Controller

—{] nesisol
—>] | nRD
—>{] nweo
_>|:| ADDR[0]
—> | Nwer
—>|:| ADDR[1]

«—>{] pATAlt5:0]
«—] nwarr

—»D ADDRIAD_MSB:2]

Table 15-1. 1/O Lines Description
Pin Name Pin Description Type Active Level
NCS[5:0] Chip Select Lines Output Low
NRD Read Signal Output Low
NWRO/NWE Write O/Write Enable Signal Output Low
AO/NBSO Address Bit 0/Byte 0 Select Signal Output Low
NWR1/NBS1 Write 1/Byte 1 Select Signal Output Low
A[23:2] Address Bus Output
D[15:0] Data Bus Input/Output
NWAIT External Wait Signal Input Low

15.5 Product Dependencies
In order to use this module, other parts of the system must be configured correctly, as described

32072H-AVR32-10/2012

below.

ATMEL

Y 5

179

1551

155.2

I/O Lines
The SMC signals pass through the External Bus Interface (EBI) module where they are multi-
plexed. The user must first configure the I/O Controller to assign the EBI pins corresponding to
SMC signals to their peripheral function. If the 1/O lines of the EBI corresponding to SMC signals
are not used by the application, they can be used for other purposes by the 1/0 Controller.
Clocks

The clock for the SMC bus interface (CLK_SMC) is generated by the Power Manager. This clock
is enabled at reset, and can be disabled in the Power Manager. It is recommended to disable the

SMC before disabling the clock, to avoid freezing the SMC in an undefined state.

15.6 Functional Description

15.6.1

Application Example

Figure 15-2. SMC Connections to Static Memory Devices

15.6.2

D0-D15 j
T W 'SRam
NWR1/NBS T f——— D0-D7 SRAM D8-D14 SRAM
D0-D7 D0-D7
cs cs
AO-Al6 |AZA18 AO-Ale | A2A18
N_|_NRD \ NRD \
NCS0 O oF
NGS1 NWRO/NWE NW1/NBS1
NCS2 WE e
NCS3
NCS4
NCS5

Static Memory
Controller

A2-A18

External Memory Mapping

The SMC provides up to 24 address lines, A[23:0]. This allows each chip select line to address

up to 16 Mbytes of memory.

If the physical memory device connected on one chip select is smaller than 16 Mbytes, it wraps
around and appears to be repeated within this space. The SMC correctly handles any valid

access to the memory device within the page (see Figure 15-3 on page 181).

A[23:0] is only significant for 8-bit memory, A[23:1] is used for 16-bit memory23.

ATMEL

32072H-AVR32-10/2012 I ©

180

Memory Connections for Six External Devices

Figure 15-3.
NCSJ[0] - NCS[5]
NRD
SMC NWE
A[AD_MSB:0]
D[15:0]
15.6.3 Connection to External Devices
15.6.3.1 Data bus width
15.6.3.2

NCS5

[

| Memory Enable

NCS4 |

Memory Enable

NCS3 l

f Memory Enable

NCS2 |

l Memory Enable

NCS1

NCSO0

I

Memory Enable

Memory Enable

Output Enable

Write Enable

8 or 16

AJAD_MSB:0]

D[15:0] or D[7:0]

A data bus width of 8 or 16 bits can be selected for each chip select. This option is controlled by
the Data Bus Width field in the Mode Register (MODE.DBW) for the corresponding chip select.

Figure 15-4 on page 181 shows how to connect a 512K x 8-bit memory on NCS2. Figure 15-5 on
page 182 shows how to connect a 512K x 16-bit memory on NCS2.

Byte write or byte select access

Each chip select with a 16-bit data bus can operate with one of two different types of write
access: byte write or byte select access. This is controlled by the Byte Access Type bit in the
MODE register (MODE.BAT) for the corresponding chip select.

32072H-AVR32-10/2012

Figure 15-4.

Memory Connection for an 8-bit Data Bus

D[7:0]

A[18:2]

D[7:0]

A0

A[18:2]
A0

SMC Al

Al

NWE

Write Enable

NRD
NCS[2]

Output Enable

Memory Enable

ATMEL

Y 5

181

Figure 15-5. Memory Connection for a 16-bit Data Bus

D[15:0] D[15:0]
A[19:2] A[18:1]
A1l A[0]
SMC NBSO Low Byte Enable

NBS1 High Byte Enable
NWE Write Enable
NRD Output Enable

NCS[2] Memory Enable

*Byte write access

The byte write access mode supports one byte write signal per byte of the data bus and a single
read signal.

Note that the SMC does not allow boot in byte write access mode.

« For 16-bit devices: the SMC provides NWR0 and NWR1 write signals for respectively byteO
(lower byte) and bytel (upper byte) of a 16-bit bus. One single read signal (NRD) is provided.

The byte write access mode is used to connect two 8-bit devices as a 16-bit memory.

The byte write option is illustrated on Figure 15-6 on page 183.

*Byte select access

In this mode, read/write operations can be enabled/disabled at a byte level. One byte select line
per byte of the data bus is provided. One NRD and one NWE signal control read and write.

« For 16-bit devices: the SMC provides NBS0O and NBS1 selection signals for respectively
byteO (lower byte) and bytel (upper byte) of a 16-bit bus. The byte select access is used to
connect one 16-bit device.

Alm L 182

32072H-AVR32-10/2012 I ©

Figure 15-6. Connection of two 8-bit Devices on a 16-bit Bus: Byte Write Option
D[7:0] D[7:0]
D[15:8] |—
A[24:2] A[23:1]
SMC Al Al0]
NWRO Write Enable
NWR1
NRD Read Enable
NCS[3] Memory Enable
D[15:8]
A[23:1]
A[0]
Write Enable
Read Enable
L__| Memory Enable

Signal multiplexing

Depending on the MODE.BAT bit, only the write signals or the byte select signals are used. To
save I/Os at the external bus interface, control signals at the SMC interface are multiplexed.

For 16-bit devices, bit A0 of address is unused. When byte select option is selected, NWRL1 is
unused. When byte write option is selected, NBSO to NBS1 are unused.

Table 15-3. SMC Multiplexed Signal Translation
Signal Name 16-bit Bus 8-bit Bus
Device Type 1 x 16-bit 2 x 8-bit 1 x 8-bit
Byte Access Type (BAT) Byte Select Byte Write
NBSO_AO NBSO A0
NWE_NWRO NWE NWRO NWE
NBS1_NWR1 NBS1 NWR1
NBS2_NWR2_A1l Al Al Al

15.6.4 Standard Read and Write Protocols

In the following sections, the byte access type is not considered. Byte select lines (NBSO to
NBS1) always have the same timing as the address bus (A). NWE represents either the NWE
signal in byte select access type or one of the byte write lines (NWRO to NWR1) in byte write

Alm L 183

Y 5

32072H-AVR32-10/2012

access type. NWRO to NWR1 have the same timings and protocol as NWE. In the same way,
NCS represents one of the NCS|0..5] chip select lines.

15.6.4.1 Read waveforms
The read cycle is shown on Figure 15-7 on page 184.
The read cycle starts with the address setting on the memory address bus, i.e.:
{A[23:2], A1, A0} for 8-bit devices
{A[23:2], A1} for 16-bit devices

Figure 15-7. Standard Read Cycle

| | | | | | |

A[AD_MSB:2] * I
I
|
T

CLK_SMC

|
P K
|

—
| [X
| |
| |

|
NRD | |
— o
NCS | | i |
D[15:0] | | /—|_\ | |
| NRD?l ee | nropuLse | nRoboo |
NCSR| SETUP NCSRDPULSE | NCSR |HOLD
> NRDCYCLE o

*NRD waveform

The NRD signal is characterized by a setup timing, a pulse width, and a hold timing.

1. NRDSETUP: the NRD setup time is defined as the setup of address before the NRD

falling edge.

2. NRDPULSE: the NRD pulse length is the time between NRD falling edge and NRD ris-
ing edge.

3. NRDHOLD: the NRD hold time is defined as the hold time of address after the NRD ris-
ing edge.

*NCS waveform

Similarly, the NCS signal can be divided into a setup time, pulse length and hold time.

Alm L 184

32072H-AVR32-10/2012 I ©

1. NCSRDSETUP: the NCS setup time is defined as the setup time of address before the
NCS falling edge.

2. NCSRDPULSE: the NCS pulse length is the time between NCS falling edge and NCS
rising edge.

3. NCSRDHOLD: the NCS hold time is defined as the hold time of address after the NCS
rising edge.

*Read cycle

The NRDCYCLE time is defined as the total duration of the read cycle, i.e., from the time where
address is set on the address bus to the point where address may change. The total read cycle
time is equal to:

NRDCYCLE = NRDSETUP + NRDPULSE + NRDHOLD

Similarly,

NRDCYCLE = NCSRDSETUP + NCSRDPULSE + NCSRDHOLD

All NRD and NCS timings are defined separately for each chip select as an integer number of
CLK_SMC cycles. To ensure that the NRD and NCS timings are coherent, the user must define
the total read cycle instead of the hold timing. NRDCYCLE implicitly defines the NRD hold time
and NCS hold time as:

NRDHOLD = NRDCYCLE -NRDSETUP—-NRDPULSE

And,

NCSRDHOLD = NRDCYCLE-NCSRDSETUP -NCSRDPULSE

*Null delay setup and hold

32072H-AVR32-10/2012

If null setup and hold parameters are programmed for NRD and/or NCS, NRD and NCS remain
active continuously in case of consecutive read cycles in the same memory (see Figure 15-8 on
page 186).

Alm L 185

Y 5

AT32UC3A3

Figure 15-8. No Setup, No Hold on NRD, and NCS Read Signals

I s S O B

! |
A[AD_MSB:2] ><
I

|
e K X
|

NRD |

| |
o150 —:—< g 3 i y—

NRDSETUP NRDPULSE NRDPULSE

]

| NCSRDPULSE | NCSRDPULSE | NCSRDPULSE |

CLK_SMC

-
vs

_““___X
X

NRDCYCLE NRDCYCLE NRDCYCLE

l<
I‘

* Null Pulse

Programming null pulse is not permitted. Pulse must be at least written to one. A null value leads
to unpredictable behavior.

15.6.4.2 Read mode
As NCS and NRD waveforms are defined independently of one other, the SMC needs to know
when the read data is available on the data bus. The SMC does not compare NCS and NRD tim-
ings to know which signal rises first. The Read Mode bit in the MODE register
(MODE.READMODE) of the corresponding chip select indicates which signal of NRD and NCS
controls the read operation.

*Read is controlled by NRD (MODE.READMODE = 1)

Figure 15-9 on page 187 shows the waveforms of a read operation of a typical asynchronous
RAM. The read data is available t5c after the falling edge of NRD, and turns to ‘Z’ after the ris-
ing edge of NRD. In this case, the MODE.READMODE bit must be written to one (read is
controlled by NRD), to indicate that data is available with the rising edge of NRD. The SMC sam-
ples the read data internally on the rising edge of CLK_SMC that generates the rising edge of
NRD, whatever the programmed waveform of NCS may be.

Alm L 186

32072H-AVR32-10/2012 I ©

AT32UC3A3

Figure 15-9. READMODE = 1: Data Is Sampled by SMC Before the Rising Edge of NRD

| | |

CLK_SMC ‘ | |
I

|

|]

AJAD_MSB:2] |
D Gl

[|

NBS0, NBS1, >]f< I
A0, A1 |

|

|

|

|

|

X
X

7T —

]
NRD I
| |
| |
B E— N | |
NCS | | ! Y |
| | | | |
| | | teacc . | |
D[15:0] : : : { i i
| | | | |
| | | | |

Data Sampling

*Read is controlled by NCS (MODE.READMODE = 0)

Figure 15-10 on page 188 shows the typical read cycle of an LCD module. The read data is valid
tpacc after the falling edge of the NCS signal and remains valid until the rising edge of NCS. Data
must be sampled when NCS is raised. In that case, the MODE.READMODE bit must be written
to zero (read is controlled by NCS): the SMC internally samples the data on the rising edge of
CML_SMC that generates the rising edge of NCS, whatever the programmed waveform of NRD
may be.

Alm L 187

32072H-AVR32-10/2012 I ©

AT32UC3A3

Figure 15-10. READMODE = 0: Data Is Sampled by SMC Before the Rising Edge of NCS

| |

CLK_SMC ‘ | | | |
I

[
AIAD_MSB:2]
I

NBSO, NBST, *
A0, A1

X
X

N T A

|
|
NRD |
|
|
NCS : M
| |
[| tracc 4
D[15:0] : ; y
| [
I |

Data Sampling

15.6.4.3 Write waveforms
The write protocol is similar to the read protocol. It is depicted in Figure 15-11 on page 189. The
write cycle starts with the address setting on the memory address bus.

*NWE waveforms

The NWE signal is characterized by a setup timing, a pulse width and a hold timing.

1. NWESETUP: the NWE setup time is defined as the setup of address and data before
the NWE falling edge.
2. NWEPULSE: the NWE pulse length is the time between NWE falling edge and NWE
rising edge.
3. NWEHOLD: the NWE hold time is defined as the hold time of address and data after
the NWE rising edge.
The NWE waveforms apply to all byte-write lines in byte write access mode: NWRO to NWR3.

15.6.4.4 NCS waveforms
The NCS signal waveforms in write operation are not the same that those applied in read opera-
tions, but are separately defined.

1. NCSWRSETUP: the NCS setup time is defined as the setup time of address before the
NCS falling edge.

2. NCSWRPULSE: the NCS pulse length is the time between NCS falling edge and NCS
rising edge;

3. NCSWRHOLD: the NCS hold time is defined as the hold time of address after the NCS
rising edge.

Alm L 188

32072H-AVR32-10/2012 I ©

AT32UC3A3

Figure 15-11. Write Cycle

aweseo [L L L L L1
I

|

[[

AJAD_MSB:2] |
. Gl

[|

NBSO0, NBS1, X |
A0, A1 |

|

l

|

|

|

NWE

NCS | \

NWESE[TUP NWEPULSE NWEIOLD
NC%WRSETUF{ II NCSWRPULSE : ! NCSWRHg‘)LD
: NWECYCLE | :
< >

*Write cycle

The write cycle time is defined as the total duration of the write cycle, that is, from the time where
address is set on the address bus to the point where address may change. The total write cycle
time is equal to:

NWECYCLE = NWESETUP + NWEPULSE + NWEHOLD

Similarly,

NWECYCLE = NCSWRSETUP + NCSWRPULSE + NCSWRHOLD

All NWE and NCS (write) timings are defined separately for each chip select as an integer num-
ber of CLK_SMC cycles. To ensure that the NWE and NCS timings are coherent, the user must
define the total write cycle instead of the hold timing. This implicitly defines the NWE hold time
and NCS (write) hold times as:

NWEHOLD = NWECYCLE -NWESETUP -NWEPULSE

And,

NCSWRHOLD = NWECYCLE-NCSWRSETUP —NCSWRPULSE

Alm L 189

32072H-AVR32-10/2012 I ©

*Null delay setup and hold

If null setup parameters are programmed for NWE and/or NCS, NWE and/or NCS remain active
continuously in case of consecutive write cycles in the same memory (see Figure 15-12 on page
190). However, for devices that perform write operations on the rising edge of NWE or NCS,
such as SRAM, either a setup or a hold must be programmed.

Figure 15-12. Null Setup and Hold Values of NCS and NWE in Write Cycle

SPEYSR B

[
[
AJAD_MSB:2] }(><
[
|
g DK X

YRR

|
NWE, | :
NWEO, NWET | |
| |
|
NCS _I'\ |
| | |
| |
D[15:0]
.) S— e—
| NWESETUP | NWEPULSE NWEPULSE
7 e T e—— 7
| | | |
: NCSWRSETUP : NCSWRPULSE : NCSWRPULSE :
< e e
[| | |
| | | |
| NWECYCLE | NWECYCLE | NWECYCLE |
|

P ——————

*Null pulse

Programming null pulse is not permitted. Pulse must be at least written to one. A null value leads
to unpredictable behavior.

15.6.4.5 Write mode
The Write Mode bit in the MODE register (MODE.WRITEMODE) of the corresponding chip
select indicates which signal controls the write operation.

*Write is controlled by NWE (MODE.WRITEMODE = 1)

Figure 15-13 on page 191 shows the waveforms of a write operation with MODE.WRITEMODE
equal to one. The data is put on the bus during the pulse and hold steps of the NWE signal. The
internal data buffers are turned out after the NWESETUP time, and until the end of the write
cycle, regardless of the programmed waveform on NCS.

Alm L 190

32072H-AVR32-10/2012 I ©

AT32UC3A3

Figure 15-13. WRITEMODE = 1. The Write Operation Is Controlled by NWE

cwswe [L[L[] [
I

[
AAD_MSB:2] ¢
[

I

I

I

I

|

NBSO, NBS1, X I
A0, A1 J
I

|

|

|

|

|
|
;
|
|
%
i
;

NWE, '
NWRO, NWR1 :
|
TN T
NCS [| } I
| | | |
I l / T T
D[15:0] \ >_

*Write is controlled by NCS (MODE.WRITEMODE = 0)

Figure 15-14 on page 191 shows the waveforms of a write operation with MODE.WRITEMODE
written to zero. The data is put on the bus during the pulse and hold steps of the NCS signal.
The internal data buffers are turned out after the NCSWRSETUP time, and until the end of the
write cycle, regardless of the programmed waveform on NWE.

Figure 15-14. WRITEMODE = 0. The Write Operation Is Controlled by NCS

cwswe [L L[] [
I

[
AAD_MSB:2] ¢
[

NBSO0, NBS1, *
A0, A1

NWE,
NWRO, NWR1

NCS

|
|
;
|
i
|
/
|

D[15:0]

T

Alm L 191

32072H-AVR32-10/2012 I ©

15.6.4.6 Coding timing parameters

All timing parameters are defined for one chip select and are grouped together in one register
according to their type.

The Setup register (SETUP) groups the definition of all setup parameters:
* NRDSETUP, NCSRDSETUP, NWESETUP, and NCSWRSETUP.

The Pulse register (PULSE) groups the definition of all pulse parameters:
* NRDPULSE, NCSRDPULSE, NWEPULSE, and NCSWRPULSE.

The Cycle register (CYCLE) groups the definition of all cycle parameters:

* NRDCYCLE, NWECYCLE.
Table 15-4 on page 192 shows how the timing parameters are coded and their permitted range.

Table 15-4. Coding and Range of Timing Parameters

Permitted Range
Coded Value Number of Bits Effective Value Coded Value Effective Value
0<value<31l 0<value<31l
setup [5:0] 6 128 x setup[5] + setup[4:0]
32 <value < 63 128 <value < 128+31
0 <value <63 0 <value <63
pulse [6:0] 7 256 x pulse[6] + pulse[5:0]
64< value < 127 256 < value < 256+63
0 <value <127 0 <value <127
128 <value < 255 256 < value < 256+127
cycle [8:0] 9 256 x cycle[8:7] + cycle[6:0]
256 < value < 383 512 < value < 512+127
384 <value <511 768 < value < 768+127

15.6.4.7 Usage restriction
The SMC does not check the validity of the user-programmed parameters. If the sum of SETUP
and PULSE parameters is larger than the corresponding CYCLE parameter, this leads to unpre-
dictable behavior of the SMC.

For read operations:

Null but positive setup and hold of address and NRD and/or NCS can not be guaranteed at the
memory interface because of the propagation delay of theses signals through external logic and
pads. If positive setup and hold values must be verified, then it is strictly recommended to pro-
gram non-null values so as to cover possible skews between address, NCS and NRD signals.

For write operations:

If a null hold value is programmed on NWE, the SMC can guarantee a positive hold of address,
byte select lines, and NCS signal after the rising edge of NWE. This is true if the MODE.WRITE-
MODE bit is written to one. See Section 15.6.5.2.

For read and write operations: a null value for pulse parameters is forbidden and may lead to
unpredictable behavior.

In read and write cycles, the setup and hold time parameters are defined in reference to the
address bus. For external devices that require setup and hold time between NCS and NRD sig-
nals (read), or between NCS and NWE signals (write), these setup and hold times must be
converted into setup and hold times in reference to the address bus.

Alm L 192

32072H-AVR32-10/2012 I ©

15.6.5 Automatic Wait States
Under certain circumstances, the SMC automatically inserts idle cycles between accesses to
avoid bus contention or operation conflict.

15.6.5.1 Chip select wait states
The SMC always inserts an idle cycle between two transfers on separate chip selects. This idle
cycle ensures that there is no bus contention between the deactivation of one device and the
activation of the next one.

During chip select wait state, all control lines are turned inactive: NBSO to NBS3, NWRO to
NWR3, NCSJ[0..5], NRD lines are all set to high level.

Figure 15-15 on page 193 illustrates a chip select wait state between access on Chip Select 0
(NCSO0) and Chip Select 2 (NCS2).

Figure 15-15. Chip Select Wait State Between a Read Access on NCSO and a Write Access on
NCS2

XX

| I
NWE | '
I | | u
I | | I
neso | ! ! ! |
TN\ I f f
I I } I I
NCS2 ' ' ' | |
| I I I [
! NRDCYCLE NWECYCLE '
e > >
I

"_il__7___ _______%__X__

<—>I<—>

Read to Write | Chip Select
Wait State Wait State

15.6.5.2 Early read wait state
In some cases, the SMC inserts a wait state cycle between a write access and a read access to
allow time for the write cycle to end before the subsequent read cycle begins. This wait state is
not generated in addition to a chip select wait state. The early read cycle thus only occurs
between a write and read access to the same memory device (same chip select).

‘Illll L 193

32072H-AVR32-10/2012 I ©

An early read wait state is automatically inserted if at least one of the following conditions is
valid:

« if the write controlling signal has no hold time and the read controlling signal has no setup
time (Figure 15-16 on page 194).

* in NCS write controlled mode (MODE.WRITEMODE = 0), if there is no hold timing on the
NCS signal and the NCSRDSETUP parameter is set to zero, regardless of the read mode
(Figure 15-17 on page 195). The write operation must end with a NCS rising edge. Without
an early read wait state, the write operation could not complete properly.

* in NWE controlled mode (MODE.WRITEMODE = 1) and if there is no hold timing
(NWEHOLD = 0), the feedback of the write control signal is used to control address, data,
chip select, and byte select lines. If the external write control signal is not inactivated as
expected due to load capacitances, an early read wait state is inserted and address, data
and control signals are maintained one more cycle. See Figure 15-18 on page 196.

Figure 15-16. Early Read Wait State: Write with No Hold Followed by Read with No Setup.

oo [L[L L[L L[]
I

[

AIAD_MSB:2] X

[

I

NBSO, NBSH1, I
A0, A1 >K

N

.
K

NWE I [
I I
| | l

NRD | |\ I \{\
| No hold | | \
: | | No setup
| I I
[I I
e
I Write cycle | Early Read, y I
Wait state '

Alm L 194

32072H-AVR32-10/2012 I ©

AT32UC3A3

Figure 15-17. Early Read Wait State: NCS Controlled Write with No Hold Followed by a Read
with No Setup.

CLK_SMC ‘ | | | | l | |

AJAD_MSB:2] X
I
I
NBSO0, NBS1, > |<
A0, A1

N

NWE [I
| |
l l

NRD | |\ |

: Nohoid | : No sgtup

D[15:0] II :r/L\ II ()
| I |
| |
[b —
| Write cycle | Early Read| Read cycle |

| (WRITEMODE=0) | Wait State | (READMODE=0 or READMODE=1)|

Alm L 195

32072H-AVR32-10/2012 I ©

AT32UC3A3

Figure 15-18. Early Read Wait State: NWE-controlled Write with No Hold Followed by a Read
with one Set-up Cycle.

CLK_SMC ‘ | | | | |
|
|

A[AD_MSB:2] ><
|
|

NBSO, NBS1, >{
A0, A1

Internal write controlling signal

external write controlling
signal(NWE)

No hold
NRD

|

| |

D[15:0] | :::> | D |
[|

|

|

>
I

[Write cycle | Early Read| Read cycle
(WRITEMODE = 1) « Wait State * (READMODE=0 or READMODEF1)

15.6.5.3 Reload user configuration wait state
The user may change any of the configuration parameters by writing the SMC user interface.

When detecting that a new user configuration has been written in the user interface, the SMC
inserts a wait state before starting the next access. The so called “reload user configuration wait
state” is used by the SMC to load the new set of parameters to apply to next accesses.

The reload configuration wait state is not applied in addition to the chip select wait state. If
accesses bhefore and after reprogramming the user interface are made to different devices (dif-
ferent chip selects), then one single chip select wait state is applied.

On the other hand, if accesses before and after writing the user interface are made to the same
device, a reload configuration wait state is inserted, even if the change does not concern the cur-
rent chip select.

*User procedure

To insert a reload configuration wait state, the SMC detects a write access to any MODE register
of the user interface. If the user only modifies timing registers (SETUP, PULSE, CYCLE regis-
ters) in the user interface, he must validate the modification by writing the MODE register, even
if no change was made on the mode parameters.

AIMEL 196

32072H-AVR32-10/2012 I ©

15.6.5.4

15.6.6

15.6.6.1

*Slow clock mode transition

A reload configuration wait state is also inserted when the slow clock mode is entered or exited,
after the end of the current transfer (see Section 15.6.8).

Read to write wait state

Due to an internal mechanism, a wait cycle is always inserted between consecutive read and
write SMC accesses.

This wait cycle is referred to as a read to write wait state in this document.

This wait cycle is applied in addition to chip select and reload user configuration wait states
when they are to be inserted. See Figure 15-15 on page 193.

Data Float Wait States

Read mode

32072H-AVR32-10/2012

Some memory devices are slow to release the external bus. For such devices, it is necessary to
add wait states (data float wait states) after a read access:

« before starting a read access to a different external memory.
« before starting a write access to the same device or to a different external one.

The Data Float Output Time (tpg) for each external memory device is programmed in the Data
Float Time field of the MODE register (MODE.TDFCYCLES) for the corresponding chip select.
The value of MODE.TDFCYCLES indicates the number of data float wait cycles (between 0 and
15) before the external device releases the bus, and represents the time allowed for the data
output to go to high impedance after the memory is disabled.

Data float wait states do not delay internal memory accesses. Hence, a single access to an
external memory with long tye will not slow down the execution of a program from internal
memory.

The data float wait states management depends on the MODE.READMODE bit and the TDF
Optimization bit of the MODE register (MODE.TDFMODE) for the corresponding chip select.

Writing a one to the MODE.READMODE bit indicates to the SMC that the NRD signal is respon-
sible for turning off the tri-state buffers of the external memory device. The data float period then
begins after the rising edge of the NRD signal and lasts MODE.TDFCYCLES cycles of the
CLK_SMC clock.

When the read operation is controlled by the NCS sighal (MODE.READMODE = 0), the
MODE.TDFCYCLES field gives the number of CLK_SMC cycles during which the data bus
remains busy after the rising edge of NCS.

Figure 15-19 on page 198 illustrates the data float period in NRD-controlled mode
(MODE.READMODE =1), assuming a data float period of two cycles (MODE.TDFCYCLES = 2).
Figure 15-20 on page 198 shows the read operation when controlled by NCS (MODE.READ-
MODE = 0) and the MODE.TDFCYCLES field equals to three.

Alm L 197

Y 5

AT32UC3A3

Figure 15-19. TDF Period in NRD Controlled Read Access (TDFCYCLES = 2)

cucswe [] S B M
I
I

A[AD_MSB:2QI<

I
NBSO0, NBS1, }<
A0, A1
[

NRD : N

NCS | \

tpacc

D[15:0]

TDF =2 %:Iock cycles

|

___/_\.*_—_-_______.__ —_ = —

NRD controlled read operation

A
Y

Figure 15-20. TDF Period in NCS Controlled Read Operation (TDFCYCLES = 3)

CLK_SMC ‘ | | | |

A[AD_MSB:2 X
[AD_|] |
|
NBSO, NBS1, jl/r<
A0, A1

NRD [[\

NCS N

[
o
| teacc

f

[

[

[

1 i

A

AR

D[15:0]

;
:

TDF =3 (!,Iock cycles !
I I

|
|
|
I
|
|
!
|
|
]
|
|
|
i i
|
]
q |
| I
| |
<€

I >

" NCS controlled read operation |

A -
d

A

Alm L 198

32072H-AVR32-10/2012 I ©

15.6.6.2

TDF optimization enabled (MODE.TDFMODE = 1)

When the MODE.TDFMODE bit is written to one (TDF optimization is enabled), the SMC takes
advantage of the setup period of the next access to optimize the number of wait states cycle to
insert.

Figure 15-21 on page 199 shows a read access controlled by NRD, followed by a write access
controlled by NWE, on Chip Select 0. Chip Select 0 has been programmed with:

NRDHOLD = 4; READMODE = 1 (NRD controlled)
NWESETUP = 3; WRITEMODE = 1 (NWE controlled)
TDFCYCLES = 6; TDFMODE = 1 (optimization enabled).

Figure 15-21. TDF Optimization: No TDF Wait States Are Inserted if the TDF Period Is over when the Next Access Begins

AJAD_MSB:2] ><

NRD

NWE

NCSO0

D[15:0]

15.6.6.3

X N4

|

i
)

\ 4

[
I
[
I
[
}
[
| |
[NRDHQLD = 4 |

=

a

/_
N

I
I
I
I
I
I
|
|
|
]
I
I
I
I
|
|
|
I
: TDFC‘II’CLES il' 6

I N

i
)

>_

A

i
o »l
<l L

Read access on NCS0 (NRD controlled) Read to Write Write access on NCSO (NWE controlled)

Wait State

TDF optimization disabled (MODE.TDFMODE = 0)

32072H-AVR32-10/2012

When optimization is disabled, data float wait states are inserted at the end of the read transfer,
so that the data float period is ended when the second access begins. If the hold period of the
readl controlling signal overlaps the data float period, no additional data float wait states will be
inserted.

Figure 15-22 on page 200, Figure 15-23 on page 200 and Figure 15-24 on page 201 illustrate
the cases:

« read access followed by a read access on another chip select.
« read access followed by a write access on another chip select.

Alm L 199

Y 5

« read access followed by a write access on the same chip select.
with no TDF optimization.

Figure 15-22. TDF Optimization Disabled (MODE.TDFMODE = 0). TDF Wait States between Two Read Accesses on Dif-
ferent Chip Selects.

e | L L L[L L[L L L L1

S
—

[
[

A[AD_MSB:2] ><
[
[
NBS0, NBST1, [
A0, A1 4

N A -

Read1 controlling

signal(NRD) Read2 s

]
-

tup

f

| Read1 jold =1

Read2 controlling
signal(NRD)

'IJIDFCYCLES =6

|
|
133355333333235533333)0))8

(

|
|

|

I

|

T

|

|

|

|

|

|

[
N
N\
/

|
|
D[15:0] _'—< : : /
| | | | |
l | I 5 TDF WAIT STATES I I
l o I o |
"~ d I~ h Read 2 cycle
Read1 cycle
TDFCYCLES = 6 I(—)' TDFMODE=0

(optimization disabled)
Chip Select Wait State

Figure 15-23. TDF Optimization Disabled (MODE.TDFMODE= 0). TDF Wait States between a Read and a Write Access
on Different Chip Selects.

S i

A[AD_MSB:2] ¢

NBSO, NBS1, 3{
A0, A1

X
X

X
X

Read1 controlling

|

| |
| |
| |
t t
| |
t t
1 |
| |
| |
Read1 h(%ld =1 :
|

t

¢

|

|

|
|
|
I
|
I
|
|
|
Write2 setup = 1 :
|
|
|
|
]
|

L
-

|
]
signal(NRD) |
! |
. . l > <
Write2 controlling t t t I I
signal(NWE) | L TDFCYCLES = R | |
| - [g | [
[| | | . | ¥
D[15:0)) I
nso C Dy sy sy yp———t—K
| | | | |
| | | | |
[»i A} i .l
'~ 1l | | € P -
Read1 cycle | | I 2 TDF WAIT STATES %rg:/lzos)gj%
TDFCYCLES =4 —le—>» =
Read to Write Chip Select (optimization disabled)

Wait State Wait State

AIMEL 200

32072H-AVR32-10/2012 I ©

AT32UC3A3

Figure 15-24. TDF Optimization Disabled (MODE.TDFMODE = 0). TDF Wait States between Read and Write accesses on
the Same Chip Select.

CLK_SMC I |

A[AD_MSB:2] >(|

L
>

NBSO, NBS1,
A0, A1

Read1 controlling
signal(NRD)

Write2 controlling

|
]
|
|
|
I
}
|
]
1

X

signal(NWE)

|
]
|
I
|
|
|
|
|
: Write2 setup
|
I
N
|

|
|
: Read1 hold =1 1
| | I |
i i i N f |
| e | TIDFCYCLES =5 | II N\ |
| | | I I | |
| 1 |] I\ I | /—l—
D[15:0 _|—< - f
o D3NN b
| | I | | I | |
| o I | | | I | |
< » 4 TDF WAIT STATES
l Read1 cycl ! le I ' »le
[ead1 cycle L : |
TDFCYCLES =5 Write 2 cycle
Read to Write TDFMODE=0
Wait State (optimization disabled)

15.6.7 External Wait

15.6.7.1 Restriction

Any access can be extended by an external device using the NWAIT input signal of the SMC.
The External Wait Mode field of the MODE register (MODE.EXNWMODE) on the corresponding
chip select must be written to either two (frozen mode) or three (ready mode). When the
MODE.EXNWMODE field is written to zero (disabled), the NWAIT signal is simply ignored on
the corresponding chip select. The NWAIT signal delays the read or write operation in regards to
the read or write controlling signal, depending on the read and write modes of the corresponding
chip select.

When one of the MODE.EXNWMODE is enabled, it is mandatory to program at least one hold
cycle for the read/write controlling signal. For that reason, the NWAIT signal cannot be used in
Page Mode (Section 15.6.9), or in Slow Clock Mode (Section 15.6.8).

The NWAIT signal is assumed to be a response of the external device to the read/write request
of the SMC. Then NWAIT is examined by the SMC only in the pulse state of the read or write
controlling signal. The assertion of the NWAIT signal outside the expected period has no impact
on SMC behavior.

15.6.7.2 Frozen mode

32072H-AVR32-10/2012

When the external device asserts the NWAIT signal (active low), and after internal synchroniza-
tion of this signal, the SMC state is frozen, i.e., SMC internal counters are frozen, and all control
signals remain unchanged. When the synchronized NWAIT signal is deasserted, the SMC com-
pletes the access, resuming the access from the point where it was stopped. See Figure 15-25
on page 202. This mode must be selected when the external device uses the NWAIT signal to
delay the access and to freeze the SMC.

Alm L 201

Y 5

AT32UC3A3

The assertion of the NWAIT signal outside the expected period is ignored as illustrated in Figure
15-26 on page 203.

Figure 15-25. Write Access with NWAIT Assertion in Frozen Mode (MODE.EXNWMODE = 2).

CLK_SMC ,_\ | | | | | | | | | |

AIAD_MSB:2] I<

NBSO, NBST, k
AQ, A1

FROZEN STATE

| |
| |
| |
1 |
| |
| |
| |
t |
|
1y f 0
| |
| |
| |
| |
} t
| |
| |
| |
| |
| |
| |
| |
| |
| |
i
|

A

NWE

2
NCS

NWAIT

Internally synchronized
NWAIT signal

e et L et I B B

"

Write cycle

|
|
|
|
|
|
|
|
|
|
D[15:0] | | (
| |
|
|
|
|
|
|
|
|
|
|
|

EXNWMODE = 2 (Frozen)
WRITEMODE = 1 (NWE controlled)

NWEPULSE =5
NCSWRPULSE =7

Alm L 202

32072H-AVR32-10/2012 I ©

Figure 15-26. Read Access with NWAIT Assertion in Frozen Mode (MODE.EXNWMODE = 2).

CLK_SMC | | | | | | | | | |

| | | | | | I I | | | I

|] | | |]]] | | |]
AAD_MsB:2] K I | [[I | | | I [>

| I I 1 1 I T I I 1 1 I

| | | | | | I I | | | I

NBSO, NBST1, I< f f f f f i i f 1 1 f

A0, A1 |]]]]] | |]]] l

[| [[| FROZEN sTATE | | [[[|

| | | | I | | | I

I4\ 4 1 3 I 2 | 2 | 2 1 I o } } } }

NCS | | | | | | I I | 2 | 1 I o I

| | | | | | | | | | | |

| | 1 | 0 | | I I I | | | |

| | 1 I T I I I 1 I

NRD | I NN———¥ 5 |1 5 | ° I 4 1 3 1 2 1 1 | 0

| | | | | I I I | | | I

| | | | | | I I | | | I

NWAIT ¢ 1 | | | | |\ I | | | f

| | } | | | I } | | | I

| | | | | | I I | | | I

Internally synchronized: ! ! : : : ! ! ! : : I

NWAIT signal \) K ! N A

| ' X 1/ | ' NV | |

| A I

| I

| Read cycle |

EXNWMODE = 2 (Frozen)
READMODE = 0 (NCS controlled)

NRDPULSE = 2, NRDHOLD = 6 Assertion is ignored

NCSRDPULSE =5, NCSRDHOLD =3

Alm L 203

32072H-AVR32-10/2012 I ©

15.6.7.3 Ready mode

In Ready mode (MODE.EXNWMODE = 3), the SMC behaves differently. Normally, the SMC
begins the access by down counting the setup and pulse counters of the read/write controlling
signal. In the last cycle of the pulse phase, the resynchronized NWAIT signal is examined.

If asserted, the SMC suspends the access as shown in Figure 15-27 on page 204 and Figure
15-28 on page 205. After deassertion, the access is completed: the hold step of the access is
performed.

This mode must be selected when the external device uses deassertion of the NWAIT signal to
indicate its ability to complete the read or write operation.

If the NWAIT signal is deasserted before the end of the pulse, or asserted after the end of the
pulse of the controlling read/write signal, it has no impact on the access length as shown in Fig-
ure 15-28 on page 205.

Figure 15-27. NWAIT Assertion in Write Access: Ready Mode (MODE.EXNWMODE = 3).

CLK_SMC

A[AD_MSB:2]

NBSO, NBS1,
AO, A1

NWE

NCS

D[15:0]

NWAIT

Internally synchronized
NWAIT signal

32072H-AVR32-10/2012

| | | | |
| | | I : :
| |]] 1]
:< [[| | [| >
S T T R —
:K i i i i FFJIEZENSTAE i i >
' oy | 3 o2 Iy 0) 0 0 | ! '
| | I | | ﬂ /‘I | |
R N R R A AR
| i i I | i | i |
N R R : .
A | —
— : A —
| | | | | | |
SN ' N

\

—_————e,d e e e = =

\

Write cycle

EXNWMODE = 3 (Ready mode)
WRITEMODE =1 (NWE_controlled)

NWEPULSE =5
NCSWRPULSE =7

Alm L 204

Y 5

3).

CLK_SMC

Figure 15-28. NWAIT Assertion in Read Access: Ready Mode (EXNWMODE

AJAD_MSB:2]

205

7

7

NRDPULSE
NCSRDPULSE

Y 5

AIMEL

NBSO, NBS1
A0, A1

D R R Y
»i
)
o
=
w /
= o -
©
| X, |- ——d _———__ ——4 =
./ =
o
~~—— 8=
o -~ E S
> O
©
||||||||||||||||| ||I-.%S
€2
- oS
N oy
w
el oy
|||||||||||||||| - 2790
o =2
3| £2
N ™ 0]
pan
e
o <
< [Te} »i
\A
w0 ©
©
_— - __ X
] m]
(@] e
b4 z

Internally synchronized
NWAIT signal

Assertion is ignored

32072H-AVR32-10/2012

15.6.7.4 NWAIT latency and read/write timings

There may be a latency between the assertion of the read/write controlling signal and the asser-
tion of the NWAIT signal by the device. The programmed pulse length of the read/write
controlling signal must be at least equal to this latency plus the two cycles of resynchronization
plus one cycle. Otherwise, the SMC may enter the hold state of the access without detecting the
NWAIT signal assertion. This is true in frozen mode as well as in ready mode. This is illustrated
on Figure 15-29 on page 206.

When the MODE.EXNWMODE field is enabled (ready or frozen), the user must program a pulse
length of the read and write controlling signal of at least:

minimal pulse length = NWAIT latency + 2 synchronization cycles + 1 cycle

Figure 15-29. NWAIT Latency

CLK_SMC

A[AD_MSB:2]

NBSO, NBS1,
A0, A1

NRD

NWAIT

nternally synchronized
NWAIT signal

32072H-AVR32-10/2012

NN

WaitI STATE

-~ -

A

!Read cycle !
T 1

[
[
|
[
[
|
I
:
:
I
i
t
|
[

A 4

l
[
[
|
|
l
|
[l—F——!
R 4 3 2 1 o | o 0 /l—l—
| l I
| »|
|‘ Minimal pqlse length '|
| I |
| I [
| ; |
|<—>4+> I
l NWAIT latency 2 cycle resyr!mhronizatio :
|
[
[
I
[

EXNWMODE =b or 3

READMODE = 1 (NRD contfolled)
I [[

NRPPULSE = 5| [

e e s R R o e ol s g o
—_———--t - -—-—]—-—4 - —— 4

Alm L 206

Y 5

15.6.8 Slow Clock Mode
The SMC is able to automatically apply a set of “slow clock mode” read/write waveforms when
an internal signal driven by the SMC’s Power Management Controller is asserted because
CLK_SMC has been turned to a very slow clock rate (typically 32 kHz clock rate). In this mode,
the user-programmed waveforms are ignored and the slow clock mode waveforms are applied.
This mode is provided so as to avoid reprogramming the User Interface with appropriate wave-
forms at very slow clock rate. When activated, the slow mode is active on all chip selects.

15.6.8.1 Slow clock mode waveforms

Figure 15-30 on page 207 illustrates the read and write operations in slow clock mode. They are
valid on all chip selects. Table 15-5 on page 207 indicates the value of read and write parame-
ters in slow clock mode.

Figure 15-30. Read and Write Cycles in Slow Clock Mode

CLK_SMC

I I I
A[AD_MSB:2] >{I AIAD_MsB:2] | >< ' '><
I
[[
NBSO0, NBS1, NBSO, NBSH1, f
A0, A1 X A0, A1 M
[

[I

[| |

I I I I NRD | I I
NWE | 1 [1 [[1 |
| |

CLK_SMC

A

|

[| 1 | [1 |

' ' | NCS | l——»!
NCS _{\ ! ! 4 | . /

[I ! [[|

| NWECYCLES=3 N | NRDCYCLES=2 |

< > «— 3

I | |

SLOW CLOCK MODE WRITE L oW CLOCK MODE READ

Table 15-5. Read and Write Timing Parameters in Slow Clock Mode

Read Parameters Duration (cycles) Write Parameters Duration (cycles)
NRDSETUP 1 NWESETUP 1
NRDPULSE 1 NWEPULSE 1
NCSRDSETUP 0 NCSWRSETUP 0
NCSRDPULSE 2 NCSWRPULSE 3
NRDCYCLE 2 NWECYCLE 3

AIMEL 207

32072H-AVR32-10/2012 I ©

15.6.8.2 Switching from (to) slow clock mode to (from) normal mode

When switching from slow clock mode to the normal mode, the current slow clock mode transfer
is completed at high clock rate, with the set of slow clock mode parameters. See Figure 15-31
on page 208. The external device may not be fast enough to support such timings.

Figure 15-32 on page 209 illustrates the recommended procedure to properly switch from one
mode to the other.

Figure 15-31. Clock Rate Transition Occurs while the SMC is Performing a Write Operation

Slow Clock Mode

Internal signal from PM

CLK_SMC ‘ | | |

A[AD_MSB:2] }(

NBSO0, NBS1,
A0, A1

|

£

L0

por — — 4 —— L - -

=

.

TTTT K

N P T 1 1 e e 2
|] | T e
—\ | I I
NCS | | | I/
I [I
NWECYCLE =3 | (. NWECYCLE = 7
Y L) >) >
SLOW CLOCK MODE WRITE SLd)W CLOCK MODE V\IIRITI:E NORMAL MODE WRITE
[
>
This write cycle finishes with the slow clock mode set Slow clock mode transition is detected:
of parameters after the clock rate transition Reload Configuration Wait State

32072H-AVR32-10/2012

AIMEL 208

Y 5

AT32UC3A3

Figure 15-32. Recommended Procedure to Switch from Slow Clock Mode to Normal Mode or from Normal Mode to Slow
Clock Mode

Slow Clock Mode
Internal signal from PM |

e] EpELnhnhhhhnhnhhin

A[AD_MSB:2] ?(

NBSO, NBST, :><
A0, A1

Lol o1 g1y L2, 131 Py
| | | ' I I A
NCS |\ | | / N
| | | | [T 1 T I
| sLow cLock MoDE WRITE | IDLE STATE I NorMAL MoDE WRiTE !

Reload Configuration
Wait State

15.6.9 Asynchronous Page Mode
The SMC supports asynchronous burst reads in page mode, providing that the Page Mode
Enabled bit is written to one in the MODE register (MODE.PMEN). The page size must be con-
figured in the Page Size field in the MODE register (MODE.PS) to 4, 8, 16, or 32 bytes.

The page defines a set of consecutive bytes into memory. A 4-byte page (resp. 8-, 16-, 32-byte
page) is always aligned to 4-byte boundaries (resp. 8-, 16-, 32-byte boundaries) of memory. The
MSB of data address defines the address of the page in memory, the LSB of address define the
address of the data in the page as detailed in Table 15-6 on page 209.

With page mode memory devices, the first access to one page (t,,) takes longer than the subse-
quent accesses to the page (t;,) as shown in Figure 15-33 on page 210. When in page mode,
the SMC enables the user to define different read timings for the first access within one page,
and next accesses within the page.

Table 15-6. Page Address and Data Address within a Page

Page Size Page Address® Data Address in the Page®
4 bytes A[23:2] A[1:0]
8 bytes A[23:3] A[2:0]
16 bytes A[23:4] A[3:0]
32 bytes A[23:5] A[4:0]

Notes: 1. A denotes the address bus of the memory device
2. For 16-bit devices, the bit 0 of address is ignored.

15.6.9.1 Protocol and timings in page mode
Figure 15-33 on page 210 shows the NRD and NCS timings in page mode access.

Alm L 209

32072H-AVR32-10/2012 I ©

AT32UC3A3

Figure 15-33. Page Mode Read Protocol (Address MSB and LSB Are Defined in Table 15-6 on page 209)

CLK_SMCIIIIIIIIIIIIII
A[MSB]j(

|

[

I

[
A[LSB] W 3¢

X
X X

_)__

NRD ya
Prs) EEEECECE(D XX 22 XXL —

A

NCSRDPULSE NRDPULSE NRDPULSE

»ld
L)

1 I
I I
I I
I I
I I
[Il
I I
I I
I [
I I
I I
I I
[[l
T T
I I
4 }
I I
I I
I I
I I
I I
»l |
> »

>
Y

The NRD and NCS signals are held low during all read transfers, whatever the programmed val-
ues of the setup and hold timings in the User Interface may be. Moreover, the NRD and NCS
timings are identical. The pulse length of the first access to the page is defined with the
PULSE.NCSRDPULSE field value. The pulse length of subsequent accesses within the page
are defined using the PULSE.NRDPULSE field value.

In page mode, the programming of the read timings is described in Table 15-7 on page 210:

Table 15-7. Programming of Read Timings in Page Mode

Parameter Value Definition

READMODE X' No impact

NCSRDSETUP X' No impact

NCSRDPULSE toa Access time of first access to the page
NRDSETUP X' No impact

NRDPULSE tsa Access time of subsequent accesses in the page
NRDCYCLE X' No impact

The SMC does not check the coherency of timings. It will always apply the NCSRDPULSE tim-
ings as page access timing (t,,) and the NRDPULSE for accesses to the page (i), even if the
programmed value for t,, is shorter than the programmed value for t,.

15.6.9.2 Byte access type in page mode
The byte access type configuration remains active in page mode. For 16-bit or 32-bit page mode
devices that require byte selection signals, configure the MODE.BAT bit to zero (byte select
access type).

Alm L 210

32072H-AVR32-10/2012 I ©

15.6.9.3 Page mode restriction

The page mode is not compatible with the use of the NWAIT signal. Using the page mode and
the NWAIT signal may lead to unpredictable behavior.

15.6.9.4 Sequential and non-sequential accesses

If the chip select and the MSB of addresses as defined in Table 15-6 on page 209 are identical,
then the current access lies in the same page as the previous one, and no page break occurs.

Using this information, all data within the same page, sequential or not sequential, are accessed
with a minimum access time (tg,). Figure 15-34 on page 211 illustrates access to an 8-bit mem-
ory device in page mode, with 8-byte pages. Access to D1 causes a page access with a long
access time (t,,). Accesses to D3 and D7, though they are not sequential accesses, only require
a short access time (tg,).

If the MSB of addresses are different, the SMC performs the access of a new page. In the same
way, if the chip select is different from the previous access, a page break occurs. If two sequen-
tial accesses are made to the page mode memory, but separated by an other internal or external
peripheral access, a page break occurs on the second access because the chip select of the
device was deasserted between both accesses.

Figure 15-34. Access to Non-sequential Data within the Same Page

awcswe [LT L LML L1101

[

A[AD_MSB:3] F<
[

A[2], A1, AO x'
[

NRD

NCS ‘{\

D[7:0]

32072H-AVR32-10/2012

P!age address

A3

-

A1

>< A7

TW\XX—

LKL D1

NCSRDPULSE

2XXL E;rs >0 XX ot

A

». »
L) 'I‘ Ll

|
NRDPULSE | NRDPULSE I
|

Alm L 211

Y 5

15.7 User Interface

The SMC is programmed using the registers listed in Table 15-8 on page 212. For each chip select, a set of four registers
is used to program the parameters of the external device connected on it. In Table 15-8 on page 212, “CS_number”
denotes the chip select number. Sixteen bytes (0x10) are required per chip select.

The user must complete writing the configuration by writing anyone of the Mode Registers.

Table 15-8. SMC Register Memory Map

Offset Register Register Name Access Reset
0x00 + CS_number*0x10 Setup Register SETUP Read/Write 0x01010101
0x04 + CS_number*0x10 Pulse Register PULSE Read/Write 0x01010101
0x08 + CS_number*0x10 Cycle Register CYCLE Read/Write 0x00030003
0x0C + CS_number*0x10 Mode Register MODE Read/Write 0x10002103

AIMEL 212

32072H-AVR32-10/2012 I ©

15.7.1 Setup Register

Register Name: SETUP

Access Type: Read/Write

Offset: 0x00 + CS_number*0x10

Reset Value: 0x01010101
31 30 29 28 27 26 25 24

‘ - \ - \ NCSRDSETUP ‘
23 22 21 20 19 18 17 16

‘ - ‘ - ‘ NRDSETUP ‘
15 14 13 12 11 10 9 8

‘ - ‘ - ‘ NCSWRSETUP ‘
7 6 5 4 3 2 1 0

‘ - ‘ - ‘ NWESETUP ‘

¢ NCSRDSETUP: NCS Setup Length in READ Access
In read access, the NCS signal setup length is defined as:

NCS Setup Length in read access = (128 x NCSRDSETUP[5] + NCSRDSETUP[4:0]) clock cycles

» NRDSETUP: NRD Setup Length
The NRD signal setup length is defined in clock cycles as:

NRD Setup Length = (128 x NRDSETUP[5]+ NRDSETUP[4:0]) clock cycles

¢ NCSWRSETUP: NCS Setup Length in WRITE Access
In write access, the NCS signal setup length is defined as:

NCS Setup Length in write access = (128 x NCSWRSETUP[5] + NCSWRSETUP[4:0]) clock cycles

+ NWESETUP: NWE Setup Length
The NWE signal setup length is defined as:

NWE Setup Length = (128 x NWESETUP[5] + NWESETUP[4:0]) clock cycles

AIMEL 213

32072H-AVR32-10/2012 I ©

15.7.2 Pulse Register

Register Name: PULSE

Access Type: Read/Write

Offset: 0x04 + CS_number*0x10

Reset Value: 0x01010101
31 30 29 28 27 26 25 24

‘ - \ NCSRDPULSE ‘
23 22 21 20 19 18 17 16

‘ _ ‘ NRDPULSE ‘
15 14 13 12 11 10 9 8

‘ - ‘ NCSWRPULSE ‘
7 6 5 4 3 2 1 0

‘ - ‘ NWEPULSE ‘

* NCSRDPULSE: NCS Pulse Length in READ Access
In standard read access, the NCS signal pulse length is defined as:

NCS Pulse Length in read access = (256 x NCSRDPULSE[6] + NCSRDPULSE[5:0]) clock cycles

The NCS pulse length must be at least one clock cycle.
In page mode read access, the NCSRDPULSE field defines the duration of the first access to one page.
« NRDPULSE: NRD Pulse Length

In standard read access, the NRD signal pulse length is defined in clock cycles as:

NRD Pulse Length = (256 x NRDPULSE[6] + NRDPULSE[5:0]) clock cycles

The NRD pulse length must be at least one clock cycle.

In page mode read access, the NRDPULSE field defines the duration of the subsequent accesses in the page.
¢ NCSWRPULSE: NCS Pulse Length in WRITE Access

In write access, the NCS signal pulse length is defined as:

NCS Pulse Length in write access = (256 x NCSWRPULSE[6] + NCSWRPULSE[5:0]) clock cycles

The NCS pulse length must be at least one clock cycle.
¢ NWEPULSE: NWE Pulse Length

The NWE signal pulse length is defined as:

NWE Pulse Length = (256 x NWEPULSE[6] + NWEPULSE[5:0]) clock cycles

The NWE pulse length must be at least one clock cycle.

AIMEL 214

32072H-AVR32-10/2012 I ©

15.7.3 Cycle Register

Register Name:
Access Type:

Offset:

CYCLE
Read/Write

0x08 + CS_number*0x10

Reset Value: 0x00030003
31 30 29 28 27 26 25 24

‘ _ _ _ _ - - - NRDCYCLEJg] ‘
23 22 21 20 19 18 17 16

‘ NRDCYCLE[7:0] ‘
15 14 13 12 11 10 9 8

‘ _ _ _ _ - - - NWECYCLE[8] ‘
7 6 5 4 3 2 1 0

NWECYCLE[7:0]

« NRDCYCLE[8:0]: Total Read Cycle Length

The total read cycle length is the total duration in clock cycles of the read cycle. It is equal to the sum of the setup, pulse and
hold steps of the NRD and NCS signals. It is defined as:

« NWECYCLE[8:0]: Total Write Cycle Length

Read Cycle Length = (256 x NRDCYCLE[8:7] + NRDCYCLE[6:0]) clock cycles

The total write cycle length is the total duration in clock cycles of the write cycle. It is equal to the sum of the setup, pulse and
hold steps of the NWE and NCS signals. It is defined as:

32072H-AVR32-10/2012

Write Cycle Length = (256 x NWECYCLE[8:7] + NWECYCLE[6:0]) clock cycles

ATMEL

Y 5

215

15.7.4

Access Type:

Mode Register
Register Name:

MODE
Read/Write

Offset: 0x0C + CS_number*0x10

Reset Value: 0x10002103
31 30 29 28 27 26 25 24

‘ - \ - PS \ - - - PMEN ‘
23 22 21 20 19 18 17 16

‘ - ‘ - - TDFMODE ‘ TDFCYCLES ‘
15 14 13 12 11 10 9 8

‘ - ‘ - DBW ‘ - - ‘ - BAT ‘
7 6 5 4 3 2 1 0

‘ - ‘ - EXNWMODE ‘ - - ‘ WRITEMODE ‘ READMODE ‘

« PS: Page Size

If page mode is enabled, this field indicates the size of the page in bytes.

PS Page Size

0 4-byte page
1 8-byte page
2 16-byte page
3 32-byte page

< PMEN: Page Mode Enabled

¢ TDFCYCLES: Data Float Time

1: Asynchronous burst read in page mode is applied on the corresponding chip select.

0: Standard read is applied.
 TDFMODE: TDF Optimization

1: TDF optimization is enabled. The number of TDF wait states is optimized using the setup period of the next read/write
access.
0: TDF optimization is disabled.The number of TDF wait states is inserted before the next access begins.

This field gives the integer number of clock cycles required by the external device to release the data after the rising edge of the
read controlling signal. The SMC always provide one full cycle of bus turnaround after the TDFCYCLES period. The external

bus cannot be used by another chip select during TDFCYCLES plus one cycles. From 0 up to 15 TDFCYCLES can be set.

32072H-AVR32-10/2012

ATMEL

Y 5

216

« DBW: Data Bus Width

DBW Data Bus Width
0 8-bit bus
1 16-bit bus
2 Reserved
3 Reserved

* BAT: Byte Access Type
This field is used only if DBW defines a 16-bit data bus.

BAT Byte Access Type

Byte select access type:
0 Write operation is controlled using NCS, NWE, NBSO, NBS1
Read operation is controlled using NCS, NRD, NBS0O, NBS1

Byte write access type:
1 Write operation is controlled using NCS, NWRO, NWR1
Read operation is controlled using NCS and NRD

« EXNWMODE: External WAIT Mode
The NWAIT signal is used to extend the current read or write signal. It is only taken into account during the pulse phase of the

read and write controlling signal. When the use of NWAIT is enabled, at least one cycle hold duration must be programmed for
the read and write controlling signal.
EXNWMODE External NWAIT Mode

0 Disabled:
the NWAIT input signal is ignored on the corresponding chip select.
1 Reserved

Frozen Mode:
2 if asserted, the NWAIT signal freezes the current read or write cycle. after deassertion, the read or write cycle
is resumed from the point where it was stopped.

Ready Mode:

the NWAIT signal indicates the availability of the external device at the end of the pulse of the controlling read
or write signal, to complete the access. If high, the access normally completes. If low, the access is extended
until NWAIT returns high.

« WRITEMODE: Write Mode
1: The write operation is controlled by the NWE signal. If TDF optimization is enabled (TDFMODE =1), TDF wait states will be

inserted after the setup of NWE.
0: The write operation is controlled by the NCS signal. If TDF optimization is enabled (TDFMODE =1), TDF wait states will be

inserted after the setup of NCS.

AIMEL 217

32072H-AVR32-10/2012 I ©

« READMODE: Read Mode

READMODE Read Access Mode

The read operation is controlled by the NCS signal.
0 If TDF are programmed, the external bus is marked busy after the rising edge of NCS.
If TDF optimization is enabled (TDFMODE = 1), TDF wait states are inserted after the setup of NCS.

The read operation is controlled by the NRD signal.
1 If TDF cycles are programmed, the external bus is marked busy after the rising edge of NRD.
If TDF optimization is enabled (TDFMODE =1), TDF wait states are inserted after the setup of NRD.

AIMEL 218

32072H-AVR32-10/2012 I ©

16. SDRAM Controller (SDRAMC)
Rev: 2.2.04

16.1 Features
e 128-Mbytes address space
* Numerous configurations supported
— 2K, 4K, 8K row address memory parts
— SDRAM with two or four internal banks
— SDRAM with 16-bit data path
* Programming facilities
— Word, halfword, byte access
— Automatic page break when memory boundary has been reached
— Multibank ping-pong access
— Timing parameters specified by software
— Automatic refresh operation, refresh rate is programmable
— Automatic update of DS, TCR and PASR parameters (mobile SDRAM devices)
* Energy-saving capabilities
— Self-refresh, power-down, and deep power-down modes supported
— Supports mobile SDRAM devices
e Error detection
— Refresh error interrupt
* SDRAM power-up initialization by software
* CAS latency of one, two, and three supported
* Auto Precharge command not used

16.2 Overview
The SDRAM Controller (SDRAMC) extends the memory capabilities of a chip by providing the
interface to an external 16-bit SDRAM device. The page size supports ranges from 2048 to 8192
and the number of columns from 256 to 2048. It supports byte (8-bit) and halfword (16-bit)
accesses.

The SDRAMC supports a read or write burst length of one location. It keeps track of the active
row in each bank, thus maximizing SDRAM performance, e.g., the application may be placed in
one bank and data in the other banks. So as to optimize performance, it is advisable to avoid
accessing different rows in the same bank.

The SDRAMC supports a CAS latency of one, two, or three and optimizes the read access
depending on the frequency.

The different modes available (self refresh, power-down, and deep power-down modes) mini-
mize power consumption on the SDRAM device.

AIMEL 219

32072H-AVR32-10/2012 I ©

16.3 Block Diagram

Figure 16-1. SDRAM Controller Block Diagram

SDCK 3> —)I SDCK
SDRAMC SDCKE —Pl:ISDCKE
Chip Select > sDCS
Memory > —>|:|Ncsm
Controller BA[1:0]
SDRAMC = —>| ADDRI[17:16]
P Interrupt RAS
< > —>| RAS
cAS > L 5[Jeas
SDWE
Power CLK_SDRAMC ” EBI o I:l SDWE
Manager > DAM[0] MUX Logic Controller —>| ADDR[0]
Damp] —{ | Nwet
SDRAMC_A[9:0
‘_L* ! S —>| ADDRI[11:2]
SDRAMC_A[10] |:|SDA10
SDRAMC_A[12:11]
nﬁ # q' B
User Interface D[15:0] ADDR[13:14]
4—>|:| DATA[15:0]
Peripheral Bus i
<€ >
16.4 1/O Lines Description
Table 16-1. 1/O Lines Description
Name Description Type Active Level
SDCK SDRAM Clock Output
SDCKE SDRAM Clock Enable Output High
SDCS SDRAM Chip Select Output Low
BA[1:0] Bank Select Signals Output
RAS Row Signal Output Low
CAS Column Signal Output Low
SDWE SDRAM Write Enable Output Low

32072H-AVR32-10/2012

ATMEL

Y 5

220

Table 16-1. 1/O Lines Description

Name Description Type Active Level
DQMI[1:0] Data Mask Enable Signals Output High
SDRAMC_A[12:0] Address Bus Output

D[15:0] Data Bus Input/Output

16.5 Application Example

16.5.1 Hardware Interface

Figure 16-2 on page 221 shows an example of SDRAM device connection using a 16-bit data
bus width. It is important to note that this example is given for a direct connection of the devices
to the SDRAMC, without External Bus Interface or I1/O Controller multiplexing.

Figure 16-2. SDRAM Controller Connections to SDRAM Devices: 16-bit Data Bus Width

N\
2Mx8
% — 2Mx8
SDCK N Do-D7 D8-D15|
SDOKE ——— D0-D7 N2 o7
SDWE
DoV —— Sk <
,— CLK
\?\;EE ADAIAI SDRAMC A10 Y/ CKE AC-A9AT
A10 WE A10 SDRAMC A10
RAS BADE (— RAS BAOf-2
SDRAM G 5 Bt
DQV0 DQw bau
Controller
N\ y /
v
SDRAMC_A[0-12]
BAO
BA1

Lk&«

16.5.2 Software Interface

The SDRAM address space is organized into banks, rows, and columns. The SDRAMC allows

mapping different memory types according to the values set in the SDRAMC Configuration Reg-
ister (CR).

The SDRAMC's function is to make the SDRAM device access protocol transparent to the user.
Table 16-2 on page 222 to Table 16-4 on page 222 illustrate the SDRAM device memory map-

ping seen by the user in correlation with the device structure. Various configurations are
illustrated.

Alm L 221

32072H-AVR32-10/2012 I ©

16.5.2.1 16-bit memory data bus width

Table 16-2. SDRAM Configuration Mapping: 2K Rows, 256/512/1024/2048 Columns

CPU Address Line

27 | 26 | 25 | 24 | 23 | 22 | 21 ‘ 20 | 19 ‘ 18 ‘ 17 ‘ 16 ‘ 15 | 14 ‘ 13 ‘ 12 ‘ 1 ‘ 10 ‘ 9 8 ‘ 7 ‘ 6 ‘ 5 ‘ 4 ‘ 3 ‘ 2 ‘ 1 0
BA[1:0] Row[10:0] Column([7:0] MO

BA[1:0] ‘ Row[10:0] ‘ Column[8:0] MO

BA[1:0] ‘ Row([10:0] ‘ Column([9:0] MO

BA[1:0] ‘ Row[10:0] ‘ Column[10:0] MO

Table 16-3. SDRAM Configuration Mapping: 4K Rows, 256/512/1024/2048 Columns

CPU Address Line

27 26 25 24 23 22 ‘ 21 20 ‘ 19 ‘ 18 ‘ 17 ‘ 16 ‘ 15 ‘ 14 ‘ 13 ‘ 12 ‘ 11 ‘ 10 ‘ 9 8 ‘ 7 ‘ 6 ‘ 5 ‘ 4 ‘ 3 ‘ 2 ‘ 1 0
BA[1:0] Row[11:0] Column[7:0] MO

BA[1:0] ‘ Row([11:0] ‘ Column[8:0] MO

BA[1:0] ‘ Row[11:0] ‘ Column[9:0] MO

BA[1:0] ‘ Row([11:0] ‘ Column[10:0] MO

Table 16-4. SDRAM Configuration Mapping: 8K Rows, 256/512/1024/2048 Columns

CPU Address Line
27 | 26 | 25 | 24 | 23 ‘ 22 |21 ‘ 20 ‘ 19 ‘ 18 ‘ 17 ‘ 16 | 15 ‘ 14 ‘ 13 ‘ 12 ‘ 1 ‘ 10‘ 9 8 ‘ 7 ‘ 6 ‘ 5 ‘ 4 ‘ 3 ‘ 2 ‘ 1 0
BA[1:0] Row[12:0] Column([7:0] MO
BA[1:0] ‘ Row([12:0] ‘ Column([8:0] MO
BA[1:0] ‘ Row[12:0] ‘ Column[9:0] MO
BA[1:0] ‘ Row([12:0] ‘ Column[10:0] MO

Notes: 1. MO is the byte address inside a 16-bit halfword.

16.6 Product Dependencies

In order to use this module, other parts of the system must be configured correctly, as described
below.

16.6.1 I/O Lines
The SDRAMC module signals pass through the External Bus Interface (EBI) module where they
are multiplexed. The user must first configure the 1/0 controller to assign the EBI pins corre-
sponding to SDRAMC signals to their peripheral function. If I/O lines of the EBI corresponding to
SDRAMC signals are not used by the application, they can be used for other purposes by the
I/O Controller.

16.6.2 Power Management
The SDRAMC must be properly stopped before entering in reset mode, i.e., the user must issue
a Deep power mode command in the Mode (MD) register and wait for the command to be
completed.

AIMEL 222

32072H-AVR32-10/2012 I ©

16.6.3 Clocks
The clock for the SDRAMC bus interface (CLK_SDRAMC) is generated by the Power Manager.
This clock is enabled at reset, and can be disabled in the Power Manager. It is recommended to
disable the SDRAMC before disabling the clock, to avoid freezing the SDRAMC in an undefined
state.

16.6.4 Interrupts
The SDRAMC interrupt request line is connected to the interrupt controller. Using the SDRAMC
interrupt requires the interrupt controller to be programmed first.

16.7 Functional Description

16.7.1 SDRAM Device Initialization

The initialization sequence is generated by software. The SDRAM devices are initialized by the
following sequence:

1. SDRAM features must be defined in the CR register by writing the following fields with
the desired value: asynchronous timings (TXSR, TRAS, TRCD, TRP, TRC, and TWR),
Number of Columns (NC), Number of Rows (NR), Number of Banks (NB), CAS Latency
(CAS), and the Data Bus Width (DBW).

2. For mobile SDRAM devices, Temperature Compensated Self Refresh (TCSR), Drive
Strength (DS) and Partial Array Self Refresh (PASR) fields must be defined in the Low
Power Register (LPR).

3. The Memory Device Type field must be defined in the Memory Device Register
(MDR.MD).

4. A No Operation (NOP) command must be issued to the SDRAM devices to start the
SDRAM clock. The user must write the value one to the Command Mode field in the
SDRAMC Mode Register (MR.MODE) and perform a write access to any SDRAM
address.

5. A minimum pause of 200ps is provided to precede any signal toggle.

6. An All Banks Precharge command must be issued to the SDRAM devices. The user
must write the value two to the MR.MODE field and perform a write access to any
SDRAM address.

7. Eight Auto Refresh commands are provided. The user must write the value four to the
MR.MODE field and performs a write access to any SDRAM location eight times.

8. A Load Mode Register command must be issued to program the parameters of the
SDRAM devices in its Mode Register, in particular CAS latency, burst type, and burst
length. The user must write the value three to the MR.MODE field and perform a write
access to the SDRAM. The write address must be chosen so that BA[1:0] are set to
zero. See Section 16.8.1 for details about Load Mode Register command.

9. For mobile SDRAM initialization, an Extended Load Mode Register command must be
issued to program the SDRAM devices parameters (TCSR, PASR, DS). The user must
write the value five to the MR.MODE field and perform a write access to the SDRAM.
The write address must be chosen so that BA[1] or BA[O] are equal to one. See Section
16.8.1 for details about Extended Load Mode Register command.

10. The user must go into Normal Mode, writing the value 0 to the MR.MODE field and per-
forming a write access at any location in the SDRAM.

11. Write the refresh rate into the Refresh Timer Count field in the Refresh Timer Register
(TR.COUNT). The refresh rate is the delay between two successive refresh cycles. The
SDRAM device requires a refresh every 15.625us or 7.81us. With a 100MHz fre-

Alm L 223

32072H-AVR32-10/2012 I ©

quency, the TR register must be written with the value 1562 (15.625 pus x 100 MHz) or
781 (7.81 ps x 100 MHz).

After initialization, the SDRAM devices are fully functional.

Figure 16-3. SDRAM Device Initialization Sequence

| | |
SDCKE | | | I trp I | | I | tee | | | tyro | !
I I I I < ; ; » | | < f f f f > > |

X

g

SDRAMC_A[9:0]

i

A10

SDRAMC_A[12:11]

I I I
; ; ;
| | |
I I I
I I I	
I	
I I I	
sbcs	I I
f f f	
I I I	
} } }	
I I I	
f f f	
]]]	
I I I	
I I I	
f f f

| §
| §
; §
N T
| §
| §
? §

TR RO KRR

I
]
1
|
I
|
|
I
|
A4 / |
I I
I I | | | I
} ! } } } |
RAS VA N K A
| I | | | I
| l Il Il 1 Il
1 1 T T T 1
CAS L AN ! o
| I | | | | I
! ! } | } } } !
SDWE I I | I I |
I I | | | | | I
DQM | | I I I I | I
I I I I I I I |
Inputs Stable for Precharge All Banks 1st Auto Refresh 8th Auto Refresh LMR Command Valid Command

200 usec

16.7.2 SDRAM Controller Write Cycle

The SDRAMC allows burst access or single access. In both cases, the SDRAMC keeps track of
the active row in each bank, thus maximizing performance. To initiate a burst access, the
SDRAMC uses the transfer type signal provided by the master requesting the access. If the next
access is a sequential write access, writing to the SDRAM device is carried out. If the next
access is a write-sequential access, but the current access is to a boundary page, or if the next
access is in another row, then the SDRAMC generates a precharge command, activates the
new row and initiates a write command. To comply with SDRAM timing parameters, additional
clock cycles are inserted between precharge and active (tgp) commands and between active
and write (tgcp) commands. For definition of these timing parameters, refer to the Section
16.8.3. This is described in Figure 16-4 on page 225.

Alm L 224

32072H-AVR32-10/2012 I ©

AT32UC3A3

Figure 16-4. Write Burst, 16-bit SDRAM Access

[
[
[
spbcs |
[

trop =3

4_¥_

-

SDCK l |
|

[
SDRAMC_A[12:0] X: Rown X Colai Xco|bXCo|cXCo|dXCo|eXCoIfXCoIgXCothCoIiXColeColkXCoII>C
[

RAS

CAS

L

—

SDWE

D[15:0]

| |

|
|

{ E:na X Drb X Drc X Dnd X Dne X Dnf X Dng ¥ Dnh X Dri X brj X Dnk X Dnl }—
|

16.7.3 SDRAM Controller Read Cycle

32072H-AVR32-10/2012

The SDRAMC allows burst access, incremental burst of unspecified length or single access. In
all cases, the SDRAMC keeps track of the active row in each bank, thus maximizing perfor-
mance of the SDRAM. If row and bank addresses do not match the previous row/bank address,
then the SDRAMC automatically generates a precharge command, activates the new row and
starts the read command. To comply with the SDRAM timing parameters, additional clock cycles
on SDCK are inserted between precharge and active (tzp) commands and between active and
read (tgcp) cOmmands. These two parameters are set in the CR register of the SDRAMC. After a
read command, additional wait states are generated to comply with the CAS latency (one, two,
or three clock delays specified in the CR register).

For a single access or an incremented burst of unspecified length, the SDRAMC anticipates the
next access. While the last value of the column is returned by the SDRAMC on the bus, the
SDRAMC anticipates the read to the next column and thus anticipates the CAS latency. This
reduces the effect of the CAS latency on the internal bus.

For burst access of specified length (4, 8, 16 words), access is not anticipated. This case leads
to the best performance. If the burst is broken (border, busy mode, etc.), the next access is han-
dled as an incrementing burst of unspecified length.

‘Illll L 225

Y 5

AT32UC3A3

Figure 16-5. Read Burst, 16-bit SDRAM Access

trep =3

I
I
sDcs :
I

SDRAMC_A[12:0] X

RAS

CAS

SDWE

|
|
Row n X Col a: X Col bXCioI cXCoI dXCoI ex Col fX
|
|
|
|
!
|
|

D[15:0]
(Input)

(Dnai XX Db Dnc X{ Dnd W Dne XY Dnf y——

16.7.4 Border Management
When the memory row boundary has been reached, an automatic page break is inserted. In this
case, the SDRAMC generates a precharge command, activates the new row and initiates a read
or write command. To comply with SDRAM timing parameters, an additional clock cycle is
inserted between the precharge and active (tzp) commands and between the active and read
(tzcp) commands. This is described in Figure 16-6 on page 227.

Alm L 226

32072H-AVR32-10/2012 I ©

Figure 16-6. Read Burst with Boundary Row Access

TRP=3

|
]
SDCS]
|

Row n

| |
SDRAMC_A[12:O]><CoIaXCoIbXCoI cX Col dX ; X ; Rowm X Cola

| |

| |

& L L

X col b X chic Xcold X Cole X

|
|
b
|
i
|
|
|
|
|
|

—

|
CAS | :
|
|

|
;
|
|
|
SDWE | |
|
|
]
|
|

b5l W Xna XX nb XY one ¥ dndl)

<<Dmalb§(DmbY{ Dmc Y Dmd Y Dme }—

16.7.5 SDRAM Controller Refresh Cycles
An auto refresh command is used to refresh the SDRAM device. Refresh addresses are gener-
ated internally by the SDRAM device and incremented after each auto refresh automatically.
The SDRAMC generates these auto refresh commands periodically. An internal timer is loaded
with the value in the Refresh Timer Register (TR) that indicates the number of clock cycles
between successive refresh cycles.

A refresh error interrupt is generated when the previous auto refresh command did not perform.
In this case a Refresh Error Status bit is set in the Interrupt Status Register (ISR.RES). It is
cleared by reading the ISR register.

When the SDRAMC initiates a refresh of the SDRAM device, internal memory accesses are not
delayed. However, if the CPU tries to access the SDRAM, the slave indicates that the device is
busy and the master is held by a wait signal. See Figure 16-7 on page 228.

Alm L 227

32072H-AVR32-10/2012 I ©

Figure 16-7. Refresh Cycle Followed by a Read Access

tr=3 |
N »)
> P

| [I
N =
i | |

Rown |

| |

[| |
SDRAMC A1201X GalcXCaldX X | X I X | Rowm ¥ Coal ¥ |

I [[

| |

RAS

1
—

DI150] ~ N oW oo\
(input) M Db Dl Onc

16.7.6 Power Management
Three low power modes are available:

* Self refresh mode: the SDRAM executes its own auto refresh cycles without control of the
SDRAMC. Current drained by the SDRAM is very low.

« Power-down mode: auto refresh cycles are controlled by the SDRAMC. Between auto refresh
cycles, the SDRAM is in power-down. Current drained in power-down mode is higher than in
self refresh mode.

* Deep power-down mode (only available with mobile SDRAM): the SDRAM contents are lost,
but the SDRAM does not drain any current.

The SDRAMC activates one low power mode as soon as the SDRAM device is not selected. It is
possible to delay the entry in self refresh and power-down mode after the last access by config-
uring the Timeout field in the Low Power Register (LPR.TIMEOUT).

16.7.6.1 Self refresh mode
This mode is selected by writing the value one to the Low Power Configuration Bits field in the
SDRAMC Low Power Register (LPR.LPCB). In self refresh mode, the SDRAM device retains
data without external clocking and provides its own internal clocking, thus performing its own
auto refresh cycles. All the inputs to the SDRAM device become “don’t care” except SDCKE,
which remains low. As soon as the SDRAM device is selected, the SDRAMC provides a
sequence of commands and exits self refresh mode.

Some low power SDRAMSs (e.g., mobile SDRAM) can refresh only one quarter or a half quarter
or all banks of the SDRAM array. This feature reduces the self refresh current. To configure this
feature, Temperature Compensated Self Refresh (TCSR), Partial Array Self Refresh (PASR)

Alm L 228

32072H-AVR32-10/2012 I ©

and Drive Strength (DS) parameters must be set by writing the corresponding fields in the LPR
register, and transmitted to the low power SDRAM device during initialization.

After initialization, as soon as the LPR.PASR, LPR.DS, or LPR.TCSR fields are modified and
self refresh mode is activated, the SDRAMC issues an Extended Load Mode Register command
to the SDRAM and the Extended Mode Register of the SDRAM device is accessed automati-
cally. The PASR/DS/TCSR parameters values are therefore updated before entry into self
refresh mode.

The SDRAM device must remain in self refresh mode for a minimum period of tz45 and may
remain in self refresh mode for an indefinite period. This is described in Figure 16-8 on page
229.

Figure 16-8. Self Refresh Mode Behavior

SDRAMC_A[12:0]

16.7.6.2

32072H-AVR32-10/2012

SDCK

SDCKE

SDCS

CAS

SDWE

Self Refresh Mode

I~
'~

I~
N,
o

J
b

I
»

é

L L
L L L.

+_._______._________ ——

Access Request
To the SDRAM Controller

Low power mode

This mode is selected by writing the value two to the LPR.LPCB field. Power consumption is
greater than in self refresh mode. All the input and output buffers of the SDRAM device are
deactivated except SDCKE, which remains low. In contrast to self refresh mode, the SDRAM
device cannot remain in low power mode longer than the refresh period (64ms for a whole
device refresh operation). As no auto refresh operations are performed by the SDRAM itself, the
SDRAMC carries out the refresh operation. The exit procedure is faster than in self refresh
mode.

This is described in Figure 16-9 on page 230.

Alm L 229

Y 5

AT32UC3A3

Figure 16-9. Low Power Mode Behavior
[

L
SDCS :
I

Trep =3

|
|Low Power Mode

|
SDRAMC_A[12:0] X (Rown X Cola
|

|
RAS [

CAS

D[15:0]
(input)

[
|
[
[
|
SDCKE [
I
[
1
[
[

16.7.6.3 Deep power-down mode
This mode is selected by writing the value three to the LPR.LPCB field. When this mode is acti-
vated, all internal voltage generators inside the SDRAM are stopped and all data is lost.

When this mode is enabled, the user must not access to the SDRAM until a new initialization
sequence is done (See Section 16.7.1).

This is described in Figure 16-10 on page 231.

Alm L 230

32072H-AVR32-10/2012 I ©

Figure 16-10. Deep Power-down Mode Behavior

tRp=3

-1l _

|
[
sbCs !
[

Row n :
SDRAMC_A[12:O]><COI cXcoldX X! X
|
|
|

RAS
I
CAS ;
I
[
SDWE |

SCKE '

?l[r:;;%] NEEDCE

N T T

A mE|,® 231

32072H-AVR32-10/2012

16.8 User Interface

Table 16-5. SDRAMC Register Memory Map

Offset Register Register Name Access Reset
0x00 Mode Register MR Read/Write 0x00000000
0x04 Refresh Timer Register TR Read/Write 0x00000000
0x08 Configuration Register CR Read/Write 0x852372C0
0x0C High Speed Register HSR Read/Write 0x00000000
0x10 Low Power Register LPR Read/Write 0x00000000
0x14 Interrupt Enable Register IER Write-only 0x00000000
0x18 Interrupt Disable Register IDR Write-only 0x00000000
0x1C Interrupt Mask Register IMR Read-only 0x00000000
0x20 Interrupt Status Register ISR Read-only 0x00000000
0x24 Memory Device Register MDR Read/Write 0x00000000
OxFC Version Register VERSION Read-only -®

1. The reset values for these fields are device specific. Please refer to the Module Configuration section at the end of this chap-

ter.

32072H-AVR32-10/2012

ATMEL

Y 5

232

16.8.1 Mode Register

Register Name: MR
Access Type: Read/Write
Offset: 0x00
Reset Value: 0x00000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
- r - r - r - [- | MODE |
« MODE: Command Mode
This field defines the command issued by the SDRAMC when the SDRAM device is accessed.
MODE Description
0 Normal mode. Any access to the SDRAM is decoded normally.
1 The SDRAMC issues a “NOP” command when the SDRAM device is accessed regardless of the cycle.
2 The SDRAMC issues an “All Banks Precharge” command when the SDRAM device is accessed regardless of
the cycle.
The SDRAMC issues a “Load Mode Register” command when the SDRAM device is accessed regardless of the
3 cycle. This command will load the CR.CAS field into the SDRAM device Mode Register. All the other parameters
of the SDRAM device Mode Register will be set to zero (burst length, burst type, operating mode, write burst
mode...).
4 The SDRAMC issues an “Auto Refresh” command when the SDRAM device is accessed regardless of the cycle.
Previously, an “All Banks Precharge” command must be issued.
The SDRAMC issues an “Extended Load Mode Register” command when the SDRAM device is accessed
5 regardless of the cycle. This command will load the LPR.PASR, LPR.DS, and LPR.TCR fields into the SDRAM
device Extended Mode Register. All the other bits of the SDRAM device Extended Mode Register will be set to
zero.
6 Deep power-down mode. Enters deep power-down mode.

AIMEL 233

32072H-AVR32-10/2012 I ©

16.8.2 Refresh Timer Register

Register Name: TR

Access Type: Read/Write

Offset: 0x04

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

I N SR T]
23 22 21 20 19 18 17 16

T T 1 1]
15 14 13 12 11 10 9 8

‘] ‘] ‘]] \ COUNT[11:8] \
7 6 5 4 3 2 1 0

‘ COUNTI[7:0] ‘

¢ COUNTI[11:0]: Refresh Timer Count
This 12-bit field is loaded into a timer that generates the refresh pulse. Each time the refresh pulse is generated, a refresh burst

is initiated.

The value to be loaded depends on the SDRAMC clock frequency (CLK_SDRAMC), the refresh rate of the SDRAM device and
the refresh burst length where 15.6s per row is a typical value for a burst of length one.
To refresh the SDRAM device, this 12-bit field must be written. If this condition is not satisfied, no refresh command is issued

and no refresh of the SDRAM device is carried out.

32072H-AVR32-10/2012

ATMEL

Y 5

234

16.8.3 Configuration Register

Register Name: CR

Access Type: Read/Write

Offset: 0x08

Reset Value: 0x852372C0
31 30 29 28 27 26 25 24

‘ TXSR ‘ TRAS ‘
23 22 21 20 19 18 17 16

‘ TRCD ‘ TRP ‘
15 14 13 12 11 10 9 8

‘ TRC ‘ TWR ‘
7 6 5 4 3 2 1 0

‘ DBW CAS NB ‘ NR NC ‘

¢ TXSR: Exit Self Refresh to Active Delay
Reset value is eight cycles.

This field defines the delay between SCKE set high and an Activate command in number of cycles. Number of cycles is between
0 and 15.

¢ TRAS: Active to Precharge Delay
Reset value is five cycles.

This field defines the delay between an Activate command and a Precharge command in number of cycles. Number of cycles is
between 0 and 15.

¢ TRCD: Row to Column Delay
Reset value is two cycles.

This field defines the delay between an Activate command and a Read/Write command in number of cycles. Number of cycles
is between 0 and 15.

« TRP: Row Precharge Delay
Reset value is three cycles.

This field defines the delay between a Precharge command and another command in number of cycles. Number of cycles is
between 0 and 15.

* TRC: Row Cycle Delay
Reset value is seven cycles.

This field defines the delay between a Refresh and an Activate Command in number of cycles. Number of cycles is between 0
and 15.

¢ TWR: Write Recovery Delay
Reset value is two cycles.

This field defines the Write Recovery Time in number of cycles. Number of cycles is between 0 and 15.

« DBW: Data Bus Width
Reset value is 16 bits.

0: Reserved.
1: Data bus width is 16 bits.

AIMEL 235

32072H-AVR32-10/2012 I ©

e CAS: CAS Latency
Reset value is two cycles.

In the SDRAMC, only a CAS latency of one, two and three cycles is managed.

CAS CAS Latency (Cycles)
0 Reserved
1 1
2 2
3 3

« NB: Number of Banks
Reset value is two banks.

NB Number of Banks
0 2
1 4

¢ NR: Number of Row Bits
Reset value is 11 row bits.

NR Row Bits
0 11
1 12
2 13
3 Reserved

¢ NC: Number of Column Bits
Reset value is 8 column bits.

NC Column Bits
0 8
1 9
2 10
3 11

AIMEL 236

32072H-AVR32-10/2012 I ©

16.8.4 High Speed Register

Register Name: HSR

Access Type: Read/Write

Offset: 0x0C

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | R | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

| | | | - | | |
7 6 5 4 3 2 1 0

SR I I IR IR AR I T

« DA: Decode Cycle Enable
A decode cycle can be added on the addresses as soon as a non-sequential access is performed on the HSB bus.

The addition of the decode cycle allows the SDRAMC to gain time to access the SDRAM memory.
1: Decode cycle is enabled.
0: Decode cycle is disabled.

A mE|,® 237

32072H-AVR32-10/2012

16.8.5 Low Power Register

Register Name: LPR

Access Type: Read/Write

Offset: 0x10

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

. - ! - - [- @ - [- - -]
23 22 21 20 19 18 17 16

. - ! - - [- 1 - [- - -]
15 14 13 12 11 10 9 8

‘ - ‘ - ‘ TIMEOUT ‘ DS TCSR ‘
7 6 5 4 3 2 1 0

‘ - ‘ PASR ‘ - - LPCB ‘

¢ TIMEOUT: Time to Define when Low Power Mode Is Enabled

TIMEOUT Time to Define when Low Power Mode Is Enabled
0 The SDRAMC activates the SDRAM low power mode immediately after the end of the last transfer.
1 The SDRAMC activates the SDRAM low power mode 64 clock cycles after the end of the last transfer.
2 The SDRAMC activates the SDRAM low power mode 128 clock cycles after the end of the last transfer.
3 Reserved.

e DS: Drive Strength (only for low power SDRAM)
This field is transmitted to the SDRAM during initialization to select the SDRAM strength of data output. This parameter must be
set according to the SDRAM device specification.
After initialization, as soon as this field is modified and self refresh mode is activated, the Extended Mode Register of the
SDRAM device is accessed automatically and its DS parameter value is updated before entry in self refresh mode.

¢ TCSR: Temperature Compensated Self Refresh (only for low power SDRAM)
This field is transmitted to the SDRAM during initialization to set the refresh interval during self refresh mode depending on the

temperature of the low power SDRAM. This parameter must be set according to the SDRAM device specification.
After initialization, as soon as this field is modified and self refresh mode is activated, the Extended Mode Register of the
SDRAM device is accessed automatically and its TCSR parameter value is updated before entry in self refresh mode.

* PASR: Partial Array Self Refresh (only for low power SDRAM)
This field is transmitted to the SDRAM during initialization to specify whether only one quarter, one half or all banks of the

SDRAM array are enabled. Disabled banks are not refreshed in self refresh mode. This parameter must be set according to the
SDRAM device specification.
After initialization, as soon as this field is modified and self refresh mode is activated, the Extended Mode Register of the
SDRAM device is accessed automatically and its PASR parameter value is updated before entry in self refresh mode.

32072H-AVR32-10/2012

ATMEL

Y 5

238

« LPCB: Low Power Configuration Bits

LPCB Low Power Configuration
Low power feature is inhibited: no power-down, self refresh or deep power-down command is issued to
0)
the SDRAM device.
The SDRAMC issues a self refresh command to the SDRAM device, the SDCLK clock is deactivated and
1 the SDCKE signal is set low. The SDRAM device leaves the self refresh mode when accessed and
enters it after the access.
The SDRAMC issues a power-down command to the SDRAM device after each access, the SDCKE
2 signal is set to low. The SDRAM device leaves the power-down mode when accessed and enters it after
the access.
3 The SDRAMC issues a deep power-down command to the SDRAM device. This mode is unique to low-
power SDRAM.

ATMEL

32072H-AVR32-10/2012 I ©

239

16.8.6 Interrupt Enable Register

Register Name: IER

Access Type: Write-only

Offset: 0x14

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | | R |
23 22 21 20 19 18 17 16

| |
15 14 13 12 11 10 9 8

| | | | | I |
7 6 5 4 3 2 1 0

I | | | | | REs |

Writing a zero to a bit in this register has no effect.

Writing a one to a bit in this register will set the corresponding bit in IMR.

32072H-AVR32-10/2012

ATMEL

240

16.8.7 Interrupt Disable Register

Register Name: IDR

Access Type: Write-only

Offset: 0x18

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | | R |
23 22 21 20 19 18 17 16

| |
15 14 13 12 11 10 9 8

| | | | | I |
7 6 5 4 3 2 1 0

I | | | | | REs |

Writing a zero to a bit in this register has no effect.

Writing a one to a bit in this register will clear the corresponding bit in IMR.

32072H-AVR32-10/2012

ATMEL

241

16.8.8 Interrupt Mask Register

Register Name: IMR

Access Type: Read-only

Offset: 0x1C

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | R | | |
23 22 21 20 19 18 17 16

| | | | I | | |
15 14 13 12 11 10 9 8

| | | | - | | |
7 6 5 4 3 2 1 0

e e Res

0: The corresponding interrupt is disabled.

1: The corresponding interrupt is enabled.

A bit in this register is cleared when the corresponding bit in IDR is written to one.
A bit in this register is set when the corresponding bit in IER is written to one.

A mE|,® 242

32072H-AVR32-10/2012

16.8.9 Interrupt Status Register

Register Name: ISR

Access Type: Read-only

Offset: 0x20

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | | |
23 22 21 20 19 18 17 16

| |
15 14 13 12 11 10 9 8

| | | | | |
7 6 5 4 3 2 1 0

I | | | RES

« RES: Refresh Error Status

This bit is set when a refresh error is detected.
This bit is cleared when the register is read.

32072H-AVR32-10/2012

ATMEL

243

16.8.10 Memory Device Register

Register Name: MDR

Access Type: Read/Write

Offset: 0x24

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| R | | |
23 22 21 20 19 18 17 16

| R | | |
15 14 13 12 11 10 9 8

| I | | |
7 6 5 4 3 2 1 0

MD

« MD: Memory Device Type

MD Device Type
0 SDRAM
1 Low power SDRAM
Other Reserved

32072H-AVR32-10/2012

ATMEL

244

16.8.11 Version Register

Register Name: VERSION

Access Type: Read-only

Offset: OxFC

Reset Value: -
31 30 29 28 27 26 25 24

| | - | |
23 22 21 20 19 18 17 16

‘ - ‘ - ‘ - ‘ - ‘ VARIANT ‘
15 14 13 12 11 10 9 8

‘) ‘] ‘] ‘] ‘ VERSION ‘
7 6 5 4 3 2 1 0

‘ VERSION ‘

e Variant: Variant Number
Reserved. No functionality associated.

e Version: Version Number
Version number of the module.No functionality associated.

A mE|,® 245

32072H-AVR32-10/2012

17. Error Corrected Code Controller (ECCHRYS)
Rev. 1.0.0.0

17.1 Features
e Hardware Error Corrected Code Generation with two methods :
— Hamming code detection and correction by software (ECC-H)
— Reed-Solomon code detection by hardware, correction by hardware or software (ECC-RS)
» Supports NAND Flash and SmartMedia™ devices with 8- or 16-bit data path for ECC-H, and with
8-bit data path for ECC-RS
» Supports NAND Flash and SmartMedia™ with page sizes of 528, 1056, 2112, and 4224 bytes
(specified by software)
e ECC_H supports :
— One bit correction per page of 512,1024,2048, or 4096 bytes
— One bit correction per sector of 512 bytes of data for a page size of 512, 1024, 2048, or 4096
bytes
— One bit correction per sector of 256 bytes of data for a page size of 512, 1024, 2048, or 4096
bytes
* ECC_RS supports :
— 4 errors correction per sector of 512 bytes of data for a page size of 512, 1024, 2048, and
4096 bytes with 8-bit data path

17.2 Overview

NAND Flash and SmartMedia™ devices contain by default invalid blocks which have one or
more invalid bits. Over the NAND Flash and SmartMedia™ lifetime, additional invalid blocks may
occur which can be detected and corrected by an Error Corrected Code (ECC).

The ECC Controller is a mechanism that encodes data in a manner that makes possible the
identification and correction of certain errors in data. The ECC controller is capable of single-bit
error correction and two-bit random detection when using the Hamming code (ECC-H) and up to
four symbols (a symbol is a 8-bit data) correction whatever the number of errors in symbol (1 to
8 bits of error) when using the Reed-Solomon code (ECC-RS).

When NAND Flash/SmartMedia™ have more than two erroneous bits when using the Hamming
code (ECC-H) or more than four bits in error when using the Reed-Solomon code (ECC-RS), the
data cannot be corrected.

AIMEL 246

32072H-AVR32-10/2012 I ©

17.3 Block Diagram

Figure 17-1. ECCHRS Block Diagram

NAND Flash Rom 1024x10 ——
L Encoder R$4 10 »| Eror Evaluator
SmartMedia[* > GF(2")
Logic + +
A , Polynomial ,
Partial Syndrome —» process —» Chien Search
Y
Static ECC Controller ¢
Momory 1> Ctri/ECC 1bit Algorith
Controller ; HECIC P > User Interface
< Peripheral Bus t >

17.4 Product Dependencies

In order to use this module, other parts of the system must be configured correctly, as described
below.

1741 I/O Lines
The ECCHRS signals pass through the External Bus Interface module (EBI) where they are
multiplexed.

The programmer must first configure the 1/0 Controller to assign the EBI pins corresponding to
the Static Memory Controller (SMC) signals to their peripheral function. If I/O lines of the EBI corre-
sponding to SMC signals are not used by the application, they can be used for other purposes by
the 1/0 Controller.

17.4.2 Power Management
If the CPU enters a sleep mode that disables clocks used by the ECCHRS, the ECCHRS will
stop functioning and resume operation after the system wakes up from sleep mode.

17.4.3 Clocks

The clock for the ECCHRS bus interface (CLK_ECCHRS) is generated by the Power Manager.
This clock is enabled at reset, and can be disabled in the Power Manager. It is recommended to
disable the ECCHRS before disabling the clock, to avoid freezing the ECCHRS in an undefined
state.

17.4.4 Interrupts
The ECCHRS interrupt request line is connected to the interrupt controller. Using the ECCHRS
interrupt requires the interrupt controller to be programmed first.

Alm L 247

32072H-AVR32-10/2012 I ©

17.5 Functional Description

17.5.1

1752

Write Access

Read Access

32072H-AVR32-10/2012

A page in NAND Flash and SmartMedia™ memories contains an area for main data and an addi-
tional area used for redundancy (ECC). The page is organized in 8-bit or 16-bit words. The page
size corresponds to the number of words in the main area plus the number of words in the extra
area used for redundancy.

Over time, some memory locations may fail to program or erase properly. In order to ensure that
data is stored properly over the life of the NAND Flash device, NAND Flash providers recom-
mend to utilize either one ECC per 256 bytes of data, one ECC per 512 bytes of data, or one
ECC for all of the page. For the next generation of deep micron SLC NAND Flash and with the
new MLC NAND Flash, it is also recommended to ensure at least a four-error ECC per 512
bytes whatever is the page size.

The only configurations required for ECC are the NAND Flash or the SmartMedia™ page size
(528/1056/2112/4224) and the type of correction wanted (one ECC-H for all the page, one ECC-
H per 256 bytes of data, one ECC-H per 512 bytes of data, or four-error ECC-RS per 512 bytes
of data). The page size is configured by writing in the Page Size field in the Mode Register
(MD.PAGESIZE). Type of correction is configured by writing the Type of Correction field in the
Mode Register (MD.TYPECORREC).

The ECC is automatically computed as soon as a read (0x00) or a write (0x80) command to the
NAND Flash or the SmartMedia™ is detected. Read and write access must start at a page
boundary.

The ECC results are available as soon as the counter reaches the end of the main area. The val-
ues in the Parity Registers (PRO to PR15) for ECC-H and in the Codeword Parity registers
(CWPSO00 to CWPS79) for ECC-RS are then valid and locked until a new start condition occurs
(read/write command followed by address cycles).

Once the Flash memory page is written, the computed ECC codes are available in PRO to PR15
registers for ECC-H and in CWPS00 to CWPS79 registers for ECC-RS. The ECC code values
must be written by the software application in the extra area used for redundancy. The number
of write access in the extra area depends on the value of the MD.TYPECORREC field.

For example, for one ECC per 256 bytes of data for a page of 512 bytes, only the values of PR0O
and PR1 must be written by the software application in the extra area. For ECC-RS, a NAND
Flash with page of 512 bytes, the software application will have to write the ten registers
CWPSO00 to CWPSO09 in the extra area, and would have to write 40 registers (CWPSO00 to
CWPS39) for a NAND Flash with page of 2048 bytes.

Other registers are meaningless.

After reading the whole data in the main area, the application must perform read accesses to the
extra area where ECC code has been previously stored. Error detection is automatically per-
formed by the ECC-H controller or the ECC-RS controller. In ECC-RS, writing a one to the Halt
of Computation bit in the ECC Mode Register (MD.FREEZE) allows to stop error detection when
software is jumping to the correct parity area.

Alm L 248

Y 5

32072H-AVR32-10/2012

Figure 17-2. FREEZE signal waveform

Nand Flash page 2048B Spare Zone
I 5128 v/ o /] 5128 5128 | 1]
FREEZE L |

The application can check the ECC Status Registers (SR1/SR2) for any detected errors. It is up
to the application to correct any detected error for ECC-H. The application can correct any
detected error or let the hardware do the correction by writing a one to the Correction Enable bit
in the MD register (MD.CORRS4) for ECC-RS.

ECC computation can detect four different circumstances:

No error: XOR between the ECC computation and the ECC code stored at the end of the
NAND Flash or SmartMedia™ page is equal to zero. All bits in the SR1 and SR2 registers will
be cleared.

Recoverable error: Only the Recoverable Error bits in the ECC Status registers
(SR1.RECERRnN and/or SR2.RECERRN) are set. The corrupted word offset in the read page
is defined by the Word Address field (WORDADDR) in the PRO to PR15 registers. The
corrupted bit position in the concerned word is defined in the Bit Address field (BITADDR) in
the PRO to PR15 registers.

ECC error: The ECC Error bits in the ECC Status Registers (SR1.ECCERRnN /
SR2.ECCERRN) are set. An error has been detected in the ECC code stored in the Flash
memory. The position of the corrupted bit can be found by the application performing an XOR
between the Parity and the NParity contained in the ECC code stored in the Flash memory.
For ECC-RS it is the responsibility of the software to determine where the error is located on
ECC code stored in the spare zone flash area and not on user data area.

Non correctable error: The Multiple Error bits (MULERRN) in the SR1 and SR2 registers are
set. Several unrecoverable errors have been detected in the Flash memory page.

ECC Status Registers, ECC Parity Registers are cleared when a read/write command is
detected or a software reset is performed.

For Single-bit Error Correction and Double-bit Error Detection (SEC-DED) Hsiao code is used.
24-bit ECC is generated in order to perform one bit correction per 256 or 512 bytes for pages of
512/2048/4096 8-hit words. 32-bit ECC is generated in order to perform one bit correction per
512/1024/2048/4096 8- or 16-bit words.They are generated according to the schemes shown in
Figure 17-3 on page 250 and Figure 17-4 on page 251.

Alm L 249

Y 5

Figure 17-3. Parity Generation for 512/1024/2048/4096 8-bit Words

1 byte | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 || P8 | ore
2" byte | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 || P8' | -
3“ byte | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 || P8 | o1 PX
4" byte | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 [Bit1 | Bit0 || P8' |
(page size-3)th byte | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 || P8 | o1e
(page size-2)th byte [Bit7 [Bit6 [Bit5 | Bit4 | Bit3 [Bit2 | Bit1 | Bit0 |[P8' | - PX
(page size-1)th byte | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 || P8 | o6
page size th byte | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 || P8' |
| P[Pt || P[PPI |[PL]|[PI]|[P1][P1]
| P2 || P2 || P2 || P2 |
| P4 || P4’ |
P1=bit7(+)bit5(+)bit3(+)bit1(+)P1
Page size = 512 Px = 2048 P2=bit7 (+)bit6(+)bit3(+)bit2(+)P2
Page size = 1024 Px = 4096 P4=bit7 (+)bit6(+)bit5(+)bit4(+)P4
Page size = 2048 Px = 8192 P1'=bit6(+)bit4(+)bit2(+)bit0(+)P1"
Page size = 4096 Px = 16384 P2'=bit5(+)bit4(+)bit1(+)bit0(+)P2"
P4'=bit7(+)bit6(+)bit5(+)bitd(+)P4’

To calculate P8’ to PX' and P8 to PX, apply the algorithm that follows.

Page size = 2"

for i =0 to n
begin
for (j = 0 to page size byte)
begin
if (3 [1] ==1)
P[2**3]=bit7 (+)bit6 (+)bit5 (+)bit4 (+)bit3 (+)
bit2 (+)bitl (+)bit0 (+)P[213]
else
P[2%*3] " =bit7 (+)bit6 (+)bit5 (+)bit4 (+)bit3 (+)
bit2 (+)bitl (+)bit0 (+)P[21*3]"
end

end

A mE|,® 250

32072H-AVR32-10/2012

Figure 17-4. Parity Generation for 512/1024/2048/4096 16-bit Words

1* byte [Bit15[Bit14[Bit13]Bit12]Bit11[Bit10] Bit9 [Bit8 | [Bit7 [Bit6 [Bit5 [Bit4 [Bit3 | Bit2 | Bit1 | Bit0 | o1t
2" byte [Bit15]Bit14[Bit13[Bit12[Bit11]Bit10] Bt [Bits | [Bit7 [Bit6 | Bit5 | Bit4 [Bit3 [Bit2 | Bit1 [Bit0 | pa
3" byte [Bit15[Bit14[Bit13[Bit12[Bit11[Bit10] Bit9 [Bits | [Bit7 | Bit6 [Bit5 [Bit4 [Bit3 | Bit2 [Bit1 [Bit0 | o1 PX
4" byte [Bit15]Bit14]Bit13]Bit12[Bit11[Bit10] Bit9 | Bit8 | [Bit7 | Bit6 [Bit5 [Bit4 | Bit3 | Bit2 [Bit1 [Bit0 |
|

(page size-3)th byte | Bit7 | Bit6 | Bit5 [Bit4 [Bit3 [Bit2 | Bit1 [Bito | [Bit7 [Bit6 | Bit5 | Bit4 | Bit3 | Bit2 [Bit1 [Bit0 | o16
(page size-2)th byte | Bit7 [Bit6 | Bit5 | Bit4 [Bit3 [Bit2 | Bit1 [Bito | [Bit7 [Bit6 [Bit5 | Bit4 | Bit3 | Bit2 [Bit1 [Bit0 | pax | PX
(page size-1)th byte | Bit7 [Bit6 | Bit5 | Bit4 [Bit3 [Bit2 | Bit1 [Bito | [Bit7 [Bit6 [Bit5 | Bit4 | Bit3 | Bit2 [Bit1 [Bit0 |

page size th byte | Bit7 | Bit6 [Bit5 [Bit4 | Bit3 [Bit2 [Bit1 [Bit0 | [Bit7 [Bit6 | Bit5 [Bit4 [Bit3 | Bit2 | Bit1 [Bit0 |

P16’

[Pr][Pr][P[Pt [Pt][Pt][Pt][Prr] [Pr][Pt][Pt][Pt][Pt][Pr][P1][P1]
[P2 | [P2’ | P2 | [P2’ |] P2 | [P2’ | [P2 | P2’ |
[P4 | P4’ | P4 | P4’ |
[P5 |] P5' |

Page size = 512 Px = 2048 P1=bit15(+)bit13(+)bit11(+)bit(+)bit7 (+)bit5(+)bit3(+)bit1 (+)P1

Page size = 1024 Px = 4096 P2=bit15(+)bit14(+)bit11(+)bit10(+)bit7 (+)bit6(+)bit3(+)bit2(+)P2

Page size = 2048 Px = 8192 P4=bit15(+)bit14(+)bit13(+)bit12(+)bit7(+)bit6 (+)bit5(+)bit4(+)P4

Page size = 4096 Px = 16384 P5=bit15(+)bit14(+)bit13(+)bit12(+)bit11(+)bit10(+)bit9(+)bit8(+)P5

To calculate P8’ to PX’' and P8 to PX, apply the algorithm that follows.

Page size = 2"

for i =0 to n
begin
for (j = 0 to page_size_word)
begin
if (3 [1] ==1)
P[23*3]= bitl15(+)bitl4 (+)bitl3 (+)bitl2 (+)
bitll(+)bitl0(+)bit9(+)bit8 (+)
bit7 (+)bit6 (+)bit5 (+)bit4 (+)bit3 (+)
bit2 (+)bitl (+)bit0 (+)P[27"]
else
P [2i+3] "=bitl5(+)bitl4 (+)bitl3 (+)bitl2 (+)
bitll(+)bitl0(+)bit9 (+)bit8 (+)
bit7 (+)bité (+)bit5 (+)bit4 (+)bit3 (+)
bit2 (+)bitl (+)bit0 (+)P[2*"3]"
end

end

Alm L 251

32072H-AVR32-10/2012 I ©

For ECC-RS, in order to perform 4-error correction per 512 bytes of 8-bit words, the codeword
have to be generated by the RS4 Encoder module and stored into the NAND Flash extra area,
according to the scheme shown in Figure 17-5 on page 252

Figure 17-5. RS Codeword Generation

Feedback

28

603 395 383 539
o 397 o 402 o o o o

Lol

Dataln
CW5 Ccw4 Cw3 CW2 Ccw1 CWo

32072H-AVR32-10/2012

In read mode, firstly, the detection for any error is done with the partial syndrome module. It is
the responsibility of the ECC-RS Controller to determine after receiving the old codeword stored
in the extra area if there is any error on data and /or on the old codeword. If all syndromes (Si)
are equal to zero, there is no error, otherwise a polynomial representation is written into
CWPSO00 to CWPST79 registers. The Partial Syndrome module performs an algorithm according
to the scheme in Figure 17-6 on page 252

Figure 17-6. Partial Syndrome Block Diagram

—» S7
Mult o/ e

- S2
- S1
RegOct H > SO

Dataln(x)

If the Correction Enable bit is set in the ECC Mode Register (MD.CORRS4) then the polynomial
representation of error are sent to the polynomial processor. The aim of this module is to per-
form the polynomial division in order to calculate two polynomials, Omega (Z) and Lambda (2),
which are necessary for the two following modules (Chien Search and Error Evaluator). In order
to perform addition, multiplication, and division a Read Only Memory (ROM) has been added
containing the 1024 elements of the Galois field. Both Chien Search and Error Evaluator work in
parallel. The Error Evaluator has the responsibility to determine the Nth error value in the data
and in the old codeword according to the scheme in Figure 17-7 on page 253

Alm L 252

Y 5

32072H-AVR32-10/2012

Figure 17-7. Error Evaluator Block Diagram

AT32UC3A3

A odd(o)y] Rom 1024x10
GF(2") inverted

Array - Mul

ErrorLoc

t Error value
@ position j

The Chien Search takes charge of determining if an error has occurred at symbol N according to
the scheme in Figure 17-8 on page 253

Figure 17-8. Chien Search Block Diagram

(@)

Lo

Degree of Lambda —

Error Located
counter

Flag error

Error located

ATMEL

Y 5

A odd(a)

253

17.6 User Interface

Table 17-1. ECCHRS Register Memory Map

Offset Register Name Access Reset
0x000 Control Register CTRL Write-only 0x00000000
0x004 Mode Register MD Read/write 0x00000000
0x008 Status Register 1 SR1 Read-only 0x00000000
0x00C Parity Register 0 PRO Read-only 0x00000000
0x010 Parity Register 1 PR1 Read-only 0x00000000
0x014 Status Register 2 SR2 Read-only 0x00000000
0x018 Parity Register 2 PR2 Read-only 0x00000000
0x01C Parity Register 3 PR3 Read-only 0x00000000
0x020 Parity Register 4 PR4 Read-only 0x00000000
0x024 Parity Register 5 PR5 Read-only 0x00000000
0x028 Parity Register 6 PR6 Read-only 0x00000000
0x02C Parity Register 7 PR7 Read-only 0x00000000
0x030 Parity Register 8 PRS8 Read-only 0x00000000
0x034 Parity Register 9 PR9 Read-only 0x00000000
0x038 Parity Register 10 PR10 Read-only 0x00000000
0x03C Parity Register 11 PR11 Read-only 0x00000000
0x040 Parity Register 12 PR12 Read-only 0x00000000
0x044 Parity Register 13 PR13 Read-only 0x00000000
0x048 Parity Register 14 PR14 Read-only 0x00000000
0x04C Parity Register 15 PR15 Read-only 0x00000000
0X050 - Ox18C CCC’: degvv\f’or? da;nd dssy;ndgfon:eofg CCV\\/’VPPSSO% Read-only 0x00000000
0x190 - 0x19C MaskData O - Mask Data 3 MDATAO - MDATA3 Read-only 0x00000000
0x1A0 - Ox1AC Address Offset 0 - Address Offset 3 ADOFFO - ADOFF3 Read-only 0x00000000
0x1BO Interrupt Enable Register IER Write-only 0x00000000
0x1B4 Interrupt Disable Register IDR Write-only 0x00000000
0x1B8 Interrupt Mask Register MR Read-only 0x00000000
0x1BC Interrupt Status Register ISR Read-only 0x00000000
0x1C0 Interrupt Status Clear Register ISCR Write-only 0x00000000
0x1FC Version Register VERSION Read-only -®

Note: 1. The reset value is device specific. Please refer to the Module Configuration section at the end of this chapter.

AIMEL 254

32072H-AVR32-10/2012 I ©

17.6.1 Control Register

Name: CR

Access Type: Write-only

Offset: 0x000

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | I | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

| | | | - | | |
7 6 5 4 3 2 1 0

I S I R IR B B

e RST: RESET Parity
Writing a one to this bit will reset the ECC Parity registers.

Writing a zero to this bit has no effect.

This bit always reads as zero.

A mE|,® 255

32072H-AVR32-10/2012

17.6.2 Mode Register

Name: MD

Access Type: Read/Write

Offset: 0x004

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

I N - S N
23 22 21 20 19 18 17 16

I R - S R B
15 14 13 12 11 10 9 8

‘ - ‘ - ‘ - - - ‘ CORRS4 ‘ - ‘ FREEZE ‘
7 6 5 4 3 2 1 0

‘ - ‘ TYPECORREC - ‘ PAGESIZE ‘

¢ CORRS4: Correction Enable
Writing a one to this bit will enable the correction to be done after the Partial Syndrome process and allow interrupt to be sent to

CPU.

Writing a zero to this bit will stop the correction after the Partial Syndrome process.
1: The correction will continue after the Partial Syndrome process.

0: The correction will stop after the Partial Syndrome process.

 FREEZE: Halt of Computation
Writing a one to this bit will stop the computation.

Writing a zero to this bit will allow the computation as soon as read/write command to the NAND Flash or the SmartMedia™ is

detected.
1: The computation will stop until a zero is written to this bit.
0: The computation is allowed.

e TYPECORREC: Type of Correction

ECC code TYPECORREC Description
0b000 One bit correction per page
ECC-H 0b001 One bit correction per sector of 256 bytes
0b010 One bit correction per sector of 512 bytes
ECC-RS 0b100 Four bits correction per sector of 512 bytes
- Others Reserved

32072H-AVR32-10/2012

ATMEL

256

* PAGESIZE: Page Size
This table defines the page size of the NAND Flash device when using the ECC-H code (TYPECORREC = 0b0xx).

Page Size Description
0 528 words

1 1056 words

2 2112 words

3 4224 words
Others Reserved

A word has a value of 8 bits or 16 bits, depending on the NAND Flash or SmartMedia™ memory organization.

This table defines the page size of the NAND Flash device when using the ECC-RS code (TYPECORREC = 0b1xx)

Page Size Description Comment

0 528 bytes 1 page of 512 bytes

1 1056 bytes 2 pages of 512 bytes
2 1584 bytes 3 pages of 512 bytes
3 2112 bytes 4 pages of 512 bytes
4 2640 bytes 5 pages of 512 bytes
5 3168 bytes 6 pages of 512 bytes
6 3696 bytes 7 pages of 512 bytes
7 4224 bytes 8 pages of 512 hytes

i.e.: for NAND Flash device with page size of 4096 bytes and 128 bytes extra area ECC-RS can manage any sub page of
512 bytes up to 8.

AIMEL 257

32072H-AVR32-10/2012 I ©

17.6.3 Status Register 1

Name: SR1

Access Type: Read-only
Offset: 0x008

Reset Value: 0x000000000

MD.TYPECORREC=0b0xx, using ECC-H code

31 30 29 28 27 26 25 24

‘ - ‘ MULERR7 ‘ ECCERRY ‘ RECERRY ‘ - ‘ MULERRG6 ‘ ECCERRG ‘ RECERRG ‘
23 22 21 20 19 18 17 16

‘ - ‘ MULERRS ‘ ECCERRS ‘ RECERR5 ‘ - ‘ MULERR4 ‘ ECCERR4 ‘ RECERR4 ‘
15 14 13 12 11 10 9 8

‘ - | MULERRS3 ‘ ECCERRS3 ‘ RECERRS3 | - ‘ MULERR2 | ECCERR2 ‘ RECERR2 ‘
7 6 5 4 3 2 1 0

‘ - | MULERR1 ‘ ECCERR1 ‘ RECERRL1 | - ‘ MULERRO | ECCERRO ‘ RECERRO ‘

¢ MULERRnN: Multiple Error in the sector number n of 256/512 bytes in the page
1: Multiple errors are detected.

0: No multiple error is detected.

TYPECORREC Sector Size | Comments
0 page size Only MULERRO is used
1 256 MULERRO to MULERRY7 are used depending on the page size
2 512 MULERRO to MULERRY7 are used depending on the page size
Others Reserved

« ECCERRnN: ECC Error in the packet number n of 256/512 bytes in the page
1: A single bit error has occurred.

0: No error have been detected.

TYPECORREC Sector Size | Comments
Only ECCERRO is used
0 page size The user should read PRO and PR1 to know where the error occurs
in the page.
1 256 ECCERRO to ECCERRY7 are used depending on the page size
2 512 ECCERRO to ECCERRY7 are used depending on the page size
Others Reserved

AIMEL 258

32072H-AVR32-10/2012 I ©

< RECERRnN: Recoverable Error in the packet number n of 256/512 Bytes in the page
1: Errors detected. If MULERRN is zero, a single correctable error was detected. Otherwise multiple uncorrected errors were
detected.

0: No errors have been detected.

TYPECORREC sector size | Comments
0 page size Only RECERRO is used
1 256 RECERRO to RECERRY7 are used depending on the page size
2 512 RECERRO to RECERRY7 are used depending on the page size
Others Reserved

MD.TYPECORREC=0b1xx, using ECC-RS code

31 30 29 28 27 26 25 24
- r - r - r - +r - - [- 7 - |
23 22 21 20 19 18 17 16
- r - r - r -+ - ;- [- 7 - |
15 14 13 12 11 10 9 8
- r - r - r - r - ;- [- [- |
7 6 5 4 3 2 1 0
‘ SYNVEC ‘

¢ SYNVEC: Syndrome Vector
After reading a page made of n sector of 512 bytes, this field returns which sector contains error detected after the syndrome
analysis.
The SYNVECIn] bit is set when there is at least one error in the corresponding sector.
The SYNVEC|n] bit is cleared when a read/write command is detected or a software reset is performed.
1: At least one error has occurred in the corresponding sector.
0: No error has been detected.

Bit Index (n) Sector Boundaries
0 0-511
1 512-1023
2 1023-1535
3 1536-2047
4 2048-2559

AIMEL 259

32072H-AVR32-10/2012 I ©

Bit Index (n) Sector Boundaries
5 2560-3071
6 3072-3583
7 3584-4095

A mE|,® 260

32072H-AVR32-10/2012

17.6.4 Parity Register 0

Name: PRO
Access Type: Read-only
Offset: 0x00C
Reset Value: 0x00000000

Using ECC-H code, one bit correction per page (MD.TYPECORREC=0b000)

31 30 29 28 27 26 25 24

. - - +r -+ - ;- &+ - ; - [- |
23 22 21 20 19 18 17 16

. - -+ -+ -+ -1+ - ; - § - |
15 14 13 12 11 10 9 8

‘ WORDADDR[11:4] ‘
7 6 5 4 3 2 1 0

‘ WORDADDR[3:0] BITADDR ‘

Once the entire main area of a page is written with data, this register content must be stored at any free location of the spare
area.

« WORDADDR: Word Address
During a page read, this field contains the word address (8-bit or 16-bit word, depending on the memory plane organization)

where an error occurred, if a single error was detected. If multiple errors were detected, this field is meaningless.

* BITADDR: Bit Address
During a page read, this field contains the corrupted bit offset where an error occurred, if a single error was detected. If multiple

errors were detected, this field is meaningless.

Using ECC-H code, one bit correction per sector of 256 bytes (MD.TYPECORREC=0b001)

31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

‘] ‘ NPARITYO[10:4] ‘
15 14 13 12 11 10 9 8

AIMEL 261

32072H-AVR32-10/2012 I ©

NPARITYO0[3:0] 0 WORDADDO[7:5]
7 6 5 4 3 2 1 0
WORDADDO[4:0] BITADDRO

Once the entire main area of a page is written with data, this register content must be stored at any free location of the spare
area.

* NPARITYO: Parity N
Parity calculated by the ECC-H.

« WORDADDRO: Corrupted Word Address in the page between the first byte and the 255th byte
During a page read, this field contains the word address (8-bit word) where an error occurred, if a single error was detected. If
multiple errors were detected, this field is meaningless.

« BITADDRO: Corrupted Bit Address in the page between the first byte and the 255th byte
During a page read, this field contains the corrupted bit offset where an error occurred, if a single error was detected. If multiple
errors were detected, this field is meaningless.

AIMEL 262

32072H-AVR32-10/2012 I ©

Using ECC-H code, one bit correction per sector of 512 bytes (MD.TYPECORREC=0b010)

31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
‘ NPARITYO[11:4] ‘
15 14 13 12 11 10 9 8
‘ NPARITY0[3:0] WORDADDO[8:5] ‘
7 6 5 4 3 2 1 0
WORDADDO[4:0] BITADDRO

Once the entire main area of a page is written with data, this register content must be stored at any free location of the spare
area.

¢ NPARITYO: Parity N
Parity calculated by the ECC-H.

« WORDADDRO: Corrupted Word Address in the page between the first byte and the 511th byte
During a page read, this field contains the word address (8-bit word) where an error occurred, if a single error was detected. If
multiple errors were detected, this field is meaningless.

« BITADDRO: Corrupted Bit Address in the page between the first byte and the 511th byte
During a page read, this field contains the corrupted bit offset where an error occurred, if a single error was detected. If multiple
errors were detected, this field is meaningless.

AIMEL 263

32072H-AVR32-10/2012 I ©

17.6.5 Parity Register 1

Name: PR1
Access Type: Read-only
Offset: 0x010
Reset Value: 0x00000000

Using ECC-H code, one bit correction per page (MD.TYPECORREC=0b000)

31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8

‘ NPARITY[15:8] ‘

‘ NPARITY[7:0] ‘

*« NPARITY: Parity N
During a write, the field of this register must be written in the extra area used for redundancy (for a 512-byte page size:
address 514-515).

Using ECC-H code, one bit correction per sector of 256 bytes (MD.TYPECORREC=0b001)

31 30 29 28 27 26 25 24

23 22 21 20 19 18 17 16

‘ - \ NPARITY1[10:0] ‘

15 14 13 12 11 10 9 8

‘ NPARITY1[3:0] 0 ‘ WORDADD1[7:5] ‘
7 6 5 4 3 2 1 0

‘ WORDADD1[4:0] ‘ BITADDR1 ‘

N AImEl 264

32072H-AVR32-10/2012 I ©

Once the entire main area of a page is written with data, this register content must be stored at any free location of the spare
area.

e NPARITY1: Parity N
Parity alculated by the ECC-H.

< WORDADDRLI: corrupted Word Address in the page between the 256th and the 511th byte
During a page read, this field contains the word address (8-bit word) where an error occurred, if a single error was detected. If

multiple errors were detected, this field is meaningless.

« BITADDRI1: corrupted Bit Address in the page between the 256th and the 511th byte
During a page read, this field contains the corrupted bit offset where an error occurred, if a single error was detected. If multiple

errors were detected, this field is meaningless.

Using ECC-H code, one bit correction per sector of 512 bytes (MD.TYPECORREC=0b010)

31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

‘ NPARITY1[11:4] ‘
15 14 13 12 11 10 9 8

‘ NPARITY1[3:0] WORDADD1[8:5] ‘
7 6 5 4 3 2 1 0

‘ WORDADD1[4:0] BITADDR1 ‘

Once the entire main area of a page is written with data, this register content must be stored at any free location of the spare
area.

*« NPARITY1: Parity N
Parity calculated by the ECC-H.

« WORDADDRL1: Corrupted Word Address in the page between the 512th and the 1023th byte
During a page read, this field contains the word address (8-bit word) where an error occurred, if a single error was detected. If

multiple errors were detected, this field is meaningless.

« BITADDRL1: Corrupted Bit Address in the page between the 512th and the 1023th byte
During a page read, this field contains the corrupted bit offset where an error occurred, if a single error was detected. If multiple

errors were detected, this field is meaningless.

AIMEL 265

32072H-AVR32-10/2012 I ©

17.6.6 Status Register 2

Name: SR2
Access Type: Read-only
Offset: 0x014
Reset Value: 0x00000000

MD.TYPECORREC=0b0xx, using ECC-H code

31 30 29 28 27 26 25 24

‘ - | MULERR15 ‘ ECCERR15 ‘ RECERR15 | - ‘ MULERR14 | ECCERR14 ‘ RECERR14 ‘
23 22 21 20 19 18 17 16

‘ - | MULERR13 ‘ ECCERR13 ‘ RECERR13 | - ‘ MULERR12 | ECCERR12 ‘ RECERR12 ‘
15 14 13 12 11 10 9 8

‘ - | MULERR11 ‘ ECCERR11 ‘ RECERRI11 | - ‘ MULERR10 | ECCERRI10 ‘ RECERR10 ‘
7 6 5 4 3 2 1 0

‘ - | MULERR9 ‘ ECCERR9 ‘ RECERR9 | - ‘ MULERRS | ECCERRS ‘ RECERRS ‘

¢ MULERRnN: Multiple Error in the sector number n of 256/512 bytes in the page
1: Multiple errors are detected.

0: No multiple error is detected.

TYPECORREC Sector Size | Comments
0 page size Only MULERRO is used
1 256 MULERRO to MULERRY7 are used depending on the page size
2 512 MULERRO to MULERRY7 are used depending on the page size
Others Reserved

« ECCERRnN: ECC Error in the packet number n of 256/512 bytes in the page
1: A single bit error has occurred.

0: No error is detected.

TYPECORREC sector size Comments
Only ECCERRO is used
0 page size The user should read PRO and PR1 to know where the error occurs
in the page.
1 256 ECCERRO to ECCERRY7 are used depending on the page size
2 512 ECCERRO to ECCERRY7 are used depending on the page size
Others Reserved

AIMEL 266

32072H-AVR32-10/2012 I ©

MD.TYPECORREC=0b1xx, using ECC-RS code

31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
- - - - MULERR RECERR

Only one sub page of 512 bytes is corrected at a time. If several sub page are on error then it is necessary to do several time the
correction process.

MULERR: Multiple error
This bit is set to one when a multiple error have been detected by the ECC-RS.
This bit is cleared when a read/write command is detected or a software reset is performed.
1: Multiple errors detected: more than four errors.Registers for one ECC for a page of 512/1024/2048/4096 bytes
0: No multiple error detected
« RECERR: Number of recoverable errors if MULERR is zero

RECERR Comments
000 no error
001 one single error detected
010 two errors detected
011 three errors detected
100 four errors detected

AIMEL 267

32072H-AVR32-10/2012 I ©

17.6.7 Parity Register 2 - 15

Name: PR2 - PR15
Access Type: Read-only
Offset: 0x018 - 0x04C
Reset Value: 0x00000000

Using ECC-H code, one bit correction per sector of 256 bytes (MD.TYPECORREC=0b001)

31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
‘ - | NPARITYn[10:4] ‘
15 14 13 12 11 10 9 8
NPARITYn[3:0] 0 WORDADDN[7:5]
7 6 5 4 3 2 1 0
WORDADDN[4:0] BITADDRN

Once the entire main area of a page is written with data, this register content must be stored at any free location of the spare
area.

« NPARITYn: Parity N
Parity calculated by the ECC-H.

« WORDADDRN: corrupted Word Address in the packet number n of 256 bytes in the page
During a page read, this field contains the word address (8-bit word) where an error occurred, if a single error was detected. If
multiple errors were detected, this field is meaningless.

« BITADDRnN: corrupted Bit Address in the packet number n of 256 bytes in the page
During a page read, this field contains the corrupted bit offset where an error occurred, if a single error was detected. If multiple
errors were detected, this field is meaningless.

AIMEL 268

32072H-AVR32-10/2012 I ©

Using ECC-H code, one bit correction per sector of 512 bytes (MD.TYPECORREC=0b010)

31 30 29 28 27 26 25 24

23 22 21 20 19 18 17 16

‘ NPARITYnN[11:4] ‘

15 14 13 12 11 10 9 8

‘ NPARITYN[3:0] WORDADDN[8:5] ‘
7 6 5 4 3 2 1 0

‘ WORDADDN[4:0] BITADDRnN ‘

Once the entire main area of a page is written with data, this register content must be stored to any free location of the spare
area.
Only PR2 to PRY registers are available in this case.

« NPARITYn: Parity N
Parity calculated by the ECC-H.

« WORDADDRN: corrupted Word Address in the packet number n of 512 bytes in the page
During a page read, this field contains the word address (8-bit word) where an error occurred, if a single error was detected. If

multiple errors were detected, this field is meaningless.

« BITADDRnN: corrupted Bit Address in the packet number n of 512 bytes in the page
During a page read, this field contains the corrupted bit offset where an error occurred, if a single error was detected. If multiple

errors were detected, this field is meaningless.

AIMEL 269

32072H-AVR32-10/2012 I ©

17.6.8 Codeword 00 - Codeword79
CWPSO00 - CWPS79

Name:
Access Type:

Offset:

Read-only

0x050 - 0x18C

Reset Value: 0x00000000
Page Write:
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
| CODEWORD |

« CODEWORD:

Once the 512 bytes of a page is written with data, this register content must be stored to any free location of the spare area.
For a page of 512 bytes the entire redundancy words are made of 8 words of 10 bits. All those redundancies words are

concatenated to a word of 80 bits and then cut to 10 words of 8 bits to facilitate their writing in the extra area.
At the end of a page write, this field contains the redundancy word to be stored to the extra area.

Page Read:
31 30 29 28 27 26 25 24

| | | |
23 22 21 20 19 18 17 16

| | | |
15 14 13 12 11 10 9 8

| | | |
7 6 5 4 3 2 1 0

‘ PARSYND ‘

32072H-AVR32-10/2012

ATMEL

270

* PARSYND:
At the end of a page read, this field contains the Partial Syndrome S.

PARSYNDOO-PARSYNDO9: this conclude all the codeword and partial syndrome word for the sub page 1
PARSYND10-PARSYND19: this conclude all the codeword and partial syndrome word for the sub page 2
PARSYND20-PARSYND?29: this conclude all the codeword and partial syndrome word for the sub page 3
PARSYND30-PARSYND39: this conclude all the codeword and partial syndrome word for the sub page 4
PARSYND40-PARSYNDA49: this conclude all the codeword and partial syndrome word for the sub page 5
PARSYND50-PARSYND59: this conclude all the codeword and partial syndrome word for the sub page 6
PARSYND60-PARSYNDG69: this conclude all the codeword and partial syndrome word for the sub page 7
PARSYND70-PARSYND79: this conclude all the codeword and partial syndrome word for the sub page 8

AIMEL 271

32072H-AVR32-10/2012 I ©

17.6.9 Mask Data O - Mask Data 3

Name: MDATAO -MDATA3

Access Type: Read-only

Offset: 0x190 - 0x19C

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

. - r - - 7°r -+t - °rr - [-} - |
23 22 21 20 19 18 17 16

. - - -1+ -+ - - [- [- |
15 14 13 12 11 10 9 8

‘] ‘] ‘] ‘] ‘] ‘ - ‘ MASKDATA[9:8] ‘
7 6 5 4 3 2 1 0

‘ MASKDATA[7:0] ‘

+ MASKDATA:

At the end of the correction process, this field contains the mask to be XORed with the data read to perform the final
correction.This XORed is under the responsibility of the software.
This field is meaningless if MD.CORRS4 is zero.

AIMEL 272

32072H-AVR32-10/2012 I ©

17.6.10 Address Offset 0 - Address Offset 3

Name: ADOFFO - ADOFF3

Access Type: Read-only

Offset: 0x1A0 - Ox1AC

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | I | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

| i | i | i | i | i | i | OFFSET[9:8] |
7 6 5 4 3 2 1 0

‘ OFFSET[7:0] ‘

e OFFSET:

At the end of correction process, this field contains the offset address of the data read to be corrected.
This field is meaningless if MD.CORRS4 is zero.

A mE|,® 273

32072H-AVR32-10/2012

17.6.11 Interrupt Enable Register

Name: IER
Access Type: Write-only
Offset: 0x1BO
Reset Value: 0x00000000
31 30 29 28 27 26 25 24
L - | | | |
23 22 21 20 19 18 17 16
- | | | |
15 14 13 12 11 10 9 8
- | | | |
7 6 5 4 3 2 1 0
] | | enooor |
¢ ENDCOR:

Writing a zero to this bit has no effect.

Writing a one to this bit will set the corresponding bit in IMR.

32072H-AVR32-10/2012

ATMEL

274

17.6.12 Interrupt Disable Register

Name: IDR

Access Type: Write-only

Offset: 0x1B4

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | I | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

| | | | - | | |
7 6 5 4 3 2 1 0

- - - - -] - | ENDCOR |

¢ ENDCOR:

Writing a zero to this bit has no effect.
Writing a one to this bit will clear the corresponding bit in IMR.

A mE|,® 275

32072H-AVR32-10/2012

17.6.13 Interrupt Mask Register

Name: IMR

Access Type: Read-only

Offset: 0x1B8

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | I | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

| | | | - | | |
7 6 5 4 3 2 1 0

- - - - -] - | ENDCOR |

¢ ENDCOR:

0: The corresponding interrupt is disabled.

1: The corresponding interrupt is enabled.

This bit is cleared when the corresponding bit in IDR is written to one.
This bit is set when the corresponding bit in IER is written to one.

A mE|,® 276

32072H-AVR32-10/2012

17.6.14 Interrupt Status Register

Name: ISR

Access Type: Read-only

Offset: 0x1BC

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | I | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

| | | | - | | |
7 6 5 4 3 2 1 0

- - - - -] - | ENDCOR |

¢ ENDCOR:

This bit is cleared when the corresponding bit in ISCR is written to one.
This bit is set when a correction process has ended.

A mE|,® 277

32072H-AVR32-10/2012

17.6.15 Interrupt Status Clear Register

Name: ISCR

Access Type: Write-only

Offset: 0x1CO0

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | I | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

| | | | - | | |
7 6 5 4 3 2 1 0

- - - - -] - | ENDCOR |

¢ ENDCOR:

Writing a zero to this bit has no effect
Writing a one to this bit will clear the corresponding bit in ISR and the corresponding interrupt request.

A mE|,® 278

32072H-AVR32-10/2012

17.6.16 Version Register

Name: VERSION

Access Type: Read-only

Offset: Ox1FC

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | I | |
23 22 21 20 19 18 17 16

‘] ‘] ‘] ‘] ‘ . ‘ VARIANT ‘
15 14 13 12 11 10 9 8

‘] ‘] ‘] ‘ - ‘ VERSION[11:8] ‘
7 6 5 4 3 2 1 0

‘ VERSION[7:0] ‘

¢ VARIANT: Variant Number
Reserved. No functionality associated.
« VERSION: Version Number
Version number of the module. No functionality associated.

A mE|,® 279

32072H-AVR32-10/2012

17.7 Module Configuration

The specific configuration for the ECCHRS instance is listed in the following tables.The module
bus clocks listed here are connected to the system bus clocks according to the table in the
Power Manager section.

Table 17-2. Module clock name

Module name Clock name

ECCHRS CLK_ECCHRS

Table 17-3. Register Reset Values

Register Reset Value

VERSION 0x00000100

Alm L 280

32072H-AVR32-10/2012 I ©

18. Peripheral DMA Controller (PDCA)

18.1 Features

18.2 Overview

32072H-AVR32-10/2012

Rev: 1.1.0.1

¢ Multiple channels

* Generates transfers between memories and peripherals such as USART and SPI
* Two address pointers/counters per channel allowing double buffering

* Performance monitors to measure average and maximum transfer latency

The Peripheral DMA Controller (PDCA) transfers data between on-chip peripheral modules such
as USART, SPI and memories (those memories may be on- and off-chip memories). Using the
PDCA avoids CPU intervention for data transfers, improving the performance of the microcon-
troller. The PDCA can transfer data from memory to a peripheral or from a peripheral to memory.

The PDCA consists of multiple DMA channels. Each channel has:

* A Peripheral Select Register

* A 32-bit memory pointer

* A 16-bit transfer counter

* A 32-bit memory pointer reload value
A 16-bit transfer counter reload value

The PDCA communicates with the peripheral modules over a set of handshake interfaces. The
peripheral signals the PDCA when it is ready to receive or transmit data. The PDCA acknowl-
edges the request when the transmission has started.

When a transmit buffer is empty or a receive buffer is full, an optional interrupt request can be
generated.

Alm L 281

Y 5

18.3 Block Diagram

Figure 18-1. PDCA Block Diagram

Memory Perlpoheral
HSB to PB
¢ HSB Bridge
HSB ;
Per|p1heral
/2]
@
High Speed &
Bus Matrix E
HSB ;
Perlpzheral
Peripheral DMA
Controller <a— :
(PDCA)
Interrupt | IR@ Peripheral
Controller | (n-1)
A A A |
Handshake Interfaces

18.4 Product Dependencies
In order to use this module, other parts of the system must be configured correctly, as described
below.

18.4.1 Power Management
If the CPU enters a sleep mode that disables the PDCA clocks, the PDCA will stop functioning
and resume operation after the system wakes up from sleep mode.

18.4.2 Clocks
The PDCA has two bus clocks connected: One High Speed Bus clock (CLK_PDCA_HSB) and
one Peripheral Bus clock (CLK_PDCA_PB). These clocks are generated by the Power Man-
ager. Both clocks are enabled at reset, and can be disabled in the Power Manager. It is
recommended to disable the PDCA before disabling the clocks, to avoid freezing the PDCA in
an undefined state.

18.4.3 Interrupts
The PDCA interrupt request lines are connected to the interrupt controller. Using the PDCA
interrupts requires the interrupt controller to be programmed first.

Alm L 282

32072H-AVR32-10/2012 I ©

18.5 Functional Description

18.5.1 Basic Operation
The PDCA consists of multiple independent PDCA channels, each capable of handling DMA
requests in parallel. Each PDCA channels contains a set of configuration registers which must
be configured to start a DMA transfer.

In this section the steps necessary to configure one PDCA channel is outlined.

The peripheral to transfer data to or from must be configured correctly in the Peripheral Select
Register (PSR). This is performed by writing the Peripheral Identity (PID) value for the corre-
sponding peripheral to the PID field in the PSR register. The PID also encodes the transfer
direction, i.e. memory to peripheral or peripheral to memory. See Section 18.5.5.

The transfer size must be written to the Transfer Size field in the Mode Register (MR.SIZE). The
size must match the data size produced or consumed by the selected peripheral. See Section
18.5.6.

The memory address to transfer to or from, depending on the PSR, must be written to the Mem-
ory Address Register (MAR). For each transfer the memory address is increased by either a
one, two or four, depending on the size set in MR. See Section 18.5.2.

The number of data items to transfer is written to the TCR register. If the PDCA channel is
enabled, a transfer will start immediately after writing a non-zero value to TCR or the reload ver-
sion of TCR, TCRR. After each transfer the TCR value is decreased by one. Both MAR and TCR
can be read while the PDCA channel is active to monitor the DMA progress. See Section 18.5.3.

The channel must be enabled for a transfer to start. A channel is enable by writing a one to the
EN bit in the Control Register (CR).

18.5.2 Memory Pointer
Each channel has a 32-bit Memory Address Register (MAR). This register holds the memory
address for the next transfer to be performed. The register is automatically updated after each
transfer. The address will be increased by either one, two or four depending on the size of the
DMA transfer (byte, halfword or word). The MAR can be read at any time during transfer.

18.5.3 Transfer Counter
Each channel has a 16-bit Transfer Counter Register (TCR). This register must be written with
the number of transfers to be performed. The TCR register should contain the number of data
items to be transferred independently of the transfer size. The TCR can be read at any time dur-
ing transfer to see the number of remaining transfers.

18.5.4 Reload Registers
Both the MAR and the TCR have a reload register, respectively Memory Address Reload Regis-
ter (MARR) and Transfer Counter Reload Register (TCRR). These registers provide the
possibility for the PDCA to work on two memory buffers for each channel. When one buffer has
completed, MAR and TCR will be reloaded with the values in MARR and TCRR. The reload logic
is always enabled and will trigger if the TCR reaches zero while TCRR holds a non-zero value.
After reload, the MARR and TCRR registers are cleared.

If TCR is zero when writing to TCRR, the TCR and MAR are automatically updated with the
value written in TCRR and MARR.

Alm L 283

32072H-AVR32-10/2012 I ©

18,55

18.5.6

18.5.7

18.5.8

18.5.9

18.5.10

Peripheral Selection

Transfer Size

The Peripheral Select Register (PSR) decides which peripheral should be connected to the
PDCA channel. A peripheral is selected by writing the corresponding Peripheral Identity (PID) to
the PID field in the PSR register. Writing the PID will both select the direction of the transfer
(memory to peripheral or peripheral to memory), which handshake interface to use, and the
address of the peripheral holding register. Refer to the Peripheral Identity (PID) table in the Mod-
ule Configuration section for the peripheral PID values.

The transfer size can be set individually for each channel to be either byte, halfword or word (8-
bit, 16-bit or 32-bit respectively). Transfer size is set by writing the desired value to the Transfer
Size field in the Mode Register (MR.SIZE).

When the PDCA moves data between peripherals and memory, data is automatically sized and
aligned. When memory is accessed, the size specified in MR.SIZE and system alignment is
used. When a peripheral register is accessed the data to be transferred is converted to a word
where bit n in the data corresponds to bit n in the peripheral register. If the transfer size is byte or
halfword, bits greater than 8 and16 respectively are set to zero.

Refer to the Module Configuration section for information regarding what peripheral registers are
used for the different peripherals and then to the peripheral specific chapter for information
about the size option available for the different registers.

Enabling and Disabling

Interrupts

Priority

Error Handling

32072H-AVR32-10/2012

Each DMA channel is enabled by writing a one to the Transfer Enable bit in the Control Register
(CR.TEN) and disabled by writing a one to the Transfer Disable bit (CR.TDIS). The current sta-
tus can be read from the Status Register (SR).

While the PDCA channel is enabled all DMA request will be handled as long the TCR and TCRR
is not zero.

Interrupts can be enabled by writing a one to the corresponding bit in the Interrupt Enable Regis-
ter (IER) and disabled by writing a one to the corresponding bit in the Interrupt Disable Register
(IDR). The Interrupt Mask Register (IMR) can be read to see whether an interrupt is enabled or
not. The current status of an interrupt source can be read through the Interrupt Status Register
(ISR).

The PDCA has three interrupt sources:

* Reload Counter Zero - The TCRR register is zero.
« Transfer Finished - Both the TCR and TCRR registers are zero.
« Transfer Error - An error has occurred in accessing memory.

If more than one PDCA channel is requesting transfer at a given time, the PDCA channels are
prioritized by their channel number. Channels with lower numbers have priority over channels
with higher numbers, giving channel zero the highest priority.

If the Memory Address Register (MAR) is set to point to an invalid location in memory, an error
will occur when the PDCA tries to perform a transfer. When an error occurs, the Transfer Error

Alm L 284

Y 5

bit in the Interrupt Status Register (ISR.TERR) will be set and the DMA channel that caused the
error will be stopped. In order to restart the channel, the user must program the Memory
Address Register to a valid address and then write a one to the Error Clear bit in the Control
Register (CR.ECLR). If the Transfer Error interrupt is enabled, an interrupt request will be gener-
ated when a transfer error occurs.

18.6 Performance Monitors

Up to two performance monitors allow the user to measure the activity and stall cycles for PDCA
transfers. To monitor a PDCA channel, the corresponding channel number must be written to
one of the MONO/1CH fields in the Performance Control Register (PCONTROL) and a one must
be written to the corresponding CHO/1EN bit in the same register.

Due to performance monitor hardware resource sharing, the two monitor channels should NOT
be programmed to monitor the same PDCA channel. This may result in UNDEFINED perfor-
mance monitor behavior.

18.6.1 Measuring mechanisms

32072H-AVR32-10/2012

Three different parameters can be measured by each channel:

« The number of data transfer cycles since last channel reset, both for read and write
» The number of stall cycles since last channel reset, both for read and write
* The maximum latency since last channel reset, both for read and write

These measurements can be extracted by software and used to generate indicators for bus
latency, bus load, and maximum bus latency.

Each of the counters has a fixed width, and may therefore overflow. When an overflow is
encountered in either the Performance Channel Data Read/Write Cycle registers (PRDATAO0/1
and PWDATAO/1) or the Performance Channel Read/Write Stall Cycles registers (PRSTALLO/1
and PWSTALLO/1) of a channel, all registers in the channel are reset. This behavior is altered if
the Channel Overflow Freeze bit is one in the Performance Control register (PCON-
TROL.CHO/10VF). If this bit is one, the channel registers are frozen when either DATA or
STALL reaches its maximum value. This simplifies one-shot readout of the counter values.

The registers can also be manually reset by writing a one to the Channel Reset bit in the PCON-
TROL register (PCONTROL.CHO/1RES). The Performance Channel Read/Write Latency
registers (PRLATO/1 and PWLATO0/1) are saturating when their maximum count value is
reached. The PRLATO/1 and PWLATO/1 registers can only be reset by writing a one to the cor-
responding reset bitin PCONTROL (PCONTROL.CHO/1RES).

A counter is enabled by writing a one to the Channel Enable bit in the Performance Control Reg-
ister (PCONTROL.CHO/1EN).

Alm L 285

Y 5

18.7 User Interface

18.7.1 Memory Map Overview

Table 18-1. PDCA Register Memory Map

Address Range Contents
0x000 - 0x03F DMA channel O configuration registers
0x040 - Ox07F DMA channel 1 configuration registers
(0x000 - 0x03F)+m*0x040 DMA channel m configuration registers
0x800-0x830 Performance Monitor registers
0x834 Version register

The channels are mapped as shown in Table 18-1. Each channel has a set of configuration reg-
isters, shown in Table 18-2, where n is the channel number.

18.7.2 Channel Memory Map

Table 18-2. PDCA Channel Configuration Registers

Offset Register Register Name Access Reset
0x000 + n*0x040 Memory Address Register MAR Read/Write 0x00000000
0x004 + n*0x040 Peripheral Select Register PSR Read/Write -@
0x008 + n*0x040 Transfer Counter Register TCR Read/Write 0x00000000
0x00C + n*0x040 Memory Address Reload Register MARR Read/Write 0x00000000
0x010 + n*0x040 Transfer Counter Reload Register TCRR Read/Write 0x00000000
0x014 + n*0x040 Control Register CR Write-only 0x00000000
0x018 + n*0x040 Mode Register MR Read/Write 0x00000000
0x01C + n*0x040 Status Register SR Read-only 0x00000000
0x020 + n*0x040 Interrupt Enable Register IER Write-only 0x00000000
0x024 + n*0x040 Interrupt Disable Register IDR Write-only 0x00000000
0x028 + n*0x040 Interrupt Mask Register IMR Read-only 0x00000000
0x02C + n*0x040 Interrupt Status Register ISR Read-only 0x00000000

Note: 1. The reset values are device specific. Please refer to the Module Configuration section at the
end of this chapter.

AIMEL 286

32072H-AVR32-10/2012 I ©

18.7.3 Performance Monitor Memory Map

Table 18-3. PDCA Performance Monitor Registers™®

Offset Register Register Name Access Reset

0x800 Performance Control Register PCONTROL Read/Write 0x00000000
0x804 Channel0 Read Data Cycles PRDATAO Read-only 0x00000000
0x808 Channel0 Read Stall Cycles PRSTALLO Read-only 0x00000000
0x80C Channel0 Read Max Latency PRLATO Read-only 0x00000000
0x810 Channel0 Write Data Cycles PWDATAO Read-only 0x00000000
0x814 Channel0 Write Stall Cycles PWSTALLO Read-only 0x00000000
0x818 Channel0 Write Max Latency PWLATO Read-only 0x00000000
0x81C Channell Read Data Cycles PRDATA1 Read-only 0x00000000
0x820 Channell Read Stall Cycles PRSTALL1 Read-only 0x00000000
0x824 Channell Read Max Latency PRLAT1 Read-only 0x00000000
0x828 Channell Write Data Cycles PWDATA1 Read-only 0x00000000
0x82C Channell Write Stall Cycles PWSTALL1 Read-only 0x00000000
0x830 Channell Write Max Latency PWLAT1 Read-only 0x00000000

Note: 1. The number of performance monitors is device specific. If the device has only one perfor-
mance monitor, the Channell registers are not available. Please refer to the Module
Configuration section at the end of this chapter for the number of performance monitors on this

device.

18.7.4 Version Register Memory Map

Table 18-4. PDCA Version Register Memory Map
Offset Register Register Name Access Reset
0x834 Version Register VERSION Read-only -@

Note: 1. The reset values are device specific. Please refer to the Module Configuration section at the end of this chapter.

32072H-AVR32-10/2012

ATMEL

287

18.7.5 Memory Address Register

Name: MAR

Access Type: Read/Write

Offset: 0x000 + n*0x040

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ MADDR[31:24] ‘
23 22 21 20 19 18 17 16

‘ MADDR([23:16] ‘
15 14 13 12 11 10 9 8

‘ MADDR[15:8] ‘
7 6 5 4 3 2 1 0

‘ MADDR(7:0] ‘

< MADDR: Memory Address
Address of memory buffer. MADDR should be programmed to point to the start of the memory buffer when configuring the

PDCA. During transfer, MADDR will point to the next memory location to be read/written.

AIMEL 288

32072H-AVR32-10/2012 I ©

18.7.6
Name:

Access Type:

Read/Write

Peripheral Select Register
PSR

Offset: 0x004 + n*0x040
Reset Value: -

31 30 29 28 27 26 25 24
- - - SR - -]
23 22 21 20 19 18 17 16
- - - SR - -]
15 14 13 12 11 10 9 8
- - - SRR - -]
7 6 5 4 3 2 1 0

PID

e PID: Peripheral Identifier

The Peripheral Identifier selects which peripheral should be connected to the DMA channel. Writing a PID will select both which
handshake interface to use, the direction of the transfer and also the address of the Receive/Transfer Holding Register for the
peripheral. See the Module Configuration section of PDCA for details. The width of the PID field is device specific and

dependent on the number of peripheral modules in the device.

32072H-AVR32-10/2012

ATMEL

Y 5

289

18.7.7 Transfer Counter Register

Name: TCR

Access Type: Read/Write

Offset: 0x008 + n*0x040

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

. - r - -+ -+ - - [- [- |
23 22 21 20 19 18 17 16

- - r - r - r - - ;- -} - |
15 14 13 12 11 10 9 8

‘ TCV[15:8] ‘
7 6 5 4 3 2 1 0

‘ TCV[7:0] ‘

e TCV: Transfer Counter Value
Number of data items to be transferred by the PDCA. TCV must be programmed with the total number of transfers to be made.

During transfer, TCV contains the number of remaining transfers to be done.

AIMEL 290

32072H-AVR32-10/2012 I ©

18.7.8 Memory Address Reload Register

Name: MARR

Access Type: Read/Write

Offset: 0x00C + n*0x040

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ MARV[31:24] ‘
23 22 21 20 19 18 17 16

‘ MARV[23:16] ‘
15 14 13 12 11 10 9 8

‘ MARV[15:8] ‘
7 6 5 4 3 2 1 0

‘ MARV[7:0] ‘

* MARV: Memory Address Reload Value
Reload Value for the MAR register. This value will be loaded into MAR when TCR reaches zero if the TCRR register has a non-

zero value.

AIMEL 201

32072H-AVR32-10/2012 I ©

18.7.9 Transfer Counter Reload Register

Name: TCRR

Access Type: Read/Write

Offset: 0x010 + n*0x040

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

. - r - -+ -+ - - [- [- |
23 22 21 20 19 18 17 16

- - r - r - r - - ;- -} - |
15 14 13 12 11 10 9 8

‘ TCRV[15:8] ‘
7 6 5 4 3 2 1 0

‘ TCRV[7:0] ‘

e TCRV: Transfer Counter Reload Value
Reload value for the TCR register. When TCR reaches zero, it will be reloaded with TCRV if TCRV has a positive value. If TCRV

is zero, no more transfers will be performed for the channel. When TCR is reloaded, the TCRR register is cleared.

AIMEL 202

32072H-AVR32-10/2012 I ©

18.7.10 Control Register

Name: CR

Access Type: Write-only

Offset: 0x014 + n*0x040

Reset Value: 0x00000000

31 30 29 28 27 26 25 24
. - r - - +r+ -+ - - [- [- |
23 22 21 20 19 18 17 16
- - r - r - r - - - ;- -} - |
15 14 13 12 11 10 9 8
- - - - - - [- | er |
7 6 5 4 3 2 1 0
A e e e D e TR

e ECLR: Transfer Error Clear
Writing a zero to this bit has no effect.
Writing a one to this bit will clear the Transfer Error bit in the Status Register (SR.TERR). Clearing the SR.TERR bit will allow the
channel to transmit data. The memory address must first be set to point to a valid location.

¢ TDIS: Transfer Disable
Writing a zero to this bit has no effect.

Writing a one to this bit will disable transfer for the DMA channel.

* TEN: Transfer Enable
Writing a zero to this bit has no effect.

Writing a one to this bit will enable transfer for the DMA channel.

AIMEL 263

32072H-AVR32-10/2012 I ©

18.7.11 Mode Register

Name: MR

Access Type: Read/Write

Offset: 0x018 + n*0x040

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | I | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

| | | | - | | |
7 6 5 4 3 2 1 0

I O A B

¢ SIZE: Size of Transfer

Table 18-5. Size of Transfer

SIZE Size of Transfer
0 Byte
1 Halfword
2 Word
3 Reserved

A mE|,® 294

32072H-AVR32-10/2012

18.7.12 Status Register

Name: SR

Access Type: Read-only

Offset: 0x01C + n*0x040

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | I | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

| | | | - | | |
7 6 5 4 3 2 1 0

I S S R I A B B

¢ TEN: Transfer Enabled
This bit is cleared when the TDIS bit in CR is written to one.

This bit is set when the TEN bit in CR is written to one.
0: Transfer is disabled for the DMA channel.
1: Transfer is enabled for the DMA channel.

A mE|,® 295

32072H-AVR32-10/2012

18.7.13 Interrupt Enable Register

Name: IER

Access Type: Write-only

Offset: 0x020 + n*0x040

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | | |
23 22 21 20 19 18 17 16

| | | | | |
15 14 13 12 11 10 9 8

| | | | | |
7 6 5 4 3 2 1 0

‘ ‘ ‘ ‘ ‘ TERR TRC RCZ ‘

Writing a zero to a bit in this register has no effect.

Writing a one to a bit in this register will set the corresponding bit in IMR.

32072H-AVR32-10/2012

ATMEL

296

18.7.14 Interrupt Disable Register

Name: IDR

Access Type: Write-only

Offset: 0x024 + n*0x040

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | | |
23 22 21 20 19 18 17 16

| | | | | |
15 14 13 12 11 10 9 8

| | | | | |
7 6 5 4 3 2 1 0

‘ ‘ ‘ ‘ ‘ TERR TRC RCZ ‘

Writing a zero to a bit in this register has no effect.

Writing a one to a bit in this register will clear the corresponding bit in IMR.

32072H-AVR32-10/2012

ATMEL

297

18.7.15 Interrupt Mask Register

Name: IMR

Access Type: Read-only

Offset: 0x028 + n*0x040

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | | |
23 22 21 20 19 18 17 16

| | | | | |
15 14 13 12 11 10 9 8

| | | | | |
7 6 5 4 3 2 1 0

‘ - ‘ ‘ ‘ ‘ TERR TRC RCZ ‘

0: The corresponding interrupt is disabled.
1: The corresponding interrupt is enabled.

A bit in this register is cleared when the corresponding bit in IDR is written to one.

A bit in this register is set when the corresponding bit in IER is written to one.

32072H-AVR32-10/2012

ATMEL

298

18.7.16 Interrupt Status Register

Name: ISR

Access Type: Read-only

Offset: 0x02C + n*0x040

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

. - r - -+ -+ - - [- [- |
23 22 21 20 19 18 17 16

- - r - r - r - - ;- -} - |
15 14 13 12 11 10 9 8

- - rr - r - r - - - ;- ;- |
7 6 5 4 3 2 1 0

‘ - ‘ - ‘ - ‘ - ‘ - ‘ TERR ‘ TRC ‘ RCZ ‘

« TERR: Transfer Error

This bit is cleared when no transfer errors have occurred since the last write to CR.ECLR.

This bit is set when one or more transfer errors has occurred since reset or the last write to CR.ECLR.
¢ TRC: Transfer Complete

This bit is cleared when the TCR and/or the TCRR holds a non-zero value.

This bit is set when both the TCR and the TCRR are zero.

¢ RCZ: Reload Counter Zero
This bit is cleared when the TCRR holds a non-zero value.

This bit is set when TCRR is zero.

AIMEL 209

32072H-AVR32-10/2012 I ©

18.7.17 Performance Control Register

Name: PCONTROL

Access Type: Read/Write

Offset: 0x800

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ - ‘ - ‘ MON1CH ‘
23 22 21 20 19 18 17 16

‘ - ‘ - ‘ MONOCH ‘
15 14 13 12 11 10 9 8

‘] ‘] ‘] ‘] ‘ - ‘ - CH1RES ‘ CHORES ‘
7 6 5 4 3 2 1 0

‘ - ‘ - ‘ CH10F ‘ CHOOF ‘ - ‘ - CH1EN ‘ CHOEN ‘

¢ MONI1CH: Performance Monitor Channel 1
¢ MONOCH: Performance Monitor Channel O
The PDCA channel number to monitor with counter n

Due to performance monitor hardware resource sharing, the two performance monitor channels should NOT be programmed to

monitor the same PDCA channel. This may result in UNDEFINED monitor behavior.
¢ CHI1RES: Performance Channel 1 Counter Reset
Writing a zero to this bit has no effect.
Writing a one to this bit will reset the counter in the channel specified in MON1CH.
This bit always reads as zero.
¢ CHORES: Performance Channel 0 Counter Reset
Writing a zero to this bit has no effect.
Writing a one to this bit will reset the counter in the channel specified in MONOCH.
This bit always reads as zero.
¢ CH1OF: Channel 1 Overflow Freeze
0: The performance channel registers are reset if DATA or STALL overflows.

1: All performance channel registers are frozen just before DATA or STALL overflows.

e CH1OF: Channel 0 Overflow Freeze
0: The performance channel registers are reset if DATA or STALL overflows.

1: All performance channel registers are frozen just before DATA or STALL overflows.

¢ CH1EN: Performance Channel 1 Enable
0: Performance channel 1 is disabled.

1: Performance channel 1 is enabled.

¢« CHOEN: Performance Channel 0 Enable
0: Performance channel 0 is disabled.

1: Performance channel 0 is enabled.

ATMEL

32072H-AVR32-10/2012 I ©

300

18.7.18 Performance Channel 0 Read Data Cycles

Name: PRDATAO

Access Type: Read-only

Offset: 0x804

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ DATA[31:24] ‘
23 22 21 20 19 18 17 16

‘ DATA[23:16] ‘
15 14 13 12 11 10 9 8

‘ DATA[15:8] ‘
7 6 5 4 3 2 1 0

‘ DATA[7:0] ‘

* DATA: Data Cycles Counted Since Last Reset
Clock cycles are counted using the CLK_PDCA_HSB clock

AIMEL 301

32072H-AVR32-10/2012 I ©

18.7.19 Performance Channel 0 Read Stall Cycles

Name: PRSTALLO

Access Type: Read-only

Offset: 0x808

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ STALL[31:24] ‘
23 22 21 20 19 18 17 16

‘ STALL[23:16] ‘
15 14 13 12 11 10 9 8

‘ STALL[15:8] ‘
7 6 5 4 3 2 1 0

‘ STALL[7:0] ‘

e STALL: Stall Cycles Counted Since Last Reset
Clock cycles are counted using the CLK_PDCA_HSB clock

AIMEL 302

32072H-AVR32-10/2012 I ©

18.7.20 Performance Channel 0 Read Max Latency

Name: PRLATO
Access Type: Read/Write
Offset: 0x80C
Reset Value: 0x00000000
31 30 29 28 27 26 25 24
- - r - - - 7 - [- -~
23 22 21 20 19 18 17 16
I N N I A -
15 14 13 12 11 10 9 8
‘ LAT[15:8] ‘
7 6 5 4 3 2 1 0
‘ LAT[7:0] ‘

¢ LAT: Maximum Transfer Initiation Cycles Counted Since Last Reset
Clock cycles are counted using the CLK_PDCA_HSB clock

This counter is saturating. The register is reset only when PCONTROL.CHORES is written to one.

ATMEL

32072H-AVR32-10/2012 I ©

303

18.7.21 Performance Channel 0 Write Data Cycles

Name: PWDATAO

Access Type: Read-only

Offset: 0x810

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ DATA[31:24] ‘
23 22 21 20 19 18 17 16

‘ DATA[23:16] ‘
15 14 13 12 11 10 9 8

‘ DATA[15:8] ‘
7 6 5 4 3 2 1 0

‘ DATA[7:0] ‘

* DATA: Data Cycles Counted Since Last Reset
Clock cycles are counted using the CLK_PDCA_HSB clock

AIMEL 304

32072H-AVR32-10/2012 I ©

18.7.22 Performance Channel 0 Write Stall Cycles

Name: PWSTALLO

Access Type: Read-only

Offset: 0x814

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ STALL[31:24] ‘
23 22 21 20 19 18 17 16

‘ STALL[23:16] ‘
15 14 13 12 11 10 9 8

‘ STALL[15:8] ‘
7 6 5 4 3 2 1 0

‘ STALL[7:0] ‘

e STALL: Stall Cycles Counted Since Last Reset
Clock cycles are counted using the CLK_PDCA_HSB clock

AIMEL 305

32072H-AVR32-10/2012 I ©

18.7.23 Performance Channel 0 Write Max Latency

Name: PWLATO
Access Type: Read/Write
Offset: 0x818
Reset Value: 0x00000000
31 30 29 28 27 26 25 24
- - r - - - 7 - [- -~
23 22 21 20 19 18 17 16
I N N I A -
15 14 13 12 11 10 9 8
‘ LAT[15:8] ‘
7 6 5 4 3 2 1 0
‘ LAT[7:0] ‘

¢ LAT: Maximum Transfer Initiation Cycles Counted Since Last Reset
Clock cycles are counted using the CLK_PDCA_HSB clock

This counter is saturating. The register is reset only when PCONTROL.CHORES is written to one.

ATMEL

32072H-AVR32-10/2012 I ©

306

18.7.24 Performance Channel 1 Read Data Cycles

Name: PRDATAL

Access Type: Read-only

Offset: 0x81C

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ DATA[31:24] ‘
23 22 21 20 19 18 17 16

‘ DATA[23:16] ‘
15 14 13 12 11 10 9 8

‘ DATA[15:8] ‘
7 6 5 4 3 2 1 0

‘ DATA[7:0] ‘

* DATA: Data Cycles Counted Since Last Reset
Clock cycles are counted using the CLK_PDCA_HSB clock

AIMEL 307

32072H-AVR32-10/2012 I ©

18.7.25 Performance Channel 1 Read Stall Cycles

Name: PRSTALL1

Access Type: Read-only

Offset: 0x820

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ STALL[31:24] ‘
23 22 21 20 19 18 17 16

‘ STALL[23:16] ‘
15 14 13 12 11 10 9 8

‘ STALL[15:8] ‘
7 6 5 4 3 2 1 0

‘ STALL[7:0] ‘

e STALL: Stall Cycles Counted Since Last Reset
Clock cycles are counted using the CLK_PDCA_HSB clock

AIMEL 308

32072H-AVR32-10/2012 I ©

18.7.26 Performance Channel 1 Read Max Latency

Name: PRLAT1
Access Type: Read/Write
Offset: 0x824
Reset Value: 0x00000000
31 30 29 28 27 26 25 24
- - r - - - 7 - [- -~
23 22 21 20 19 18 17 16
I N N I A -
15 14 13 12 11 10 9 8
‘ LAT[15:8] ‘
7 6 5 4 3 2 1 0
‘ LAT[7:0] ‘

¢ LAT: Maximum Transfer Initiation Cycles Counted Since Last Reset
Clock cycles are counted using the CLK_PDCA_HSB clock

This counter is saturating. The register is reset only when PCONTROL.CH1RES is written to one.

ATMEL

32072H-AVR32-10/2012 I ©

309

18.7.27 Performance Channel 1 Write Data Cycles

Name: PWDATA1

Access Type: Read-only

Offset: 0x828

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ DATA[31:24] ‘
23 22 21 20 19 18 17 16

‘ DATA[23:16] ‘
15 14 13 12 11 10 9 8

‘ DATA[15:8] ‘
7 6 5 4 3 2 1 0

‘ DATA[7:0] ‘

* DATA: Data Cycles Counted Since Last Reset
Clock cycles are counted using the CLK_PDCA_HSB clock

AIMEL 310

32072H-AVR32-10/2012 I ©

18.7.28 Performance Channel 1 Write Stall Cycles

Name: PWSTALL1

Access Type: Read-only

Offset: 0x82C

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ STALL[31:24] ‘
23 22 21 20 19 18 17 16

‘ STALL[23:16] ‘
15 14 13 12 11 10 9 8

‘ STALL[15:8] ‘
7 6 5 4 3 2 1 0

‘ STALL[7:0] ‘

e STALL: Stall Cycles Counted Since Last Reset
Clock cycles are counted using the CLK_PDCA_HSB clock

AIMEL 31

32072H-AVR32-10/2012 I ©

18.7.29 Performance Channel 1 Write Max Latency

Name: PWLAT1
Access Type: Read/Write
Offset: 0x830
Reset Value: 0x00000000
31 30 29 28 27 26 25 24
- - r - - - 7 - [- -~
23 22 21 20 19 18 17 16
I N N I A -
15 14 13 12 11 10 9 8
‘ LAT[15:8] ‘
7 6 5 4 3 2 1 0
‘ LAT[7:0] ‘

¢ LAT: Maximum Transfer Initiation Cycles Counted Since Last Reset
Clock cycles are counted using the CLK_PDCA_HSB clock

This counter is saturating. The register is reset only when PCONTROL.CH1RES is written to one.

ATMEL

32072H-AVR32-10/2012 I ©

312

18.7.30 PDCA Version Register

Name: VERSION

Access Type: Read-only

Offset: 0x834

Reset Value:
31 30 29 28 27 26 25 24

| | I | |
23 22 21 20 19 18 17 16

‘ - ‘ - ‘ - ‘ - ‘ VARIANT ‘
15 14 13 12 11 10 9 8

‘] ‘] ‘] ‘ - ‘ VERSION[11:8] ‘
7 6 5 4 3 2 1 0

‘ VERSION[7:0] ‘

¢ VARIANT: Variant Number
Reserved. No functionality associated.
« VERSION: Version Number
Version number of the module. No functionality associated.

A mE|,® 313

32072H-AVR32-10/2012

18.8 Module Configuration

The specific configuration for the PDCA instance is listed in the following tables.

Table 18-6.

PDCA Configuration

Features

PDCA

Number of channels

8

Table 18-7. Register Reset Values
Register Reset Value
PSRn n
VERSION 0x00000110

18.8.1 DMA Handshake Signals

The table below defines the valid Peripheral Identifiers (PIDs). The direction is specified as

observed from the memory, so RX means transfers from peripheral to memory and TX means
from memory to peripheral.

Table 18-8. PDCA Handshake Signals

PID Value Direction Peripheral Instance Peripheral Register
0 RX ADC CDRx
1 RX SSC RHR
2 RX USARTO RHR
3 RX USART1 RHR
4 RX USART2 RHR
5 RX USART3 RHR
6 RX TWIMO RHR
7 RX TWIM1 RHR
8 RX TWISO RHR
9 RX TWIS1 RHR
10 RX SPIO RDR
11 RX SPI1 RDR
12 X SSC THR
13 X USARTO THR
14 TX USART1 THR
15 TX USART2 THR
16 TX USART3 THR
17 X TWIMO THR
18 X TWIM1 THR
19 X TWISO THR
20 TX TWIS1 THR

32072H-AVR32-10/2012

ATMEL

Y 5

314

Table 18-8. PDCA Handshake Signals
PID Value Direction Peripheral Instance Peripheral Register
21 X SPIO TDR
22 X SPI1 TDR
23 X ABDAC SDR

32072H-AVR32-10/2012

ATMEL

Y 5

315

19. DMA Controller (DMACA)

19.1 Features

19.2 Overview

32072H-AVR32-10/2012

Rev: 2.0.6.6

* 2 HSB Master Interfaces
* 4 Channels
* Software and Hardware Handshaking Interfaces
— 8 Hardware Handshaking Interfaces
* Memory/Non-Memory Peripherals to Memory/Non-Memory Peripherals Transfer
* Single-block DMA Transfer
* Multi-block DMA Transfer
— Linked Lists
— Auto-Reloading
— Contiguous Blocks
* DMA Controller is Always the Flow Controller
* Additional Features
— Scatter and Gather Operations
— Channel Locking
— Bus Locking
— FIFO Mode
— Pseudo Fly-by Operation

The DMA Controller (DMACA) is an HSB-central DMA controller core that transfers data from a
source peripheral to a destination peripheral over one or more System Bus. One channel is
required for each source/destination pair. In the most basic configuration, the DMACA has one
master interface and one channel. The master interface reads the data from a source and writes
it to a destination. Two System Bus transfers are required for each DMA data transfer. This is
also known as a dual-access transfer.

The DMACA is programmed via the HSB slave interface.

AIMEL 316

Y 5

19.3 Block Diagram

Figure 19-1. DMA Controller (DMACA) Block Diagram
DMA Controller

HSB Slive HSB Slave | CFG Interrupt |rq_=dma
- I/F T Generator
| Channel 1
Channel 0
FIFO
HSB Maiter HSB Master
i I/F ‘ »
SRC DST | |
FSM FSM

19.4 Product Dependencies

194.1

19.4.2

19.4.3

19.4.4

19.45

I/O Lines

In order to use this module, other parts of the system must be configured correctly, as described
below.

The pins used for interfacing the compliant external devices may be multiplexed with GPIO lines.
The user must first program the GPIO controller to assign the DMACA pins to their peripheral
functions.

Power Management

Clocks

Interrupts

Peripherals

32072H-AVR32-10/2012

To prevent bus errors the DMACA operation must be terminated before entering sleep mode.

The CLK_DMACA to the DMACA is generated by the Power Manager (PM). Before using the
DMACA, the user must ensure that the DMACA clock is enabled in the power manager.

The DMACA interface has an interrupt line connected to the Interrupt Controller. Handling the
DMACA interrupt requires programming the interrupt controller before configuring the DMACA.

Both the source peripheral and the destination peripheral must be set up correctly prior to the
DMA transfer.

Alm L 317

Y 5

19.5 Functional Description

19.5.1 Basic Definitions
Source peripheral: Device on a System Bus layer from where the DMACA reads data, which is
then stored in the channel FIFO. The source peripheral teams up with a destination peripheral to
form a channel.

Destination peripheral: Device to which the DMACA writes the stored data from the FIFO (pre-
viously read from the source peripheral).

Memory: Source or destination that is always “ready” for a DMA transfer and does not require a
handshaking interface to interact with the DMACA. A peripheral should be assigned as memory
only if it does not insert more than 16 wait states. If more than 16 wait states are required, then
the peripheral should use a handshaking interface (the default if the peripheral is not pro-
grammed to be memory) in order to signal when it is ready to accept or supply data.

Channel: Read/write datapath between a source peripheral on one configured System Bus
layer and a destination peripheral on the same or different System Bus layer that occurs through
the channel FIFO. If the source peripheral is not memory, then a source handshaking interface
is assigned to the channel. If the destination peripheral is not memory, then a destination hand-
shaking interface is assigned to the channel. Source and destination handshaking interfaces can
be assigned dynamically by programming the channel registers.

Master interface: DMACA is a master on the HSB bus reading data from the source and writing
it to the destination over the HSB bus.

Slave interface: The HSB interface over which the DMACA is programmed. The slave interface
in practice could be on the same layer as any of the master interfaces or on a separate layer.

Handshaking interface: A set of signal registers that conform to a protocol and handshake
between the DMACA and source or destination peripheral to control the transfer of a single or
burst transaction between them. This interface is used to request, acknowledge, and control a
DMACA transaction. A channel can receive a request through one of three types of handshaking
interface: hardware, software, or peripheral interrupt.

Hardware handshaking interface: Uses hardware signals to control the transfer of a single or
burst transaction between the DMACA and the source or destination peripheral.

Software handshaking interface: Uses software registers to control the transfer of a single or
burst transaction between the DMACA and the source or destination peripheral. No special
DMACA handshaking signals are needed on the 1/O of the peripheral. This mode is useful for
interfacing an existing peripheral to the DMACA without modifying it.

Peripheral interrupt handshaking interface: A simple use of the hardware handshaking inter-
face. In this mode, the interrupt line from the peripheral is tied to the dma_req input of the
hardware handshaking interface. Other interface signals are ignored.

Flow controller: The device (either the DMACA or source/destination peripheral) that deter-
mines the length of and terminates a DMA block transfer. If the length of a block is known before
enabling the channel, then the DMACA should be programmed as the flow controller. If the
length of a block is not known prior to enabling the channel, the source or destination peripheral
needs to terminate a block transfer. In this mode, the peripheral is the flow controller.

Flow control mode (CFGx.FCMODE): Special mode that only applies when the destination
peripheral is the flow controller. It controls the pre-fetching of data from the source peripheral.

Alm L 318

32072H-AVR32-10/2012 I ©

Transfer hierarchy: Figure 19-2 on page 319 illustrates the hierarchy between DMACA trans-
fers, block transfers, transactions (single or burst), and System Bus transfers (single or burst) for
non-memory peripherals. Figure 19-3 on page 319 shows the transfer hierarchy for memory.

Figure 19-2. DMACA Transfer Hierarchy for Non-Memory Peripheral

DMAC Transfer DMA Transfer
| Level
Block Transfer
Block Block Block Level
4 v v v
Burst Burst Burst Single DMA Transaction
Transaction | | Transaction Transaction Transactionl Level
v v Y Y l
System Bus| |System Bus System Bus| |System Bus System Bus
Burst Burst |- - Burst Single Single System Bus
Transfer Transfer Transfer Transfer Transfer Transfer Level
Figure 19-3. DMACA Transfer Hierarchy for Memory
DMAC Transfer DMA Transfer
| Level
lock Block Block Block Transfer
Bloc o oc Level
|
System Bus| [System Bus System Bus| [System Bus System Bus
Burst Burst - -~ Burst Single
Transfer Transfer Transfer Transfer Transfer Level

Block: A block of DMACA data. The amount of data (block length) is determined by the flow
controller. For transfers between the DMACA and memory, a block is broken directly into a
sequence of System Bus bursts and single transfers. For transfers between the DMACA and a
non-memory peripheral, a block is broken into a sequence of DMACA transactions (single and
bursts). These are in turn broken into a sequence of System Bus transfers.

Transaction: A basic unit of a DMACA transfer as determined by either the hardware or soft-
ware handshaking interface. A transaction is only relevant for transfers between the DMACA
and a source or destination peripheral if the source or destination peripheral is a non-memory
device. There are two types of transactions: single and burst.

AIMEL 319

32072H-AVR32-10/2012 I ©

— Single transaction: The length of a single transaction is always 1 and is converted
to a single System Bus transfer.

— Burst transaction: The length of a burst transaction is programmed into the
DMACA. The burst transaction is converted into a sequence of System Bus bursts
and single transfers. DMACA executes each burst transfer by performing
incremental bursts that are no longer than the maximum System Bus burst size set.
The burst transaction length is under program control and normally bears some
relationship to the FIFO sizes in the DMACA and in the source and destination
peripherals.

DMA transfer: Software controls the number of blocks in a DMACA transfer. Once the DMA
transfer has completed, then hardware within the DMACA disables the channel and can gener-
ate an interrupt to signal the completion of the DMA transfer. You can then re-program the
channel for a new DMA transfer.

Single-block DMA transfer: Consists of a single block.

Multi-block DMA transfer: A DMA transfer may consist of multiple DMACA blocks. Multi-block
DMA transfers are supported through block chaining (linked list pointers), auto-reloading of
channel registers, and contiguous blocks. The source and destination can independently select
which method to use.

— Linked lists (block chaining) — A linked list pointer (LLP) points to the location in
system memory where the next linked list item (LLI) exists. The LLI is a set of
registers that describe the next block (block descriptor) and an LLP register. The
DMACA fetches the LLI at the beginning of every block when block chaining is
enabled.

— Auto-reloading — The DMACA automatically reloads the channel registers at the
end of each block to the value when the channel was first enabled.

— Contiguous blocks — Where the address between successive blocks is selected to
be a continuation from the end of the previous block.

Scatter: Relevant to destination transfers within a block. The destination System Bus address is
incremented or decremented by a programmed amount -the scatter increment- when a scatter
boundary is reached. The destination System Bus address is incremented or decremented by
the value stored in the destination scatter increment (DSRx.DSI) field, multiplied by the number
of bytes in a single HSB transfer to the destination (decoded value of CTLX.DST_TR_WIDTH)/8.
The number of destination transfers between successive scatter boundaries is programmed into
the Destination Scatter Count (DSC) field of the DSRx register.

Scatter is enabled by writing a ‘1’ to the CTLx.DST_SCATTER_EN bit. The CTLx.DINC field
determines if the address is incremented, decremented or remains fixed when a scatter bound-
ary is reached. If the CTLx.DINC field indicates a fixed-address control throughout a DMA
transfer, then the CTLx.DST_SCATTER_EN bit is ignored, and the scatter feature is automati-
cally disabled.

Gather: Relevant to source transfers within a block. The source System Bus address is incre-
mented or decremented by a programmed amount when a gather boundary is reached. The
number of System Bus transfers between successive gather boundaries is programmed into the
Source Gather Count (SGRx.SGC) field. The source address is incremented or decremented by
the value stored in the source gather increment (SGRx.SGI) field multiplied by the number of
bytes in a single HSB transfer from the source -(decoded value of CTLX.SRC_TR_WIDTH)/8 -
when a gather boundary is reached.

Alm L 320

32072H-AVR32-10/2012 I ©

Gather is enabled by writing a ‘1’ to the CTLXx.SRC_GATHER_EN bit. The CTLx.SINC field
determines if the address is incremented, decremented or remains fixed when a gather bound-
ary is reached. If the CTLx.SINC field indicates a fixed-address control throughout a DMA
transfer, then the CTLx.SRC_GATHER_EN bit is ignored and the gather feature is automatically
disabled.

Note: For multi-block transfers, the counters that keep track of the number of transfer left to
reach a gather/scatter boundary are re-initialized to the source gather count (SGRx.SGC) and
destination scatter count (DSRx.DSC), respectively, at the start of each block transfer.

Figure 19-4. Destination Scatter Transfer

System Memory
o1 -« Scatter Boundary AQ + 0x220
¥,
A0+ 0x218 a1
D10 « .\
A0 +0x210 T3
D9 T
AO +0x208 S T -
D8 y 8. T —
AO +0x200 ‘ T
~~~~~~~~~~ Data Stream
Scatter Increment > 0| a1 [ d2[ 3| o o5 |6 a7 | a8 | dofato) d11\<J
0x 080 : —
A f — - Scatter Boundary AQ + 0x120
D7 l ’/‘/
AD +0x118 wdar
D6 ‘\\ e
AO +0x110 N
D5 rya
AO +0x108 S
D4 » j
AO +0x100 .
Scatter Increment > 1
0x 080
A Scatter Boundary AQ + 0x020
D3 d3 i
A0 +0x018
D2 2NN
AO +0x010 -~ 7 CTLxDST_TR_WIDTH = 3b011 (64bit8 = 8 bytes)
AO + 0x008 ;{ do DSRDSI=16
DO DSR.DSC =4
A0 DSR.DSI * 8 = 0x80 (Scatter Increment in bytes)

AIMEL 321

32072H-AVR32-10/2012 I ©



Figure 19-5. Source Gather Transfer

System Memory
-« Gather Boundary AO + 0x38
A0+ OXO34 D11 . d11 Gather Increment =4
+ ,

D10 N
AO +0x030—————— N

D9 T —
A0 +0x02C AT e Data Stream

D8 // [ 1< e S .
AD+ Ox028 (0| d1 | a2 |03 ] a4 o6 | a6 |7 |8 | ao]ato] ar1f>

>4

AQ + 0x020 < L Gather Boundary A0 + 0x24

D7 7 Gather | t=4
A0+ 0x01C — \\ //.?.,., er Incremen
A0 +0x018 A

D5 S
AQ +0x014 S

D4 /

/
« Gather Boundary A0 + 0x10

A0+ 0x00C D3 B3 Gather Increment = 4

D2 -y
AD +0x008 - v CTLx.SRC_TR WIDTH = 3b010 (32bit/8 = 4 bytes)
AQ + 0x004 J o SGRSGI =1

DO ' SGRSGC=4

AD SGRSGI * 4 = Ox4 (Gather Increment in bytes)

Channel locking: Software can program a channel to keep the HSB master interface by locking
the arbitration for the master bus interface for the duration of a DMA transfer, block, or transac-
tion (single or burst).

Bus locking: Software can program a channel to maintain control of the System Bus bus by
asserting hlock for the duration of a DMA transfer, block, or transaction (single or burst). Chan-
nel locking is asserted for the duration of bus locking at a minimum.

FIFO mode: Special mode to improve bandwidth. When enabled, the channel waits until the
FIFO is less than half full to fetch the data from the source peripheral and waits until the FIFO is
greater than or equal to half full to send data to the destination peripheral. Thus, the channel can
transfer the data using System Bus bursts, eliminating the need to arbitrate for the HSB master
interface for each single System Bus transfer. When this mode is not enabled, the channel only
waits until the FIFO can transmit/accept a single System Bus transfer before requesting the
master bus interface.

Pseudo fly-by operation: Typically, it takes two System Bus cycles to complete a transfer, one
for reading the source and one for writing to the destination. However, when the source and des-
tination peripherals of a DMA transfer are on different System Bus layers, it is possible for the
DMACA to fetch data from the source and store it in the channel FIFO at the same time as the
DMACA extracts data from the channel FIFO and writes it to the destination peripheral. This
activity is known as pseudo fly-by operation. For this to occur, the master interface for both
source and destination layers must win arbitration of their HSB layer. Similarly, the source and
destination peripherals must win ownership of their respective master interfaces.

AIMEL 322

32072H-AVR32-10/2012 I ©




19.6 Arbitration for HSB Master Interface

Each DMACA channel has two request lines that request ownership of a particular master bus
interface: channel source and channel destination request lines.

Source and destination arbitrate separately for the bus. Once a source/destination state
machine gains ownership of the master bus interface and the master bus interface has owner-
ship of the HSB bus, then HSB transfers can proceed between the peripheral and the DMACA.

An arbitration scheme decides which of the request lines (2 * DMAH_NUM_CHANNELS) is
granted the particular master bus interface. Each channel has a programmable priority. A
request for the master bus interface can be made at any time, but is granted only after the cur-
rent HSB transfer (burst or single) has completed. Therefore, if the master interface is
transferring data for a lower priority channel and a higher priority channel requests service, then
the master interface will complete the current burst for the lower priority channel before switch-
ing to transfer data for the higher priority channel.

If only one request line is active at the highest priority level, then the request with the highest pri-
ority wins ownership of the HSB master bus interface; it is not necessary for the priority levels to
be unique.

If more than one request is active at the highest requesting priority, then these competing
requests proceed to a second tier of arbitration:

If equal priority requests occur, then the lower-numbered channel is granted.

In other words, if a peripheral request attached to Channel 7 and a peripheral request attached
to Channel 8 have the same priority, then the peripheral attached to Channel 7 is granted first.

19.7 Memory Peripherals

Figure 19-3 on page 319 shows the DMA transfer hierarchy of the DMACA for a memory periph-
eral. There is no handshaking interface with the DMACA, and therefore the memory peripheral
can never be a flow controller. Once the channel is enabled, the transfer proceeds immediately
without waiting for a transaction request. The alternative to not having a transaction-level hand-
shaking interface is to allow the DMACA to attempt System Bus transfers to the peripheral once
the channel is enabled. If the peripheral slave cannot accept these System Bus transfers, it
inserts wait states onto the bus until it is ready; it is not recommended that more than 16 wait
states be inserted onto the bus. By using the handshaking interface, the peripheral can signal to
the DMACA that it is ready to transmit/receive data, and then the DMACA can access the
peripheral without the peripheral inserting wait states onto the bus.

19.8 Handshaking Interface

32072H-AVR32-10/2012

Handshaking interfaces are used at the transaction level to control the flow of single or burst
transactions. The operation of the handshaking interface is different and depends on whether
the peripheral or the DMACA is the flow controller.

The peripheral uses the handshaking interface to indicate to the DMACA that it is ready to trans-
fer/accept data over the System Bus. A non-memory peripheral can request a DMA transfer
through the DMACA using one of two handshaking interfaces:

« Hardware handshaking
* Software handshaking

Alm L 323

Y 5



Software selects between the hardware or software handshaking interface on a per-channel
basis. Software handshaking is accomplished through memory-mapped registers, while hard-
ware handshaking is accomplished using a dedicated handshaking interface.

19.8.1 Software Handshaking
When the slave peripheral requires the DMACA to perform a DMA transaction, it communicates
this request by sending an interrupt to the CPU or interrupt controller.

The interrupt service routine then uses the software registers to initiate and control a DMA trans-
action. These software registers are used to implement the software handshaking interface.

The HS_SEL_SRC/HS_SEL_DST bit in the CFGx channel configuration register must be set to
enable software handshaking.

When the peripheral is not the flow controller, then the last transaction registers LstSrcReg and
LstDstReg are not used, and the values in these registers are ignored.

19.8.1.1 Burst Transactions
Writing a 1 to the ReqSrcReg[x]/ReqDstReg[x] register is always interpreted as a burst transac-
tion request, where x is the channel number. However, in order for a burst transaction request to
start, software must write a 1 to the SglReqSrcReg[x]/SglRegDstReg[x] register.

You can write a 1 to the SglReqSrcReg[x]/SglReqDstReg[x] and ReqSrcReg[x]/ReqDstReg[X]
registers in any order, but both registers must be asserted in order to initiate a burst transaction.
Upon completion of the burst transaction, the hardware clears the SgIReqSrcReg[x]/SglReqD-
stReg[x] and ReqSrcReg[x]/ReqDstReg[X] registers.

19.8.1.2 Single Transactions
Writing a 1 to the SglReqSrcReg/SglReqDstReg initiates a single transaction. Upon completion
of the single transaction, both the SglIReqSrcReg/SglRegDstReg and ReqSrcReg/RegDstReg
bits are cleared by hardware. Therefore, writing a 1 to the ReqSrcReg/ReqDstReg is ignored
while a single transaction has been initiated, and the requested burst transaction is not serviced.

Again, writing a 1 to the ReqSrcReg/ReqDstReg register is always a burst transaction request.
However, in order for a burst transaction request to start, the corresponding channel bit in the
SglReqSrcReg/SglReqDstReg must be asserted. Therefore, to ensure that a burst transaction is
serviced, you must write a 1 to the ReqSrcReg/ReqDstReg before writing a 1 to the SgIReqSr-
cReg/SglReqDstReqg register.

Software can poll the relevant channel bit in the SgIReqSrcReg/ SglReqDstReg and ReqSr-
cReg/ReqgDstReg registers. When both are 0, then either the requested burst or single
transaction has completed. Alternatively, the IntSrcTran or IntDstTran interrupts can be enabled
and unmasked in order to generate an interrupt when the requested source or destination trans-
action has completed.

Note:  The transaction-complete interrupts are triggered when both single and burst transactions are
complete. The same transaction-complete interrupt is used for both single and burst transactions.

19.8.2 Hardware Handshaking

There are 8 hardware handshaking interfaces between the DMACA and peripherals. Refer to
the module configuration chapter for the device-specific mapping of these interfaces.

Alm L 324

32072H-AVR32-10/2012 I ©



19.8.2.1 External DMA Request Definition
When an external slave peripheral requires the DMACA to perform DMA transactions, it commu-
nicates its request by asserting the external nDMAREQX signal. This signal is resynchronized to
ensure a proper functionality (see "External DMA Request Timing” on page 325).

The external nDMAREQX signal should be asserted when the source threshold level is reached.
After resynchronization, the rising edge of dma_req starts the transfer. An external DMAACKXx
acknowledge signal is also provided to indicate when the DMA transfer has completed. The
peripheral should de-assert the DMA request signal when DMAACKX is asserted.

The external nDMAREQXx signal must be de-asserted after the last transfer and re-asserted
again before a new transaction starts.

For a source FIFO, an active edge should be triggered on nDMAREQXx when the source FIFO
exceeds a watermark level. For a destination FIFO, an active edge should be triggered on
nDMAREQx when the destination FIFO drops below the watermark level.

The source transaction length, CTLx.SRC_MSIZE, and destination transaction length,
CTLx.DEST_MSIZE, must be set according to watermark levels on the source/destination
peripherals.

Figure 19-6. External DMA Request Timing

o JUUUUUULUUDUU DUy UL oyl

DMA Transaction

nDMAREQx _| I ,_\

DMA Transfers

<‘ { DMA Transfers »

-

dma_ack

19.9 DMACA Transfer Types

A DMA transfer may consist of single or multi-block transfers. On successive blocks of a multi-
block transfer, the SARXx/DARX register in the DMACA is reprogrammed using either of the fol-
lowing methods:

* Block chaining using linked lists

* Auto-reloading

 Contiguous address between blocks
On successive blocks of a multi-block transfer, the CTLx register in the DMACA is re-pro-
grammed using either of the following methods:

« Block chaining using linked lists

« Auto-reloading
When block chaining, using linked lists is the multi-block method of choice, and on successive
blocks, the LLPx register in the DMACA is re-programmed using the following method:

* Block chaining using linked lists

Alm L 325

32072H-AVR32-10/2012 I ©




A block descriptor (LLI) consists of following registers, SARx, DARX, LLPx, CTL. These regis-
ters, along with the CFGx register, are used by the DMACA to set up and describe the block
transfer.

19.9.1 Multi-block Transfers

19.9.1.1 Block Chaining Using Linked Lists

In this case, the DMACA re-programs the channel registers prior to the start of each block by
fetching the block descriptor for that block from system memory. This is known as an LLI update.

DMACA block chaining is supported by using a Linked List Pointer register (LLPx) that stores the
address in memory of the next linked list item. Each LLI (block descriptor) contains the corre-
sponding block descriptor (SARX, DARX, LLPx, CTLX).

To set up block chaining, a sequence of linked lists must be programmed in memory.

The SARX, DARX, LLPx and CTLx registers are fetched from system memory on an LLI update.
The updated contents of the CTLX register are written back to memory on block completion. Fig-
ure 19-7 on page 326 shows how to use chained linked lists in memory to define multi-block
transfers using block chaining.

The Linked List multi-block transfers is initiated by programming LLPx with LLPx(0) (LLI(0) base
address) and CTLx with CTLx.LLP_S_EN and CTLx.LLP_D_EN.

Figure 19-7. Multi-block Transfer Using Linked Lists

System Memory

LLI(0) LLI(L)
CTL[63..32] CTLX[63..32]
CTLX[31..0] CTLX[31..0]
LLPx(1) LLPx(2) ]
DARX DARX
— > sARx SARX > LLPx(2)
LLPX(0) LLPx(1)

32072H-AVR32-10/2012

Alm L 326

Y 5



Table 19-1. Programming of Transfer Types and Channel Register Update Method (DMACA State Machine Table)
RELOAD RELOAD_ | CTLx,
LLP. LLP_S_EN | _SR LLP_D_EN | DS LLPx SARX DARX
Transfer Type LOC ( ( ( ( Update Update Update Write
=0 CTLx) CFGXx) CTLXx) CFGx) Method Method Method | Back
1) Single Block or None. user None
last transfer of Yes 0 0 0 0 re ro’ rams None (single) (single) No
multi-Block prog g
2) Al.no Reload CTLX,LLPx are
multi-block transfer . Auto-
. : Yes 0 0 0 1 reloaded from Contiguous No
with contiguous initial values Reload
SAR ’
?r;w)u/;\tttl;)loiiltcizgsfer CTLX,LLPx are Con-
. - Yes 0 1 0 0 reloaded from Auto-Reload - No
with contiguous initial values tiguous
DAR ’
CTLXx,LLPx are
4) Al.Jto Reload Yes 0 1 0 1 reloaded from Auto-Reload Auto- No
multi-block transfer S Reload
initial values.
5) Single Block or None. user None
last transfer of No 0 0 0 0 re ro’ rams None (single) (single) Yes
multi-block prog 9
6) Linked List CTLX,LLPx
multi-block transfer loaded from . Linked
with contiguous No 0 0 L 0 next Linked List Contiguous List Yes
SAR item
7) Linked List CTLX,LLPx
multi-block transfer loaded from Linked
with auto-reload No 0 ! 1 0 next Linked List Auto-Reload List Yes
SAR item
8) Linked List CTLx,LLPx
m_uln-blogk transfer No 1 0 0 0 Ioadec_l from _ Linked List Qon- Yes
with contiguous next Linked List tiguous
DAR item
9) Linked List CTLX,LLPx
multi-block transfer loaded from . . Auto-
with auto-reload No L 0 0 ! next Linked List Linked List Reload Yes
DAR item
CTLX,LLPx
10) Linked List loaded from . . Linked
multi-block transfer No L 0 L 0 next Linked List Linked List List Yes
item

19.9.1.2

Auto-reloading of Channel Registers
During auto-reloading, the channel registers are reloaded with their initial values at the comple-
tion of each block and the new values used for the new block. Depending on the row number in
Table 19-1 on page 327, some or all of the SARx, DARx and CTLx channel registers are
reloaded from their initial value at the start of a block transfer.

19.9.1.3 Contiguous Address Between Blocks
In this case, the address between successive blocks is selected to be a continuation from the

end of the previous block. Enabling the source or destination address to be contiguous between

Alm L 327

Y 5

32072H-AVR32-10/2012



blocks is a function of CTLx.LLP_S_EN, CFGx.RELOAD_SR, CTLx.LLP_D_EN, and
CFGx.RELOAD_DS registers (see Figure 19-1 on page 317).

Note:  Both SARx and DARXx updates cannot be selected to be contiguous. If this functionality is
required, the size of the Block Transfer (CTLXx.BLOCK_TS) must be increased. If this is at the max-
imum value, use Row 10 of Table 19-1 on page 327 and setup the LLI.SARx address of the
block descriptor to be equal to the end SARx address of the previous block. Similarly, setup the
LLI.DARXx address of the block descriptor to be equal to the end DARx address of the previous
block.

19.9.1.4 Suspension of Transfers Between Blocks
At the end of every block transfer, an end of block interrupt is asserted if:

« interrupts are enabled, CTLX.INT_EN =1
« the channel block interrupt is unmasked, MaskBlock[n] = 0, where n is the channel nhumber.
Note:  The block complete interrupt is generated at the completion of the block transfer to the destination.

For rows 6, 8, and 10 of Table 19-1 on page 327, the DMA transfer does not stall between block
transfers. For example, at the end of block N, the DMACA automatically proceeds to block N + 1.

Forrows 2, 3, 4, 7, and 9 of Table 19-1 on page 327 (SARx and/or DARX auto-reloaded between
block transfers), the DMA transfer automatically stalls after the end of block. Interrupt is asserted
if the end of block interrupt is enabled and unmasked.

The DMACA does not proceed to the next block transfer until a write to the block interrupt clear
register, ClearBlock[n], is performed by software. This clears the channel block complete
interrupt.

Forrows 2, 3, 4, 7, and 9 of Table 19-1 on page 327 (SARx and/or DARX auto-reloaded between
block transfers), the DMA transfer does not stall if either:

* interrupts are disabled, CTLX.INT_EN =0, or
« the channel block interrupt is masked, MaskBlock[n] = 1, where n is the channel number.

Channel suspension between blocks is used to ensure that the end of block ISR (interrupt ser-
vice routine) of the next-to-last block is serviced before the start of the final block commences.
This ensures that the ISR has cleared the CFGx.RELOAD_SR and/or CFGx.RELOAD_DS bits
before completion of the final block. The reload bits CFGXx.RELOAD_SR and/or
CFGx.RELOAD_DS should be cleared in the ‘end of block ISR’ for the next-to-last block
transfer.

19.9.2 Ending Multi-block Transfers
All multi-block transfers must end as shown in either Row 1 or Row 5 of Table 19-1 on page 327.
At the end of every block transfer, the DMACA samples the row number, and if the DMACA is in
Row 1 or Row 5 state, then the previous block transferred was the last block and the DMA trans-
fer is terminated.

Note:  Row 1 and Row 5 are used for single block transfers or terminating multiblock transfers. Ending in
Row 5 state enables status fetch for the last block. Ending in Row 1 state disables status fetch for
the last block.

For rows 2,3 and 4 of Table 19-1 on page 327, (LLPx = 0 and CFGx.RELOAD_SR and/or

CFGXx.RELOAD_DS is set), multi-block DMA transfers continue until both the

CFGx.RELOAD_SR and CFGx.RELOAD_DS registers are cleared by software. They should be

Alm L 328

32072H-AVR32-10/2012 I ©




19.10 Programming

programmed to zero in the end of block interrupt service routine that services the next-to-last
block transfer. This puts the DMACA into Row 1 state.

For rows 6, 8, and 10 (both CFGXx.RELOAD_SR and CFGx.RELOAD_DS cleared) the user must
setup the last block descriptor in memory such that both LLI.CTLx.LLP_S_EN and
LLI.CTLX.LLP_D_EN are zero. If the LLI.LLPx register of the last block descriptor in memory is
non-zero, then the DMA transfer is terminated in Row 5. If the LLI.LLPx register of the last block
descriptor in memory is zero, then the DMA transfer is terminated in Row 1.

For rows 7 and 9, the end-of-block interrupt service routine that services the next-to-last block
transfer should clear the CFGX.RELOAD_SR and CFGx.RELOAD_DS reload bits. The last
block descriptor in memory should be set up so that both the LLI.CTLx.LLP_S EN and
LLI.CTLX.LLP_D_EN are zero. If the LLI.LLPx register of the last block descriptor in memory is
non-zero, then the DMA transfer is terminated in Row 5. If the LLI.LLPx register of the last block
descriptor in memory is zero, then the DMA transfer is terminated in Row 1.

Note:  The only allowed transitions between the rows of Table 19-1 on page 327are from any row into
row 1 or row 5. As already stated, a transition into row 1 or row 5 is used to terminate the DMA
transfer. All other transitions between rows are not allowed. Software must ensure that illegal tran-
sitions between rows do not occur between blocks of a multi-block transfer. For example, if block N
is in row 10 then the only allowed rows for block N + 1 are rows 10, 5 or 1.

a Channel

Three registers, the LLPx, the CTLx and CFGXx, need to be programmed to set up whether single
or multi-block transfers take place, and which type of multi-block transfer is used. The different
transfer types are shown in Table 19-1 on page 327.

The “Update Method” column indicates where the values of SARx, DARX, CTLx, and LLPx are
obtained for the next block transfer when multi-block DMACA transfers are enabled.

Note: In Table 19-1 on page 327, all other combinations of LLPx.LOC = 0, CTLx.LLP_S_EN,
CFGx.RELOAD_SR, CTLx.LLP_D_EN, and CFGx.RELOAD_DS are illegal, and causes indeter-
minate or erroneous behavior.

19.10.1 Programming Examples

19.10.1.1  Single-block Transfer (Row 1)

32072H-AVR32-10/2012

Row 5 in Table 19-1 on page 327 is also a single block transfer.

1. Read the Channel Enable register to choose a free (disabled) channel.

2. Clear any pending interrupts on the channel from the previous DMA transfer by writing
to the Interrupt Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran,
ClearErr. Reading the Interrupt Raw Status and Interrupt Status registers confirms that
all interrupts have been cleared.

3. Program the following channel registers:
a. Write the starting source address in the SARX register for channel x.
b. Write the starting destination address in the DARX register for channel x.

c. Program CTLx and CFGx according to Row 1 as shown in Table 19-1 on page 327.
Program the LLPx register with ‘0’

d. Write the control information for the DMA transfer in the CTLx register for channel
x. For example, in the register, you can program the following:

— i. Set up the transfer type (memory or non-memory peripheral for source and
destination) and flow control device by programming the TT_FC of the CTLx register.

Alm L 329

Y 5



— ii. Set up the transfer characteristics, such as:

Transfer width for the source in the SRC_TR_WIDTH field.
Transfer width for the destination in the DST_TR_WIDTH field.
Source master layer in the SMS field where source resides.

Destination master layer in the DMS field where destination resides.
Incrementing/decrementing or fixed address for source in SINC field.

Incrementing/decrementing or fixed address for destination in DINC field.

e. Write the channel configuration information into the CFGx register for channel x.

— i. Designate the handshaking interface type (hardware or software) for the source
and destination peripherals. This is not required for memory. This step requires
programming the HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing a ‘0’
activates the hardware handshaking interface to handle source/destination requests.
Writing a ‘1’ activates the software handshaking interface to handle
source/destination requests.

— ii. If the hardware handshaking interface is activated for the source or destination
peripheral, assign a handshaking interface to the source and destination peripheral.
This requires programming the SRC_PER and DEST_PER bits, respectively.

After the DMACA selected channel has been programmed, enable the channel by writ-
ing a ‘1’ to the ChEnReg.CH_EN bit. Make sure that bit 0 of the DmaCfgReg register is
enabled.

Source and destination request single and burst DMA transactions to transfer the block
of data (assuming non-memory peripherals). The DMACA acknowledges at the com-
pletion of every transaction (burst and single) in the block and carry out the block
transfer.

Once the transfer completes, hardware sets the interrupts and disables the channel. At
this time you can either respond to the Block Complete or Transfer Complete interrupts,
or poll for the Channel Enable (ChEnReg.CH_EN) bit until it is cleared by hardware, to
detect when the transfer is complete.

19.10.1.2 Multi-block Transfer with Linked List for Source and Linked List for Destination (Row 10)

1.
2.

32072H-AVR32-10/2012

Read the Channel Enable register to choose a free (disabled) channel.

Set up the chain of Linked List Items (otherwise known as block descriptors) in memory.
Write the control information in the LLI.CTLX register location of the block descriptor for
each LLI in memory (see Figure 19-7 on page 326) for channel x. For example, in the
register, you can program the following:

a. Set up the transfer type (memory or non-memory peripheral for source and desti-
nation) and flow control device by programming the TT_FC of the CTLx register.

b. Set up the transfer characteristics, such as:
. Transfer width for the source in the SRC_TR_WIDTH field.

— ii. Transfer width for the destination in the DST_TR_WIDTH field.
— iii. Source master layer in the SMS field where source resides.

— iv. Destination master layer in the DMS field where destination resides.

— v. Incrementing/decrementing or fixed address for source in SINC field.

— vi. Incrementing/decrementing or fixed address for destination DINC field.
Write the channel configuration information into the CFGx register for channel x.

Alm L 330

Y 5



10.
11.

12.
Note:

13.

Note:
14.

32072H-AVR32-10/2012

a. Designate the handshaking interface type (hardware or software) for the source
and destination peripherals. This is not required for memory. This step requires pro-
gramming the HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing a ‘0’
activates the hardware handshaking interface to handle source/destination
requests for the specific channel. Writing a ‘1’ activates the software handshaking
interface to handle source/destination requests.

b. If the hardware handshaking interface is activated for the source or destination
peripheral, assign the handshaking interface to the source and destination periph-
eral. This requires programming the SRC_PER and DEST_PER bits, respectively.

Make sure that the LLI.CTLx register locations of all LLI entries in memory (except the
last) are set as shown in Row 10 of Table 19-1 on page 327. The LLI.CTLx register of
the last Linked List Item must be set as described in Row 1 or Row 5 of Table 19-1 on
page 327. Figure 19-9 on page 333 shows a Linked List example with two list items.

Make sure that the LLI.LLPx register locations of all LLI entries in memory (except the
last) are non-zero and point to the base address of the next Linked List Item.

Make sure that the LLI.SARX/LLI.DARX register locations of all LLI entries in memory
point to the start source/destination block address preceding that LLI fetch.

Make sure that the LLI.CTLx.DONE field of the LLI.CTLx register locations of all LLI
entries in memory are cleared.

Clear any pending interrupts on the channel from the previous DMA transfer by writing
to the Interrupt Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran,
ClearErr. Reading the Interrupt Raw Status and Interrupt Status registers confirms that
all interrupts have been cleared.

Program the CTLx, CFGx registers according to Row 10 as shown in Table 19-1 on
page 327.

Program the LLPx register with LLPx(0), the pointer to the first Linked List item.

Finally, enable the channel by writing a ‘1’ to the ChEnReg.CH_EN bit. The transfer is
performed.

The DMACA fetches the first LLI from the location pointed to by LLPx(0).

The LLL.SARX, LLI. DARX, LLI.LLPx and LLI.CTLx registers are fetched. The DMACA automati-

cally reprograms the SARx, DARX, LLPx and CTLx channel registers from the LLPx(0).
Source and destination request single and burst DMA transactions to transfer the block
of data (assuming non-memory peripheral). The DMACA acknowledges at the comple-
tion of every transaction (burst and single) in the block and carry out the block transfer.

Table 19-1 on page 327

The DMACA does not wait for the block interrupt to be cleared, but continues fetching
the next LLI from the memory location pointed to by current LLPx register and automat-
ically reprograms the SARx, DARX, LLPx and CTLx channel registers. The DMA
transfer continues until the DMACA determines that the CTLx and LLPx registers at the
end of a block transfer match that described in Row 1 or Row 5 of Table 19-1 on page
327. The DMACA then knows that the previous block transferred was the last block in
the DMA transfer. The DMA transfer might look like that shown in Figure 19-8 on page
332.

Alm L 331

Y 5



Figure 19-8. Multi-Block with Linked List Address for Source and Destination

Address of A_ddrgss of
Source Layer Destination Layer

Block 2 Block 2

SAR(2) — DAR(2) —>
Block 1 Block 1

SAR(1) — DAR(1) —>
Block O Block O

SAR(0) —» DAR(0) ——

Source Blocks Destination Blocks

If the user needs to execute a DMA transfer where the source and destination address are con-
tiguous but the amount of data to be transferred is greater than the maximum block size
CTLx.BLOCK_TS, then this can be achieved using the type of multi-block transfer as shown in
Figure 19-9 on page 333.

A|III L 332

32072H-AVR32-10/2012 I ©



Figure 19-9. Multi-Block with Linked Address for Source and Destination Blocks are

Contiguous
Address of Address of
Source Layer Destination Layer
Block 2
/ «~— DAR(3)
Block 2 Block 2
SAR(3) —> / <« DAR(2)
Block 2 Block 1
SAR(2) —— / <« DAR(1)
Block 1 Block 0O
SAR(1) —— / . DAR()
Block 0
SAR(0) — »
Source Blocks Destination Blocks

The DMA transfer flow is shown in Figure 19-11 on page 336.

Alm L 333

32072H-AVR32-10/2012 I ©



Figure 19-10. DMA Transfer Flow for Source and Destination Linked List Address

Channel enabled by
software

!

LLI Fetch D

v

Hardware reprograms
SARX, DARX, CTLX, LLPx

v

DMAC block transfer

!

Source/destination
status fetch

Block Complete interrupt > l
generated here

Is DMAC in
Rowl of
MAC State Machine Table?

no

DMAC transfer Complete
interrupt generated here

yes

Channel Disabled by
hardware

19.10.1.3 Multi-block Transfer with Source Address Auto-reloaded and Destination Address Auto-reloaded (Row 4)
1. Read the Channel Enable register to choose an available (disabled) channel.

2. Clear any pending interrupts on the channel from the previous DMA transfer by writing
to the Interrupt Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran,
ClearErr. Reading the Interrupt Raw Status and Interrupt Status registers confirms that
all interrupts have been cleared.

3. Program the following channel registers:

AIMEL 334

32072H-AVR32-10/2012 I ©



a. Write the starting source address in the SARX register for channel x.
Write the starting destination address in the DARX register for channel x.

Program CTLx and CFGx according to Row 4 as shown in Table 19-1 on page 327.
Program the LLPx register with ‘0’.

d. Write the control information for the DMA transfer in the CTLx register for channel
X. For example, in the register, you can program the following:

— i. Set up the transfer type (memory or non-memory peripheral for source and
destination) and flow control device by programming the TT_FC of the CTLx register.

— ii. Set up the transfer characteristics, such as:

Transfer width for the source in the SRC_TR_WIDTH field.
Transfer width for the destination in the DST_TR_WIDTH field.
— Source master layer in the SMS field where source resides.

Destination master layer in the DMS field where destination resides.

Incrementing/decrementing or fixed address for source in SINC field.

Incrementing/decrementing or fixed address for destination in DINC field.

e. Write the channel configuration information into the CFGx register for channel x.
Ensure that the reload bits, CFGx. RELOAD_SR and CFGX.RELOAD_DS are
enabled.

— i. Designate the handshaking interface type (hardware or software) for the source
and destination peripherals. This is not required for memory. This step requires
programming the HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing a ‘0’
activates the hardware handshaking interface to handle source/destination requests
for the specific channel. Writing a ‘1’ activates the software handshaking interface to
handle source/destination requests.

— ii. If the hardware handshaking interface is activated for the source or destination
peripheral, assign handshaking interface to the source and destination peripheral.
This requires programming the SRC_PER and DEST_PER bits, respectively.

4. After the DMACA selected channel has been programmed, enable the channel by writ-
ing a ‘1’ to the ChEnReg.CH_EN bit. Make sure that bit O of the DmaCfgReg register is
enabled.

5. Source and destination request single and burst DMACA transactions to transfer the
block of data (assuming non-memory peripherals). The DMACA acknowledges on com-
pletion of each burst/single transaction and carry out the block transfer.

6. When the block transfer has completed, the DMACA reloads the SARx, DARx and
CTLx registers. Hardware sets the Block Complete interrupt. The DMACA then sam-
ples the row number as shown in Table 19-1 on page 327. If the DMACA is in Row 1,
then the DMA transfer has completed. Hardware sets the transfer complete interrupt
and disables the channel. So you can either respond to the Block Complete or Transfer
Complete interrupts, or poll for the Channel Enable (ChEnReg.CH_EN) bit until it is dis-
abled, to detect when the transfer is complete. If the DMACA is not in Row 1, the next
step is performed.

7. The DMA transfer proceeds as follows:

a. Ifinterrupts are enabled (CTLX.INT_EN = 1) and the block complete interrupt is un-
masked (MaskBlock[x] = 1'b1, where x is the channel number) hardware sets the
block complete interrupt when the block transfer has completed. It then stalls until
the block complete interrupt is cleared by software. If the next block is to be the last
block in the DMA transfer, then the block complete ISR (interrupt service routine)

Alm L 335

32072H-AVR32-10/2012 I ©




should clear the reload bits in the CFGX.RELOAD_SR and CFGx.RELOAD_DS
registers. This put the DMACA into Row 1 as shown in Table 19-1 on page 327. If
the next block is not the last block in the DMA transfer, then the reload bits should
remain enabled to keep the DMACA in Row 4.

b. If interrupts are disabled (CTLX.INT_EN = 0) or the block complete interrupt is
masked (MaskBlock[x] = 1'b0, where x is the channel number), then hardware does
not stall until it detects a write to the block complete interrupt clear register but
starts the next block transfer immediately. In this case software must clear the
reload bits in the CFGx.RELOAD_SR and CFGx.RELOAD_DS registers to put the
DMACA into ROW 1 of Table 19-1 on page 327 before the last block of the DMA
transfer has completed. The transfer is similar to that shown in Figure 19-11 on
page 336. The DMA transfer flow is shown in Figure 19-12 on page 337.

Figure 19-11. Multi-Block DMA Transfer with Source and Destination Address Auto-reloaded

Address of Address of
Source Layer Destination Layer

Block0

Blockl
BIockZ

SAR —»

<+— DAR

BIockN

Source Blocks Destination Blocks

A mE|,® 336

32072H-AVR32-10/2012



Figure 19-12. DMA Transfer Flow for Source and Destination Address Auto-reloaded

Channel Enabled by
software

:

Block Transfer K=

’

Reload SARx, DARx, CTLx

Block Complete interrupt

_
generated here i

DMAC transfer Complete
interrupt generated here yes

Channel Disabled by
hardware

Is DMAC in Row1 of
DMAC State Machine Table?

CTLX.INT_EN=1
&&
MASKBLOCK[x]=1?

Stall until block complete
interrupt cleared by software

19.10.1.4 Multi-block Transfer with Source Address Auto-reloaded and Linked List Destination Address (Row7)
1. Read the Channel Enable register to choose a free (disabled) channel.

2. Set up the chain of linked list items (otherwise known as block descriptors) in memory.
Write the control information in the LLI.CTLx register location of the block descriptor for
each LLI in memory for channel x. For example, in the register you can program the
following:

a. Set up the transfer type (memory or non-memory peripheral for source and desti-
nation) and flow control peripheral by programming the TT_FC of the CTLXx register.

b. Set up the transfer characteristics, such as:

. Transfer width for the source in the SRC_TR_WIDTH field.

— ii. Transfer width for the destination in the DST_TR_WIDTH field.

— iii. Source master layer in the SMS field where source resides.

— iv. Destination master layer in the DMS field where destination resides.

— V. Incrementing/decrementing or fixed address for source in SINC field.
— vi. Incrementing/decrementing or fixed address for destination DINC field.

AIMEL 337

32072H-AVR32-10/2012 I ©




Note:

10.

11.
12.

13.
Note:

14.

15.

16.

32072H-AVR32-10/2012

Write the starting source address in the SARX register for channel x.

The values in the LLI.SARX register locations of each of the Linked List Items (LLIs) setup up in
memory, although fetched during a LLI fetch, are not used.

Write the channel configuration information into the CFGx register for channel x.

a. Designate the handshaking interface type (hardware or software) for the source
and destination peripherals. This is not required for memory. This step requires pro-
gramming the HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing a ‘0’
activates the hardware handshaking interface to handle source/destination
requests for the specific channel. Writing a ‘1’ activates the software handshaking
interface source/destination requests.

b. If the hardware handshaking interface is activated for the source or destination
peripheral, assign handshaking interface to the source and destination peripheral.
This requires programming the SRC_PER and DEST_PER bhits, respectively.

Make sure that the LLI.CTLx register locations of all LLIs in memory (except the last)
are set as shown in Row 7 of Table 19-1 on page 327 while the LLI.CTLx register of the
last Linked List item must be set as described in Row 1 or Row 5 of Table 19-1 on page
327. Figure 19-7 on page 326 shows a Linked List example with two list items.

Make sure that the LLI.LLPx register locations of all LLIs in memory (except the last)
are non-zero and point to the next Linked List Iltem.

Make sure that the LLI.DARX register location of all LLIs in memory point to the start
destination block address proceeding that LLI fetch.

Make sure that the LLI.CTLx.DONE field of the LLI.CTLXx register locations of all LLIs in
memory is cleared.

Clear any pending interrupts on the channel from the previous DMA transfer by writing
to the Interrupt Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran,
ClearErr. Reading the Interrupt Raw Status and Interrupt Status registers confirms that
all interrupts have been cleared.

Program the CTLx, CFGx registers according to Row 7 as shown in Table 19-1 on page
327.

Program the LLPx register with LLPx(0), the pointer to the first Linked List item.

Finally, enable the channel by writing a ‘1’ to the ChEnReg.CH_EN bit. The transfer is
performed. Make sure that bit O of the DmaCfgReg register is enabled.

The DMACA fetches the first LLI from the location pointed to by LLPx(0).

The LLI.SARX, LLI.DARX, LLI. LLPx and LLI.CTLx registers are fetched. The LLI.SARX register
although fetched is not used.
Source and destination request single and burst DMACA transactions to transfer the
block of data (assuming non-memory peripherals). DMACA acknowledges at the com-
pletion of every transaction (burst and single) in the block and carry out the block
transfer.

Table 19-1 on page 327The DMACA reloads the SARX register from the initial value.
Hardware sets the block complete interrupt. The DMACA samples the row number as
shown in Table 19-1 on page 327. If the DMACA is in Row 1 or 5, then the DMA trans-
fer has completed. Hardware sets the transfer complete interrupt and disables the
channel. You can either respond to the Block Complete or Transfer Complete interrupts,
or poll for the Channel Enable (ChEnReg.CH_EN) bit until it is cleared by hardware, to
detect when the transfer is complete. If the DMACA is not in Row 1 or 5 as shown in
Table 19-1 on page 327 the following steps are performed.

The DMA transfer proceeds as follows:

a. Ifinterrupts are enabled (CTLX.INT_EN = 1) and the block complete interrupt is un-
masked (MaskBlock[x] = 1'b1, where x is the channel number) hardware sets the

Alm L 338

Y 5



block complete interrupt when the block transfer has completed. It then stalls until
the block complete interrupt is cleared by software. If the next block is to be the last
block in the DMA transfer, then the block complete ISR (interrupt service routine)
should clear the CFGx.RELOAD_SR source reload bit. This puts the DMACA into
Row1 as shown in Table 19-1 on page 327. If the next block is not the last block in
the DMA transfer, then the source reload bit should remain enabled to keep the
DMACA in Row 7 as shown in Table 19-1 on page 327.

b. If interrupts are disabled (CTLX.INT_EN = 0) or the block complete interrupt is
masked (MaskBlock[x] = 1'b0, where x is the channel number) then hardware does
not stall until it detects a write to the block complete interrupt clear register but
starts the next block transfer immediately. In this case, software must clear the
source reload bit, CFGx.RELOAD_SR, to put the device into Row 1 of Table 19-1
on page 327 before the last block of the DMA transfer has completed.

17. The DMACA fetches the next LLI from memory location pointed to by the current LLPx
register, and automatically reprograms the DARXx, CTLx and LLPx channel registers.
Note that the SARX is not re-programmed as the reloaded value is used for the next
DMA block transfer. If the next block is the last block of the DMA transfer then the CTLx
and LLPx registers just fetched from the LLI should match Row 1 or Row 5 of Table 19-
1 on page 327. The DMA transfer might look like that shown in Figure 19-13 on page
339.

Figure 19-13. Multi-Block DMA Transfer with Source Address Auto-reloaded and Linked List

Address of
Destination Layer

Address of
Source Layer

BlockOQ

DAR(0)_,

SAR —

DAR(2)_,

BlockN
DAR(N)_’

Source Blocks Destination Blocks

Destination Address

The DMA Transfer flow is shown in Figure 19-14 on page 340.

Alm L 339

32072H-AVR32-10/2012 I ©



Figure 19-14. DMA Transfer Flow for Source Address Auto-reloaded and Linked List Destina-
tion Address

Channel Enabled by
software

|

LLI Fetch

!

Hardware reprograms
DARX, CTLX, LLPx

|

DMAC block transfer

|

Source/destination status fetch

|

Reload SARX

Block Complete interrupt —_—
generated here

Is DMAC in
Row1 or Row5 of
DMAC State Machine Table?

DMAC Transfer Complete yes

interrupt generated here

Channel Disabled by
hardware

CTLx.INT_EN=1
&&
MASKBLOCK[X]=1 ?

Stall until block interrupt
Cleared by hardware

AIMEL 340

32072H-AVR32-10/2012 I ©



19.10.1.5 Multi-block Transfer with Source Address Auto-reloaded and Contiguous Destination Address (Row 3)

1.
2.

32072H-AVR32-10/2012

Read the Channel Enable register to choose a free (disabled) channel.

Clear any pending interrupts on the channel from the previous DMA transfer by writing
a ‘1’ to the Interrupt Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran,
ClearErr. Reading the Interrupt Raw Status and Interrupt Status registers confirms that
all interrupts have been cleared.

Program the following channel registers:
a. Write the starting source address in the SARX register for channel x.
b. Write the starting destination address in the DARX register for channel x.

c. Program CTLx and CFGx according to Row 3 as shown in Table 19-1 on page 327.
Program the LLPx register with ‘0’.

d. Write the control information for the DMA transfer in the CTLx register for channel
X. For example, in this register, you can program the following:

— i. Set up the transfer type (memory or non-memory peripheral for source and
destination) and flow control device by programming the TT_FC of the CTLx register.

— ii. Set up the transfer characteristics, such as:

— Transfer width for the source in the SRC_TR_WIDTH field.
Transfer width for the destination in the DST_TR_WIDTH field.
Source master layer in the SMS field where source resides.

— Destination master layer in the DMS field where destination resides.

Incrementing/decrementing or fixed address for source in SINC field.

Incrementing/decrementing or fixed address for destination in DINC field.
e. Write the channel configuration information into the CFGx register for channel x.

— i. Designate the handshaking interface type (hardware or software) for the source
and destination peripherals. This is not required for memory. This step requires
programming the HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing a ‘0’
activates the hardware handshaking interface to handle source/destination requests
for the specific channel. Writing a ‘1’ activates the software handshaking interface to
handle source/destination requests.

— ii. If the hardware handshaking interface is activated for the source or destination
peripheral, assign handshaking interface to the source and destination peripheral.
This requires programming the SRC_PER and DEST_PER bits, respectively.

After the DMACA channel has been programmed, enable the channel by writing a ‘1’ to
the ChEnReg.CH_EN bit. Make sure that bit O of the DmaCfgReg register is enabled.

Source and destination request single and burst DMACA transactions to transfer the
block of data (assuming non-memory peripherals). The DMACA acknowledges at the
completion of every transaction (burst and single) in the block and carries out the block
transfer.

When the block transfer has completed, the DMACA reloads the SARX register. The
DARX register remains unchanged. Hardware sets the block complete interrupt. The
DMACA then samples the row number as shown in Table 19-1 on page 327. If the
DMACA is in Row 1, then the DMA transfer has completed. Hardware sets the transfer
complete interrupt and disables the channel. So you can either respond to the Block
Complete or Transfer Complete interrupts, or poll for the Channel Enable (ChEn-

Alm L 341

Y 5



Reg.CH_EN) bit until it is cleared by hardware, to detect when the transfer is complete.
If the DMACA is not in Row 1, the next step is performed.

7. The DMA transfer proceeds as follows:

a.

If interrupts are enabled (CTLx.INT_EN = 1) and the block complete interrupt is un-
masked (MaskBlock[x] = 1'b1, where X is the channel number) hardware sets the
block complete interrupt when the block transfer has completed. It then stalls until
the block complete interrupt is cleared by software. If the next block is to be the last
block in the DMA transfer, then the block complete ISR (interrupt service routine)
should clear the source reload bit, CFGx.RELOAD_SR. This puts the DMACA into
Row1 as shown in Table 19-1 on page 327. If the next block is not the last block in
the DMA transfer then the source reload bit should remain enabled to keep the
DMACA in Row3 as shown in Table 19-1 on page 327.

If interrupts are disabled (CTLx.INT_EN = 0) or the block complete interrupt is
masked (MaskBlock[x] = 1'b0, where x is the channel number) then hardware does
not stall until it detects a write to the block complete interrupt clear register but
starts the next block transfer immediately. In this case software must clear the
source reload bit, CFGx.RELOAD_SR, to put the device into ROW 1 of Table 19-1
on page 327 before the last block of the DMA transfer has completed.

The transfer is similar to that shown in Figure 19-15 on page 342.

The DMA Transfer flow is shown in Figure 19-16 on page 343.

Figure 19-15. Multi-block Transfer with Source Address Auto-reloaded and Contiguous Desti-

32072H-AVR32-10/2012

nation Address

Address of
Destination Layer

Address of
Source Layer

Block2
— DAR(2)

Blockl
«— DAR(1)

Block0

SAR
’ DAR(0)
Source Blocks Destination Blocks

ATMEL

Y 5

342



Figure 19-16. DMA Transfer for Source Address Auto-reloaded and Contiguous Destination
Address

Channel Enabled by
software

l

Block Transfer «—

l

Reload SARX, CTLx

Block Complete interrupt EE— l
generated here

DMAC Transfer Complete
interrupt generated here yes

L

Is DMAC in Rowl of
DMAC State Machine Table?

Channel Disabled by
hardware

CTLX.INT_EN=1
&&
MASKBLOCK][x]=1?

l yes

Stall until Block Complete
interrupt cleared by software

19.10.1.6 Multi-block DMA Transfer with Linked List for Source and Contiguous Destination Address (Row 8)
1. Read the Channel Enable register to choose a free (disabled) channel.

2. Set up the linked list in memory. Write the control information in the LLI. CTLXx register
location of the block descriptor for each LLI in memory for channel x. For example, in
the register, you can program the following:

a. Set up the transfer type (memory or non-memory peripheral for source and desti-
nation) and flow control device by programming the TT_FC of the CTLXx register.

b. Set up the transfer characteristics, such as:

. Transfer width for the source in the SRC_TR_WIDTH field.

— ii. Transfer width for the destination in the DST_TR_WIDTH field.

— iii. Source master layer in the SMS field where source resides.

— iv. Destination master layer in the DMS field where destination resides.

AIMEL 343

Y 5

32072H-AVR32-10/2012



Note:

10.

11.
12.

13.
Note:

14.

Note:
15.

32072H-AVR32-10/2012

— v. Incrementing/decrementing or fixed address for source in SINC field.
— vi. Incrementing/decrementing or fixed address for destination DINC field.

Write the starting destination address in the DARX register for channel x.

The values in the LLI.DARX register location of each Linked List Item (LLI) in memory, although
fetched during an LLI fetch, are not used.

Write the channel configuration information into the CFGx register for channel x.

a. Designate the handshaking interface type (hardware or software) for the source
and destination peripherals. This is not required for memory. This step requires pro-
gramming the HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing a ‘0’
activates the hardware handshaking interface to handle source/destination
requests for the specific channel. Writing a ‘1’ activates the software handshaking
interface to handle source/destination requests.

b. If the hardware handshaking interface is activated for the source or destination
peripheral, assign handshaking interface to the source and destination peripherals.
This requires programming the SRC_PER and DEST_PER bits, respectively.

Make sure that all LLI.CTLx register locations of the LLI (except the last) are set as
shown in Row 8 of Table 19-1 on page 327, while the LLI.CTLx register of the last
Linked List item must be set as described in Row 1 or Row 5 of Table 19-1 on page
327. Figure 19-7 on page 326 shows a Linked List example with two list items.

Make sure that the LLI.LLPx register locations of all LLIs in memory (except the last)
are non-zero and point to the next Linked List Item.

Make sure that the LLI.SARX register location of all LLIs in memory point to the start
source block address proceeding that LLI fetch.

Make sure that the LLI.CTLx.DONE field of the LLI.CTLX register locations of all LLIs in
memory is cleared.

Clear any pending interrupts on the channel from the previous DMA transfer by writing
a ‘1’ to the Interrupt Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran,
ClearErr. Reading the Interrupt Raw Status and Interrupt Status registers confirms that
all interrupts have been cleared.

Program the CTLx, CFGx registers according to Row 8 as shown in Table 19-1 on page
327

Program the LLPx register with LLPx(0), the pointer to the first Linked List item.

Finally, enable the channel by writing a ‘1’ to the ChEnReg.CH_EN bit. The transfer is
performed. Make sure that bit O of the DmaCfgReg register is enabled.
The DMACA fetches the first LLI from the location pointed to by LLPx(0).
The LLI.SARX, LLI.DARX, LLI.LLPx and LLI.CTLx registers are fetched. The LLI.DARX register
location of the LLI although fetched is not used. The DARX register in the DMACA remains
unchanged.
Source and destination requests single and burst DMACA transactions to transfer the
block of data (assuming non-memory peripherals). The DMACA acknowledges at the
completion of every transaction (burst and single) in the block and carry out the block
transfer.

The DMACA does not wait for the block interrupt to be cleared, but continues and
fetches the next LLI from the memory location pointed to by current LLPx register and
automatically reprograms the SARx, CTLx and LLPx channel registers. The DARX reg-
ister is left unchanged. The DMA transfer continues until the DMACA samples the CTLx
and LLPx registers at the end of a block transfer match that described in Row 1 or Row

Alm L 344

Y 5



32072H-AVR32-10/2012

5 of Table 19-1 on page 327. The DMACA then knows that the previous block trans-
ferred was the last block in the DMA transfer.

The DMACA transfer might look like that shown in Figure 19-17 on page 345 Note that the des-
tination address is decrementing.

Figure 19-17. DMA Transfer with Linked List Source Address and Contiguous Destination

Address
Address of Address of
Source Layer Destination Layer
Block 2
SAR(2) —> \ Block 2
< DAR(2)
Block 1 > | Block 1
SAR(1) — <«— DAR(1)
/ Block 0
Block 0 < DAR(0)
SAR(0) —
Source Blocks Destination Blocks

The DMA transfer flow is shown in Figure 19-19 on page 346.

Figure 19-18.

Alm L 345

Y 5



Figure 19-19. DMA Transfer Flow for Source Address Auto-reloaded and Contiguous Destination Address

Channel Enabled by
software

LLI Fetch

A

Hardware reprograms
SARX, CTLX, LLPx

DMAC block transfer

Source/destination
status fetch

Block Complete interrupt ——» l
generated here

Is DMAC in
Row 1 of Table 4 ?

no

DMAC Transfer Complete
interrupt generated here

Channel Disabled by
hardware

19.11 Disabling a Channel Prior to Transfer Completion
Under normal operation, software enables a channel by writing a ‘1’ to the Channel Enable Reg-
ister, ChEnReg.CH_EN, and hardware disables a channel on transfer completion by clearing the
ChEnReg.CH_EN register bit.

The recommended way for software to disable a channel without losing data is to use the
CH_SUSP bit in conjunction with the FIFO_EMPTY bit in the Channel Configuration Register
(CFGX) register.

1. If software wishes to disable a channel prior to the DMA transfer completion, then it can
set the CFGx.CH_SUSP bit to tell the DMACA to halt all transfers from the source
peripheral. Therefore, the channel FIFO receives no new data.

2. Software can now poll the CFGx.FIFO_EMPTY bit until it indicates that the channel

FIFO is empty.
Alm L 346

32072H-AVR32-10/2012 I ©




3. The ChEnReg.CH_EN bit can then be cleared by software once the channel FIFO is
empty.
When CTLx.SRC_TR_WIDTH is less than CTLx.DST_TR_WIDTH and the CFGx.CH_SUSP bit
is high, the CFGx.FIFO_EMPTY is asserted once the contents of the FIFO do not permit a single
word of CTLx.DST_TR_WIDTH to be formed. However, there may still be data in the channel
FIFO but not enough to form a single transfer of CTLx.DST_TR_WIDTH width. In this configura-
tion, once the channel is disabled, the remaining data in the channel FIFO are not transferred to
the destination peripheral. It is permitted to remove the channel from the suspension state by
writing a ‘0’ to the CFGx.CH_SUSP register. The DMA transfer completes in the normal manner.

Note:  If a channel is disabled by software, an active single or burst transaction is not guaranteed to
receive an acknowledgement.

19.11.1 Abnormal Transfer Termination

32072H-AVR32-10/2012

A DMACA DMA transfer may be terminated abruptly by software by clearing the channel enable
bit, ChEnReg.CH_EN. This does not mean that the channel is disabled immediately after the
ChEnReg.CH_EN bit is cleared over the HSB slave interface. Consider this as a request to dis-
able the channel. The ChEnReg.CH_EN must be polled and then it must be confirmed that the
channel is disabled by reading back 0. A case where the channel is not be disabled after a chan-
nel disable request is where either the source or destination has received a split or retry
response. The DMACA must keep re-attempting the transfer to the system HADDR that origi-
nally received the split or retry response until an OKAY response is returned. To do otherwise is
an System Bus protocol violation.

Software may terminate all channels abruptly by clearing the global enable bit in the DMACA
Configuration Register (DmaCfgReg[0]). Again, this does not mean that all channels are dis-
abled immediately after the DmaCfgReg|0] is cleared over the HSB slave interface. Consider
this as a request to disable all channels. The ChEnReg must be polled and then it must be con-
firmed that all channels are disabled by reading back ‘0'.

Note: If the channel enable bit is cleared while there is data in the channel FIFO, this data is not sent to
the destination peripheral and is not present when the channel is re-enabled. For read sensitive
source peripherals such as a source FIFO this data is therefore lost. When the source is not a
read sensitive device (i.e., memory), disabling a channel without waiting for the channel FIFO to
empty may be acceptable as the data is available from the source peripheral upon request and is
not lost.

Note: If a channel is disabled by software, an active single or burst transaction is not guaranteed to
receive an acknowledgement.

AIMEL 347

Y 5



19.12 User Interface

Table 19-2. DMA Controller Memory Map
Offset Register Register Name Access Reset Value
0x000 Channel 0 Source Address Register SARO Read/Write 0x00000000
0x008 Channel 0 Destination Address Register DARO Read/Write 0x00000000
0x010 Channel 0 Linked List Pointer Register LLPO Read/Write 0x00000000
0x018 Channel 0 Control Register Low CTLOL Read/Write 0x00304801
0x01C Channel 0 Control Register High CTLOH Read/Write 0x00000002
0x040 Channel 0 Configuration Register Low CFGOL Read/Write 0x00000c00
0x044 Channel 0 Configuration Register High CFGOH Read/Write 0x00000004
0x048 Channel 0 Source Gather Register SGRO Read/Write 0x00000000
0x050 Channel 0 Destination Scatter Register DSRO Read/Write 0x00000000
0x058 Channel 1 Source Address Register SAR1 Read/Write 0x00000000
0x060 Channel 1 Destination Address Register DAR1 Read/Write 0x00000000
0x068 Channel 1 Linked List Pointer Register LLP1 Read/Write 0x00000000
0x070 Channel 1 Control Register Low CTL1L Read/Write 0x00304801
0x074 Channel 1 Control Register High CTL1H Read/Write 0x00000002
0x098 Channel 1 Configuration Register Low CFG1L Read/Write 0x00000c20
0x09C Channel 1 Configuration Register High CFG1H Read/Write 0x00000004
0x0AO0 Channel 1Source Gather Register SGR1 Read/Write 0x00000000
O0x0A8 Channel 1 Destination Scatter Register DSR1 Read/Write 0x00000000
0x0BO Channel 2 Source Address Register SAR2 Read/Write 0x00000000
0x0B8 Channel 2 Destination Address Register DAR2 Read/Write 0x00000000
0x0CO0 Channel 2 Linked List Pointer Register LLP2 Read/Write 0x00000000
0x0C8 Channel 2 Control Register Low CTL2L Read/Write 0x00304801
0oxoccC Channel 2 Control Register High CTL2H Read/Write 0x00000002
O0x0FO0 Channel 2 Configuration Register Low CFG2L Read/Write 0x00000c40
Ox0F4 Channel 2 Configuration Register High CFG2H Read/Write 0x00000004
OxOF8 Channel 2 Source Gather Register SGR2 Read/Write 0x00000000
0x100 Channel 2 Destination Scatter Register DSR2 Read/Write 0x00000000
0x108 Channel 3 Source Address Register SAR3 Read/Write 0x00000000
0x110 Channel 3 Destination Address Register DARS3 Read/Write 0x00000000
0x118 Channel 3 Linked List Pointer Register LLP3 Read/Write 0x00000000
0x120 Channel 3 Control Register Low CTL3L Read/Write 0x00304801
0x124 Channel 3 Control Register High CTL3H Read/Write 0x00000002
0x148 Channel 3 Configuration Register Low CFG3L Read/Write 0x00000c60
Ox14c Channel 3 Configuration Register High CFG3H Read/Write 0x00000004
0x150 Channel 3 Source Gather Register SGR3 Read/Write 0x00000000
AIMEL 348

32072H-AVR32-10/2012

Y 5



Table 19-2. DMA Controller Memory Map (Continued)
Offset Register Register Name Access Reset Value
0x158 Channel 3Destination Scatter Register DSR3 Read/Write 0x00000000
0x2C0 Raw Status for IntTfr Interrupt RawTfr Read-only 0x00000000
0x2C8 Raw Status for IntBlock Interrupt RawBlock Read-only 0x00000000
0x2D0 Raw Status for IntSrcTran Interrupt RawSrcTran Read-only 0x00000000
0x2D8 Raw Status for IntDstTran Interrupt RawDstTran Read-only 0x00000000
O0x2EO0 Raw Status for IntErr Interrupt RawErr Read-only 0x00000000
Ox2E8 Status for IntTfr Interrupt StatusTfr Read-only 0x00000000
0x2F0 Status for IntBlock Interrupt StatusBlock Read-only 0x00000000
Ox2F8 Status for IntSrcTran Interrupt StatusSrcTran Read-only 0x00000000
0x300 Status for IntDstTran Interrupt StatusDstTran Read-only 0x00000000
0x308 Status for IntErr Interrupt StatusErr Read-only 0x00000000
0x310 Mask for IntTfr Interrupt MaskTfr Read/Write 0x00000000
0x318 Mask for IntBlock Interrupt MaskBlock Read/Write 0x00000000
0x320 Mask for IntSrcTran Interrupt MaskSrcTran Read/Write 0x00000000
0x328 Mask for IntDstTran Interrupt MaskDstTran Read/Write 0x00000000
0x330 Mask for IntErr Interrupt MaskErr Read/Write 0x00000000
0x338 Clear for IntTfr Interrupt ClearTfr Write-only 0x00000000
0x340 Clear for IntBlock Interrupt ClearBlock Write-only 0x00000000
0x348 Clear for IntSrcTran Interrupt ClearSrcTran Write-only 0x00000000
0x350 Clear for IntDstTran Interrupt ClearDstTran Write-only 0x00000000
0x358 Clear for IntErr Interrupt ClearErr Write-only 0x00000000
0x360 Status for each interrupt type Statusint Read-only 0x00000000
0x368 Source Software Transaction Request Register ReqgSrcReg Read/Write 0x00000000
0x370 Destination Software Transaction Request Register RegDstReg Read/Write 0x00000000
0x378 Single Source Transaction Request Register SglReqSrcReg Read/Write 0x00000000
0x380 Single Destination Transaction Request Register SglReqgDstReg Read/Write 0x00000000
0x388 Last Source Transaction Request Register LstSrcReg Read/Write 0x00000000
0x390 Last Destination Transaction Request Register LstDstReg Read/Write 0x00000000
0x398 DMA Configuration Register DmaCfgReg Read/Write 0x00000000
0x3A0 DMA Channel Enable Register ChEnReg Read/Write 0x00000000
O0x3F8 DMA Component ID Register Low DmaCompldRegL Read-only 0x44571110
0x3FC DMA Component ID Register High DmaCompldRegH Read-only 0x3230362A
AIMEL 349

32072H-AVR32-10/2012

Y 5



19.12.1 Channel x Source Address Register

Name: SARX

Access Type: Read/Write

Offset: 0x000 + [x * 0x58]

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| SADD[31:24] |
23 22 21 20 19 18 17 16

‘ SADDI[23:16] ‘
15 14 13 12 11 10 9 8

‘ SADD[15:8] ‘
7 6 5 4 3 2 1 0

‘ SADDI[7:0] ‘

¢ SADD: Source Address of DMA transfer

The starting System Bus source address is programmed by software before the DMA channel is enabled or by a LLI update
before the start of the DMA transfer. As the DMA transfer is in progress, this register is updated to reflect the source
address of the current System Bus transfer.

Updated after each source System Bus transfer. The SINC field in the CTLx register determines whether the address incre-
ments, decrements, or is left unchanged on every source System Bus transfer throughout the block transfer.

Alm L 350

32072H-AVR32-10/2012 I ©



19.12.2 Channel x Destination Address Register

Name: DARXx

Access Type: Read/Write

Offset: 0x008 + [x * 0x58]

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ DADD[31:24] ‘
23 22 21 20 19 18 17 16

‘ DADD[23:16] ‘
15 14 13 12 11 10 9 8

‘ DADD[15:8] ‘
7 6 5 4 3 2 1 0

‘ DADDI[7:0] ‘

« DADD: Destination Address of DMA transfer

The starting System Bus destination address is programmed by software before the DMA channel is enabled or by a LLI
update before the start of the DMA transfer. As the DMA transfer is in progress, this register is updated to reflect the desti-
nation address of the current System Bus transfer.

Updated after each destination System Bus transfer. The DINC field in the CTLx register determines whether the address
increments, decrements or is left unchanged on every destination System Bus transfer throughout the block transfer.

Alm L 351

32072H-AVR32-10/2012 I ©



19.12.3 Linked List Pointer Register for Channel x

Name: LLPx

Access Type: Read/Write

Offset: 0x010 + [x * 0x58]

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ LOC[29:22] \
23 22 21 20 19 18 17 16

‘ LOC[21:14] ‘
15 14 13 12 11 10 9 8

| LOC[13:6] |
7 6 5 4 3 2 1 0

‘ LOC[5:0] LMS ‘

e LOC: Address of the next LLI
Starting address in memory of next LLI if block chaining is enabled.

The user need to program this register to point to the first Linked List Item (LLI) in memory prior to enabling the channel if
block chaining is enabled.

The LLP register has two functions:
The logical result of the equation LLP.LOC != 0 is used to set up the type of DMA transfer (single or multi-block).

If LLP.LOC is set to 0x0, then transfers using linked lists are NOT enabled. This register must be programmed prior to
enabling the channel in order to set up the transfer type.

It (LLP.LOC != 0) contains the pointer to the next Linked Listed Item for block chaining using linked lists. In this case,
LOCJ[29:0] corresponds to A[31:2] of the next Linked Listed Item address

The LLPx register is also used to point to the address where write back of the control and source/destination status infor-
mation occurs after block completion.

e LMS: List Master Select
Identifies the High speed bus interface for the device that stores the next linked list item:

Table 19-3. List Master Select

LMS HSB Master
0 HSB master 1
1 HSB master 2
Other Reserved

Alm L 352

32072H-AVR32-10/2012 I ©



19.12.4 Control Register for Channel x Low

Name:
Access Type:
Offset:

CTLxL
Read/Write

0x018 + [x * 0x58]

Reset Value: 0x00304801

31 30 29 28 27 26 25 24

LLP_SRC_E | LLP_DST_E SMS DMS[1]
N N

23 22 21 20 19 18 17 16
DST_GATHE | SRC_GATHE | SRC_MSIZE

DMS[0] TT_FC R EN R EN 2l

15 14 13 12 11 10 9 8

‘ SRC_MSIZE[1:0] DEST_MSIZE SINC DINC[1]

7 6 5 4 3 2 1 0
‘ DINCI[0] SRC_TR_WIDTH DST_TR_WIDTH INT_EN ‘

This register contains fields that control the DMA transfer. The CTLXL register is part of the block descriptor (linked list item)

when block chaining is enabled. It can be varied on a block-by-block basis within a DMA transfer when block chaining is
enabled.

« LLP_SRC_EN

Block chaining is only enabled on the source side if the LLP_SRC_EN field is high and LLPx.LOC is non-zero.

e LLP_DST_EN

Block chaining is only enabled on the destination side if the LLP_DST_EN field is high and LLPx.LOC is non-zero.

e SMS: Source Master Select
Identifies the Master Interface layer where the source device (peripheral or memory) is accessed from

Table 19-4.  Source Master Select
SMS HSB Master
0 HSB master 1
1 HSB master 2
Other Reserved

32072H-AVR32-10/2012

ATMEL

Y 5

353



* DMS: Destination Master Select
Identifies the Master Interface layer where the destination device (peripheral or memory) resides

Table 19-5. Destination Master Select

DMS HSB Master
0 HSB master 1
1 HSB master 2
Other Reserved

e TT_FC: Transfer Type and Flow Control
The four following transfer types are supported:

* Memory to Memory, Memory to Peripheral, Peripheral to Memory and Peripheral to Peripheral.

The DMACA is always the Flow Controller.

TT_FC Transfer Type Flow Controller
000 Memory to Memory DMACA

001 Memory to Peripheral DMACA

010 Peripheral to Memory DMACA

011 Peripheral to Peripheral DMACA

Other Reserved Reserved

 DST_SCATTER_EN: Destination Scatter Enable
0 = Scatter disabled

1 = Scatter enabled

Scatter on the destination side is applicable only when the CTLx.DINC bit indicates an incrementing or decrementing
address control.

¢ SRC_GATHER_EN: Source Gather Enable
0 = Gather disabled

1 = Gather enabled

Gather on the source side is applicable only when the CTLx.SINC bit indicates an incrementing or decrementing address
control.

* SRC_MSIZE: Source Burst Transaction Length
Number of data items, each of width CTLx.SRC_TR_WIDTH, to be read from the source every time a source burst transac-
tion request is made from either the corresponding hardware or software handshaking interface.

SRC_MSIZE Size (items number)
0 1
1 4
2 8

AIMEL 354

32072H-AVR32-10/2012 I ©



SRC_MSIZE Size (items number)
3 16

4 32

Other Reserved

* DST_MSIZE: Destination Burst Transaction Length
Number of data items, each of width CTLx.DST_TR_WIDTH, to be written to the destination every time a destination burst
transaction request is made from either the corresponding hardware or software handshaking interface.

DST_MSIZE Size (items number)
0 1
1 4
2 8
3
4

16
32

Other Reserved

* SINC: Source Address Increment
Indicates whether to increment or decrement the source address on every source System Bus transfer. If your device is
fetching data from a source peripheral FIFO with a fixed address, then set this field to “No change”

Source Address
SINC Increment
0 Increment
1 Decrement
Other No change

* DINC: Destination Address Increment
Indicates whether to increment or decrement the destination address on every destination System Bus transfer. If your
device is writing data to a destination peripheral FIFO with a fixed address, then set this field to “No change”

Destination Address
DINC Increment
0 Increment
1 Decrement
Other No change

AIMEL 355

32072H-AVR32-10/2012 I ©



e SRT_TR_WIDTH: Source Transfer Width
¢ DSC_TR_WIDTH: Destination Transfer Width

SRC_TR_WIDTH/DST_TR_WIDTH Size (bits)
0 8

1 16

2 32

Other Reserved

e INT_EN: Interrupt Enable Bit
If set, then all five interrupt generating sources are enabled.

AIMEL 356

32072H-AVR32-10/2012 I ©




19.12.5 Control Register for Channel x High

Name: CTLxH

Access Type: Read/Write

Offset: 0x01C + [x * 0x58]

Reset Value: 0x00000002
31 30 29 28 27 26 25 24

. - r - -+ -+ - - [ - [ - |
23 22 21 20 19 18 17 16

- - r - r - r - - ;- -} - |
15 14 13 12 11 10 9 8

‘ - ‘ - ‘ - ‘ DONE ‘ BLOCK_TS[11:8] ‘
7 6 5 4 3 2 1 0

‘ BLOCK_TS[7:0] ‘

« DONE: Done Bit
Software can poll this bit to see when a block transfer is complete

¢ BLOCK_TS: Block Transfer Size
When the DMACA is flow controller, this field is written by the user before the channel is enabled to indicate the block size.

The number programmed into BLOCK_TS indicates the total number of single transactions to perform for every block
transfer, unless the transfer is already in progress, in which case the value of BLOCK_TS indicates the number of single
transactions that have been performed so far.

The width of the single transaction is determined by CTLx.SRC_TR_WIDTH.

Alm L 357

32072H-AVR32-10/2012 I ©



19.12.6 Configuration Register for Channel x Low
Name: CFGxL
Access Type: Read/Write

Offset: 0x040 + [x * 0x58]

¢ Reset Value: 0x00000CO00 + [x * 0x20]

31 30 29 28 27 26 25 24
RELOAD D | RELOAD_S - - ; ; - ]
ST RC
23 22 21 20 19 18 17 16
- - - - SRC_HS P | DST_HS_PO - -
oL L
15 14 13 12 11 10 9 8
HS SEL_SR | HS_SEL DS | FIFO_EMPT | CH_SUSP
C T Y
7 6 5 4 3 2 1 0
CH_PRIOR - ] ] . ]

* RELOAD_DST: Automatic Destination Reload

The DARX register can be automatically reloaded from its initial value at the end of every block for multi-block transfers. A
new block transfer is then initiated.

« RELOAD_SRC: Automatic Source Reload

The SARX register can be automatically reloaded from its initial value at the end of every block for multi-block transfers. A
new block transfer is then initiated.

e SRC_HS POL: Source Handshaking Interface Polarity
0 = Active high
1 = Active low
e DST_HS _POL: Destination Handshaking Interface Polarity
0 = Active high
1 = Active low
¢ HS_SEL_SRC: Source Software or Hardware Handshaking Select
This register selects which of the handshaking interfaces, hardware or software, is active for source requests on this
channel.

0 = Hardware handshaking interface. Software-initiated transaction requests are ignored.
1 = Software handshaking interface. Hardware-initiated transaction requests are ignored.
If the source peripheral is memory, then this bit is ignored.

« HS_SEL_DST: Destination Software or Hardware Handshaking Select

This register selects which of the handshaking interfaces, hardware or software, is active for destination requests on this
channel.

AIMEL 358

32072H-AVR32-10/2012 I ©



0 = Hardware handshaking interface. Software-initiated transaction requests are ignored.
1 = Software handshaking interface. Hardware Initiated transaction requests are ignored.

If the destination peripheral is memory, then this bit is ignored.

* FIFO_EMPTY
Indicates if there is data left in the channel's FIFO. Can be used in conjunction with CFGx.CH_SUSP to cleanly disable a
channel.

1 = Channel's FIFO empty

0 = Channel's FIFO not empty
e CH_SUSP: Channel Suspend
Suspends all DMA data transfers from the source until this bit is cleared. There is no guarantee that the current transaction
will complete. Can also be used in conjunction with CFGx.FIFO_EMPTY to cleanly disable a channel without losing any
data.

0 = Not Suspended.
1 = Suspend. Suspend DMA transfer from the source.
¢ CH_PRIOR: Channel priority
A priority of 7 is the highest priority, and 0 is the lowest. This field must be programmed within the following range [0, x-1].

A programmed value outside this range causes erroneous behavior.

AIMEL 359

32072H-AVR32-10/2012 I ©



19.12.7 Configuration Register for Channel x High

Name: CFGxH

Access Type: Read/Write

Offset: 0x044 + [x * 0x58]

Reset Value: 0x00000004
31 30 29 28 27 26 25 24

. - r - -+ -+ - - [ - [ - |
23 22 21 20 19 18 17 16

- - r - r - r - - ;- -} - |
15 14 13 12 11 10 9 8

‘ - ‘ DEST_PER ‘ SRC_PER[3:1] ‘
7 6 5 4 3 2 1 0

‘ SRC_PER[(] ‘ - - PROTCTL FIFO_MODE FCMODE ‘

* DEST_PER: Destination Hardware Handshaking Interface

Assigns a hardware handshaking interface (0 - DMAH_NUM_HS_INT-1) to the destination of channel x if the
CFGx.HS_SEL_DST field is 0. Otherwise, this field is ignored. The channel can then communicate with the destination
peripheral connected to that interface via the assigned hardware handshaking interface.

For correct DMA operation, only one peripheral (source or destination) should be assigned to the same handshaking
interface.

* SRC_PER: Source Hardware Handshaking Interface

Assigns a hardware handshaking interface (0 - DMAH_NUM_HS_INT-1) to the source of channel x if the
CFGx.HS_SEL_SRC field is 0. Otherwise, this field is ignored. The channel can then communicate with the source periph-
eral connected to that interface via the assigned hardware handshaking interface.

For correct DMACA operation, only one peripheral (source or destination) should be assigned to the same handshaking
interface.

* PROTCTL: Protection Control
Bits used to drive the System Bus HPROT[3:1] bus. The System Bus Specification recommends that the default value of
HPROT indicates a non-cached, nonbuffered, privileged data access. The reset value is used to indicate such an access.

HPROT][O0] is tied high as all transfers are data accesses as there are no opcode fetches. There is a one-to-one mapping of
these register bits to the HPROT[3:1] master interface signals.

¢ FIFO_MODE: R/W 0x0 FIFO Mode Select
Determines how much space or data needs to be available in the FIFO before a burst transaction request is serviced.

0 = Space/data available for single System Bus transfer of the specified transfer width.
1 = Space/data available is greater than or equal to half the FIFO depth for destination transfers and less than half the FIFO
depth for source transfers. The exceptions are at the end of a burst transaction request or at the end of a block transfer.

AIMEL 360

32072H-AVR32-10/2012 I ©




« FCMODE: Flow Control Mode
Determines when source transaction requests are serviced when the Destination Peripheral is the flow controller.

0 = Source transaction requests are serviced when they occur. Data pre-fetching is enabled.

1 = Source transaction requests are not serviced until a destination transaction request occurs. In this mode the amount of data
transferred from the source is limited such that it is guaranteed to be transferred to the destination prior to block termination by
the destination. Data pre-fetching is disabled.

Alm L 361

32072H-AVR32-10/2012 I ©




19.12.8 Source Gather Register for Channel x

Name: SGRx

Access Type: Read/Write

Offset: 0x048 + [x * 0x58]

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| SGC[11:4] |
23 22 21 20 19 18 17 16

‘ SGC[3:0] SGI[19:16] ‘
15 14 13 12 11 10 9 8

‘ SGI[15:8] ‘
7 6 5 4 3 2 1 0

‘ SGI[7:0] ‘

¢ SGC: Source Gather Count

Specifies the number of contiguous source transfers of CTLx.SRC_TR_WIDTH between successive gather intervals. This
is defined as a gather boundary.

¢ SGI: Source Gather Interval

Specifies the source address increment/decrement in multiples of CTLX.SRC_TR_WIDTH on a gather boundary when
gather mode is enabled for the source transfer.

Alm L 362

32072H-AVR32-10/2012 I ©



19.12.9 Destination Scatter Register for Channel x

Name: DSRx

Access Type: Read/Write

Offset: 0x050 + [x * 0x58]

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| DSC[11:4] |
23 22 21 20 19 18 17 16

‘ DSC[3:0] DSI[19:16] ‘
15 14 13 12 11 10 9 8

‘ DSI[15:8] ‘
7 6 5 4 3 2 1 0

‘ DSI[7:0] ‘

¢ DSC: Destination Scatter Count

Specifies the number of contiguous destination transfers of CTLx.DST_TR_WIDTH between successive scatter
boundaries.

¢ DSI: Destination Scatter Interval

Specifies the destination address increment/decrement in multiples of CTLX.DST_TR_WIDTH on a scatter boundary when
scatter mode is enabled for the destination transfer.

AIMEL 363

32072H-AVR32-10/2012 I ©



19.12.10 Interrupt Registers
The following sections describe the registers pertaining to interrupts, their status, and how to clear them. For each channel,

there are five types of interrupt sources:
* IntTfr: DMA Transfer Complete Interrupt
This interrupt is generated on DMA transfer completion to the destination peripheral.

* IntBlock: Block Transfer Complete Interrupt
This interrupt is generated on DMA block transfer completion to the destination peripheral.

* IntSrcTran: Source Transaction Complete Interrupt
This interrupt is generated after completion of the last System Bus transfer of the requested single/burst transaction from
the handshaking interface on the source side.

If the source for a channel is memory, then that channel never generates a IntSrcTran interrupt and hence the correspond-
ing bit in this field is not set.

« IntDstTran: Destination Transaction Complete Interrupt
This interrupt is generated after completion of the last System Bus transfer of the requested single/burst transaction from
the handshaking interface on the destination side.

If the destination for a channel is memory, then that channel never generates the IntDstTran interrupt and hence the corre-
sponding bit in this field is not set.
e IntErr: Error Interrupt

This interrupt is generated when an ERROR response is received from an HSB slave on the HRESP bus during a DMA
transfer. In addition, the DMA transfer is cancelled and the channel is disabled.

AIMEL 364

32072H-AVR32-10/2012 I ©



19.12.11 Interrupt Raw Status Registers

Name: RawTfr, RawBlock, RawSrcTran, RawDstTran, RawErr

Access Type: Read-only

Offset: 0x2C0, 0x2C8, 0x2D0, 0x2D8, 0x2E0

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

. - r - - 7°r -t - - [ -} - |
23 22 21 20 19 18 17 16

. - - -1+ -+ - - [ - [ - |
15 14 13 12 11 10 9 8

. - - r -1+ -+ - - [ - [ - |
7 6 5 4 3 2 1 0

‘ - ‘ - ‘ - ‘ - ‘ RAW3 ‘ RAW2 ‘ RAW1 ‘ RAWO ‘

* RAWI[3:0]Raw interrupt for each channel

Interrupt events are stored in these Raw Interrupt Status Registers before masking: RawTfr, RawBlock, RawSrcTran,
RawDstTran, RawErr. Each Raw Interrupt Status register has a bit allocated per channel, for example, RawTfr[2] is Chan-
nel 2's raw transfer complete interrupt. Each bit in these registers is cleared by writing a 1 to the corresponding location in
the ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran, ClearErr registers.

Alm L 365

32072H-AVR32-10/2012 I ©



19.12.12 Interrupt Status Registers

Name: StatusTfr, StatusBlock, StatusSrcTran, StatusDstTran, StatusErr
Access Type: Read-only
Offset: 0x2E8, 0x2F0, 0x2F8, 0x300, 0x308
Reset Value: 0x00000000
31 30 29 28 27 26 25 24

23 22 21 20 19 18 17 16
I R S N R B B
15 14 13 12 11 10 9 8
I R S B R B B
7 6 5 4 3 2 1 0
‘ - ‘ - ‘ - - ‘ STATUS3 ‘ STATUS2 ‘ STATUS1 ‘ STATUSO ‘

e STATUS[3:0]

All interrupt events from all channels are stored in these Interrupt Status Registers after masking: StatusTfr, StatusBlock,
StatusSrcTran, StatusDstTran, StatusErr. Each Interrupt Status register has a bit allocated per channel, for example, Sta-
tusTfr[2] is Channel 2's status transfer complete interrupt. The contents of these registers are used to generate the interrupt

signals leaving the DMACA.

32072H-AVR32-10/2012

Alm L 366

Y 5



19.12.13 Interrupt Mask Registers

Name: MaskTfr, MaskBlock, MaskSrcTran, MaskDstTran, MaskErr

Access Type: Read/Write

Offset: 0x310, 0x318, 0x320, 0x328, 0x330

Reset Value: 0x00000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8

‘ ; ‘ ; ‘ - \ - \ INT_M_WE3 ‘ INT_M_WE2 \ INT_M_WE1 \ INT_M_WEO ‘

7 6 5 4 3 2 - 1r 0
I R

The contents of the Raw Status Registers are masked with the contents of the Mask Registers: MaskTfr, MaskBlock, Mask-
SrcTran, MaskDstTran, MaskErr. Each Interrupt Mask register has a bit allocated per channel, for example, MaskTfr[2] is
the mask bit for Channel 2’s transfer complete interrupt.

‘ INT_MASK3 ‘ INT_MASK2 ‘ INT_MASK1 ‘ INT_MASKO ‘

A channel’s INT_MASK bit is only written if the corresponding mask write enable bit in the INT_MASK_WE field is asserted
on the same System Bus write transfer. This allows software to set a mask bit without performing a read-modified write
operation.

For example, writing hex 01x1 to the MaskTfr register writes a 1 into MaskTfr[0], while MaskTfr[7:1] remains unchanged.
Writing hex 00xx leaves MaskTfr[7:0] unchanged.

Writing a 1 to any bit in these registers unmasks the corresponding interrupt, thus allowing the DMACA to set the appropri-
ate bit in the Status Registers.

e INT_M_WE[11:8]: Interrupt Mask Write Enable
0 = Write disabled

1 = Write enabled

e INT_MASK[3:0]: Interrupt Mask
0= Masked

1 = Unmasked

Alm L 367

32072H-AVR32-10/2012 I ©



19.12.14 Interrupt Clear Registers

Name: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran, ClearErr

Access Type: Write-only

Offset: 0x338, 0x340, 0x348, 0x350, 0x358

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

. - r - - 7°r -t - - [ -} - |
23 22 21 20 19 18 17 16

. - - -1+ -+ - - [ - [ - |
15 14 13 12 11 10 9 8

. - - r -1+ -+ - - [ - [ - |
7 6 5 4 3 2 1 0

‘ - ‘ - ‘ - ‘ - ‘ CLEAR3 ‘ CLEAR2 ‘ CLEAR1 ‘ CLEARO ‘

¢ CLEAR[3:0]: Interrupt Clear
0 = No effect

1 = Clear interrupt

Each bit in the Raw Status and Status registers is cleared on the same cycle by writing a 1 to the corresponding location in
the Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran, ClearErr. Each Interrupt Clear register has a bit allo-
cated per channel, for example, ClearTfr[2] is the clear bit for Channel 2's transfer complete interrupt. Writing a 0 has no
effect. These registers are not readable.

Alm L 368

32072H-AVR32-10/2012 I ©



19.12.15 Combined Interrupt Status Registers

Name: Statusint

Access Type: Read-only

Offset: 0x360

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

. - r - -+ -+ - - [ - [ - |
23 22 21 20 19 18 17 16

- - r - r - r - - ;- -} - |
15 14 13 12 11 10 9 8

- - rr - r - r - - - ;- ;- |
7 6 5 4 3 2 1 0

‘ - ‘ - ‘ - ‘ ERR ‘ DSTT ‘ SRCT ‘ BLOCK ‘ TFR

The contents of each of the five Status Registers (StatusTfr, StatusBlock, StatusSrcTran, StatusDstTran, Statuskrr) is

OR’ed to produce a single bit per interrupt type in the Combined Status Register (Statusint).

* ERR
OR of the contents of StatusErr Register.

e DSTT
OR of the contents of StatusDstTran Register.

e SRCT
OR of the contents of StatusSrcTran Register.

* BLOCK
OR of the contents of StatusBlock Register.

« TFR
OR of the contents of StatusTfr Register.

ATMEL

32072H-AVR32-10/2012

Y 5

369



19.12.16 Source Software Transaction Request Register

Name: ReqSrcReg

Access Type: Read/write

Offset: 0x368

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

I B SRR - - ]
23 22 21 20 19 18 17 16

I R SRR - - ]
15 14 13 12 11 10 9 8

‘ - ‘ - ‘ - - ‘ REQ_WE3 ‘ REQ_WE2 ‘ REQ_WE1 ‘ REQ_WEO ‘
7 6 5 4 3 2 1 0

‘ SRC_REQ3 ‘ SRC_REQ2 ‘ SRC_REQ1 ‘ SRC_REQO ‘

A bit is assigned for each channel in this register. ReqSrcReg[n] is ignored when software handshaking is not enabled for

the source of channel n.

A channel SRC_REQ bit is written only if the corresponding channel write enable bit in the REQ_WE field is asserted on

the same System Bus write transfer.

For example, writing 0x101 writes a 1 into ReqSrcReg[0], while ReqSrcReg[4:1] remains unchanged. Writing hex 0x0yy
leaves ReqSrcReg[4:0] unchanged. This allows software to set a bit in the ReqSrcReg register without performing a read-

modified write

« REQ_WEJ[11:8]: Request write enable

0 = Write disabled
1 = Write enabled
¢ SRC_REQ[3:0]: Source request

32072H-AVR32-10/2012

ATMEL

Y 5

370



19.12.17 Destination Software Transaction Request Register

Name: ReqDstReg

Access Type: Read/write

Offset: 0x370

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

. - ! - -+ - ;r - ;- - ;- [ - |
23 22 21 20 19 18 17 16

- - - r -+ - ;r - ;& - [ - |
15 14 13 12 11 10 9 8

‘ - ‘ - ‘ - ‘ - ‘ REQ_WE3 ‘ REQ_WE2 ‘ REQ_WE1 ‘ REQ_WEO ‘
7 6 5 4 3 2 1 0

‘ ; ‘ ; ‘ - ‘ - \ DST_REQ3 ‘ DST_REQ2 \ DST_REQ1 \ DST_REQO ‘

A bit is assigned for each channel in this register. RegDstReg[n] is ignored when software handshaking is not enabled for
the source of channel n.

A channel DST_REQ bit is written only if the corresponding channel write enable bit in the REQ_WE field is asserted on the
same System Bus write transfer.

« REQ_WEJ[11:8]: Request write enable
0 = Write disabled

1 = Write enabled
e DST_REQ[3:0]: Destination request

Alm L 371

32072H-AVR32-10/2012 I ©



19.12.18 Single Source Transaction Request Register

Name: SglRegSrcReg

Access Type: Read/write

Offset: 0x378

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

. - - r - r -t - ;- ;- [ - |
23 22 21 20 19 18 17 16

. - ! - r - r -t - - [ - [ - |
15 14 13 12 11 10 9 8

‘ - ‘ - ‘ - ‘ - ‘ REQ_WE3 ‘ REQ_WE2 ‘ REQ_WE1 ‘ REQ_WEO ‘
7 6 5 4 3 2 1 0

‘S_SG_REQS‘ S SG_REQ2 ‘S_SG_REQl‘ S_SG_REQO‘

A bit is assigned for each channel in this register. SgIReqSrcReg[n] is ignored when software handshaking is not enabled
for the source of channel n.

A channel S_SG_REQ bit is written only if the corresponding channel write enable bit in the REQ_WE field is asserted on
the same System Bus write transfer.

« REQ_WEJ[11:8]: Request write enable
0 = Write disabled

1 = Write enabled
¢ S_SG_REQI[3:0]: Source single request

Alm L 372

32072H-AVR32-10/2012 I ©



19.12.19 Single Destination Transaction Request Register

Name: SglRegDstReg

Access Type: Read/write

Offset: 0x380

Reset Value: 0x0000000
31 30 29 28 27 26 25 24

. - - r - r - - ;- ;- [ - |
23 22 21 20 19 18 17 16

. - ! - r - r -t - - [ - [ - |
15 14 13 12 11 10 9 8

‘ - ‘ - ‘ - ‘ - ‘ REQ_WE3 ‘ REQ_WE2 ‘ REQ_WE1 ‘ REQ_WEO ‘
7 6 5 4 3 2 1 0

‘D_SG_REQS‘ D_SG_REQZ‘ D_SG_REQl‘ D_SG_REQO‘

A bit is assigned for each channel in this register. SgIReqDstReg|[n] is ignored when software handshaking is not enabled
for the source of channel n.

A channel D_SG_REQ bit is written only if the corresponding channel write enable bit in the REQ_WE field is asserted on
the same System Bus write transfer.

« REQ_WEJ[11:8]: Request write enable
0 = Write disabled

1 = Write enabled
* D_SG_REQI[3:0]: Destination single request

Alm L 373

32072H-AVR32-10/2012 I ©



19.12.20 Last Source Transaction Request Register

Name: LstSrcReg
Access Type: Read/write
Offset: 0x388
Reset Value: 0x0000000

31 30 29 28 27 26 25 24

23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

- - - - LSTSRC_W LSTSRC_W LSTSRC_W LSTSRC_W

E3 E2 El EO
7 6 5 4 3 2 1 0
- - - - LSTSRC3 LSTSRC2 LSTSRC1 LSTSRCO

A bit is assigned for each channel in this register. LstSrcReg[n] is ignored when software handshaking is not enabled for
the source of channel n.

A channel LSTSRC bit is written only if the corresponding channel write enable bit in the LSTSRC_WE field is asserted on
the same System Bus write transfer.

e« LSTSRC_WEJ[11:8]: Source Last Transaction request write enable
0 = Write disabled

1 = Write enabled
e LSTSRC[3:0]: Source Last Transaction request

AIMEL 374

32072H-AVR32-10/2012 I ©



19.12.21 Last Destination Transaction Request Register

Name: LstDstReg
Access Type: Read/write
Offset: 0x390
Reset Value: 0x00000000

31 30 29 28 27 26 25 24

23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

- - - - LSTDST_WE | LSTDST_WE | LSTDST_WE | LSTDST_WE

3 2 1 0
7 6 5 4 3 2 1 0
- - - - LSTDST3 LSTDST2 LSTDST1 LSTDSTO

A bit is assigned for each channel in this register. LstDstReg[n] is ignored when software handshaking is not enabled for
the source of channel n.

A channel LSTDST bit is written only if the corresponding channel write enable bit in the LSTDST_WE field is asserted on

the same System Bus write transfer.

e« LSTDST_WE[11:8]: Destination Last Transaction request write enable
0 = Write disabled

1 = Write enabled
e LSTDST[3:0]: Destination Last Transaction request

32072H-AVR32-10/2012

ATMEL

Y 5

375



19.12.22 DMA Configuration Register

Name: DmaCfgReg

Access Type: Read/Write

Offset: 0x398

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

. - r - - 7°r -t - - [ -} - |
23 22 21 20 19 18 17 16

- - r - r - r - - ;- -} - |
15 14 13 12 11 10 9 8

- - rr - r - r - - - ;- ;- |
7 6 5 4 3 2 1 0

I S S O B =

« DMA_EN: DMA Controller Enable
0 = DMACA Disabled

1 = DMACA Enabled.
This register is used to enable the DMACA, which must be done before any channel activity can begin.

If the global channel enable bit is cleared while any channel is still active, then DmaCfgReg.DMA_EN still returns ‘1’ to indi-

cate that there are channels still active until hardware has terminated all activity on all channels, at which point the
DmaCfgReg.DMA_EN bit returns ‘0.

Alm L 376

32072H-AVR32-10/2012 I ©



19.12.23 DMA Channel Enable Register

Name: ChEnReg
Access Type: Read/Write
Offset: 0x3A0
Reset Value: 0x00000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
- - - - CH EN_WE | CH_EN_WE | CH_EN WE | CH_EN_WE
3 2 1 0
7 6 5 4 3 2 1 0
- - - - CH_EN3 CH_EN2 CH_EN1 CH_ENO

e CH_EN_WEJ[11:8]: Channel Enable Write Enable

The channel enable bit, CH_EN, is only written if the corresponding channel write enable bit, CH_EN_WE, is asserted on
the same System Bus write transfer.

For example, writing O0x101 writes a 1 into ChEnReg[0], while ChEnReg[7:1] remains unchanged.

¢« CH_ENI[3:0]
0 = Disable the Channel
1 = Enable the Channel

Enables/Disables the channel. Setting this bit enables a channel, clearing this bit disables the channel.
The ChEnReg.CH_EN bit is automatically cleared by hardware to disable the channel after the last System Bus transfer of

the DMA transfer to the destination has completed.Software can therefore poll this bit to determine when a DMA transfer
has completed.

Alm L 377

32072H-AVR32-10/2012 I ©



19.12.24 DMACA Component Id Register Low

Name: DmaCompldRegL

Access Type: Read-only

Offset: 0x3F8

Reset Value: 0x44571110
31 30 29 28 27 26 25 24

‘ DMA_COMP_TYPE[31:24] ‘
23 22 21 20 19 18 17 16

‘ DMA_COMP_TYPE[23:16] ‘
15 14 13 12 11 10 9 8

‘ DMA_COMP_TYPE[15:8] ‘
7 6 5 4 3 2 1 0

‘ DMA_COMP_TYPE[7:0] ‘

+ DMA_COMP_TYPE
DesignWare component type number = 0x44571110.

This assigned unique hex value is constant and is derived from the two ASCII letters “DW"” followed by a 32-bit unsigned
number

Alm L 378

32072H-AVR32-10/2012 I ©



19.12.25 DMACA Component Id Register High

Name: DmaCompldRegH

Access Type: Read-only

Offset: 0x3FC

Reset Value: 0x3230362A
31 30 29 28 27 26 25 24

‘ DMA_COMP_VERSION][31:24] ‘
23 22 21 20 19 18 17 16

‘ DMA_COMP_VERSION[23:16] ‘
15 14 13 12 11 10 9 8

‘ DMA_COMP_VERSIONJ[15:8] ‘
7 6 5 4 3 2 1 0

‘ DMA_COMP_VERSION[7:0] ‘

« DMA_COMP_VERSION: Version of the component

Alm L 379

32072H-AVR32-10/2012 I ©



19.13 Module Configuration

32072H-AVR32-10/2012

The following table defines the valid settings for the DEST_PER and SRC_PER fields in the

CFGxH register. The direction is specified as observed from the DMACA. So for instance, AES -
RX means this hardware handshaking interface is connected to the input of the AES modulel

Table 19-6. DMACA Handshake Interfaces

PER Value

Hardware Handshaking Interface

AES - RX

AES - TX

MCI - RX

MCI -TX

MSI - RX

MSI - TX

DMACA - EXTO

~N~N|jolo|h~h W N || O

DMACA - EXT1

Table 19-7. DMACA External Handshake Signals

Handshaking

Interface Function Signal Name

DMACA - EXTO | DMA Acknowledge (DMACKO) DMAACK]0]
DMA Request (nDMAREQO) DMARQ[O0]

DMACA - EXT1 | DMA Acknowledge (DMACK1) DMAACK([1]
DMA Request ((DMAREQ1) DMARQ[1]

ATMEL

Y 5

380



20. General-Purpose Input/Output Controller (GPIO)

Rev: 1.1.0.4

20.1 Features
Each 1/O line of the GPIO features:

* Configurable pin-change, rising-edge or falling-edge interrupt on any I/O line
* A glitch filter providing rejection of pulses shorter than one clock cycle

* Input visibility and output control

* Multiplexing of up to four peripheral functions per I/O line

* Programmable internal pull-up resistor

20.2 Overview

The General Purpose Input/Output Controller manages the 1/0O pins of the microcontroller. Each
I/0O line may be dedicated as a general-purpose /O or be assigned to a function of an embedded
peripheral. This assures effective optimization of the pins of a product.

20.3 Block Diagram

Figure 20-1. GPIO Block Diagram

PB Configuration
Interface

—ee

GPIO Interrupt Request
Interrupt Controller

CLK_GPIO
Power Manager »
|
|
|
—1 |-
- >
Embedded Pin Control
Peripheral Signals
—1 |-
- >

20.4 Product Dependencies

General Purpose
Input/Output - GPIO

PIN

PIN

PIN

PIN

PIN

MCU
1/0 Pins

In order to use this module, other parts of the system must be configured correctly, as described

below.

ATMEL

32072H-AVR32-10/2012 I

381



20.4.1 Module Configuration

20.4.2 Clocks

20.4.3 Interrupts

Most of the features of the GPIO are configurable for each product. The user must refer to the
Package and Pinout chapter for these settings.

Product specific settings includes:

« Number of I/O pins.

* Functions implemented on each pin

« Peripheral function(s) multiplexed on each 1/O pin
» Reset value of registers

The clock for the GPIO bus interface (CLK_GPIO) is generated by the Power Manager. This
clock is enabled at reset, and can be disabled in the Power Manager.

The CLK_GPIO must be enabled in order to access the configuration registers of the GPIO or to
use the GPIO interrupts. After configuring the GPIO, the CLK_GPIO can be disabled if interrupts
are not used.

The GPIO interrupt lines are connected to the interrupt controller. Using the GPIO interrupt
requires the interrupt controller to be configured first.

20.5 Functional Description

32072H-AVR32-10/2012

The GPIO controls the I/O lines of the microcontroller. The control logic associated with each pin
is represented in the figure below:

Alm L 382

Y 5



Figure 20-2. Overview of the GPIO Pad Connections

ODER

Periph. A output enable
Periph. B output enable
Periph. C output enable

Periph. D output enable

';. |

AT32UC3A3

PUER %

PMR1

PMRO

Periph. A output data
Periph. B output data
Periph. C output data

Periph. D output data

aa Periph. A input data
-

0
GPER
0

PAD

. Periph. B input data

¢ Periph. C input data

¢ Periph. D input data

20.5.1 Basic Operation

——— Glitch Filter ——

GFER

20.5.1.1 I/O Line or peripheral function selection
When a pin is multiplexed with one or more peripheral functions, the selection is controlled with
the GPIO Enable Register (GPER). If a bit in GPER is written to one, the corresponding pin is
controlled by the GPIO. If a bit is written to zero, the corresponding pin is controlled by a periph-

eral function.

20.5.1.2 Peripheral selection

Edge Detector

IMR1

IMRO

Interrupt Request

= )

The GPIO provides multiplexing of up to four peripheral functions on a single pin. The selection
is performed by accessing Peripheral Mux Register 0 (PMRO) and Peripheral Mux Register 1

(PMR1).

20.5.1.3 Output control

When the I/O line is assigned to a peripheral function, i.e. the corresponding bit in GPER is writ-
ten to zero, the drive of the 1/O line is controlled by the peripheral. The peripheral, depending on
the value in PMRO and PMR1, determines whether the pin is driven or not.

When the I/O line is controlled by the GPIO, the value of the Output Driver Enable Register
(ODER) determines if the pin is driven or not. When a bit in this register is written to one, the cor-

32072H-AVR32-10/2012

ATMEL

Y 5

383



responding I/O line is driven by the GPIO. When the bit is written to zero, the GPIO does not
drive the line.

The level driven on an 1/O line can be determined by writing to the Output Value Register (OVR).

20.5.1.4 Inputs

The level on each 1/O line can be read through the Pin Value Register (PVR). This register indi-
cates the level of the I/O lines regardless of whether the lines are driven by the GPIO or by an
external component. Note that due to power saving measures, the PVR register can only be
read when GPER is written to one for the corresponding pin or if interrupt is enabled for the pin.

20.5.1.5 Output line timings

The figure below shows the timing of the 1/O line when writing a one and a zero to OVR. The
same timing applies when performing a ‘set’ or ‘clear’ access, i.e., writing a one to the Output
Value Set Register (OVRS) or the Output Value Clear Register (OVRC). The timing of PVR is
also shown.

Figure 20-3. Output Line Timings

Write OVR to 1 PB Access

Write OVR to 0 PB Afcess

OVR/1/O Line

PVR

20.5.2 Advanced Operation

20.5.2.1 Pull-up resistor control
Each I/O line is designed with an embedded pull-up resistor. The pull-up resistor can be enabled
or disabled by writing a one or a zero to the corresponding bit in the Pull-up Enable Register
(PUER). Control of the pull-up resistor is possible whether an 1/O line is controlled by a periph-
eral or the GPIO.

20.5.2.2 Input glitch filter

Optional input glitch filters can be enabled on each I/O line. When the glitch filter is enabled, a
glitch with duration of less than 1 clock cycle is automatically rejected, while a pulse with dura-
tion of 2 clock cycles or more is accepted. For pulse durations between 1 clock cycle and 2 clock
cycles, the pulse may or may not be taken into account, depending on the precise timing of its
occurrence. Thus for a pulse to be guaranteed visible it must exceed 2 clock cycles, whereas for
a glitch to be reliably filtered out, its duration must not exceed 1 clock cycle. The filter introduces
2 clock cycles of latency.

The glitch filters are controlled by the Glitch Filter Enable Register (GFER). When a bit is written
to one in GFER, the glitch filter on the corresponding pin is enabled. The glitch filter affects only
interrupt inputs. Inputs to peripherals or the value read through PVR are not affected by the
glitch filters.

Alm L 384

32072H-AVR32-10/2012 I ©



20.5.3 Interrupts

The GPIO can be configured to generate an interrupt when it detects an input change on an 1/0O
line. The module can be configured to signal an interrupt whenever a pin changes value or only
to trigger on rising edges or falling edges. Interrupts are enabled on a pin by writing a one to the
corresponding bit in the Interrupt Enable Register (IER). The interrupt mode is set by writing to
the Interrupt Mode Register 0 (IMRO) and the Interrupt Mode Register 1(IMR1). Interrupts can be
enabled on a pin, regardless of the configuration of the I/O line, i.e. whether it is controlled by the
GPIO or assigned to a peripheral function.

In every port there are four interrupt lines connected to the interrupt controller. Groups of eight
interrupts in the port are ORed together to form an interrupt line.

When an interrupt event is detected on an I/O line, and the corresponding bit in IER is written to
one, the GPIO interrupt request line is asserted. A number of interrupt signals are ORed-wired
together to generate a single interrupt signal to the interrupt controller.

The Interrupt Flag Register (IFR) can by read to determine which pin(s) caused the interrupt.
The interrupt bit must be cleared by writing a one to the Interrupt Flag Clear Register (IFRC). To
take effect, the clear operation must be performed when the interrupt line is enabled in IER. Oth-
erwise, it will be ignored.

GPIO interrupts can only be triggered when the CLK_GPIO is enabled.

20.5.4 Interrupt Timings

32072H-AVR32-10/2012

The figure below shows the timing for rising edge (or pin-change) interrupts when the glitch filter
is disabled. For the pulse to be registered, it must be sampled at the rising edge of the clock. In
this example, this is not the case for the first pulse. The second pulse is however sampled on a
rising edge and will trigger an interrupt request.

Figure 20-4. Interrupt Timing With Glitch Filter Disabled

ot s e e A
Pin Level ’_H_m HT—m

GPIO_IFR

The figure below shows the timing for rising edge (or pin-change) interrupts when the glitch filter
is enabled. For the pulse to be registered, it must be sampled on two subsequent rising edges.
In the example, the first pulse is rejected while the second pulse is accepted and causes an
interrupt request.

Figure 20-5. Interrupt Timing With Glitch Filter Enabled

it e e A
Il I I I

Pin Level

GPIO_IFR

Alm L 385

Y 5



20.6 User Interface

32072H-AVR32-10/2012

The GPIO controls all the 1/0 pins on the AVR32 microcontroller. The pins are managed as 32-
bit ports that are configurable through a PB interface. Each port has a set of configuration regis-
ters. The overall memory map of the GPIO is shown below. The number of pins and hence the
number of ports are product specific.

Figure 20-6. Overall Mermory Map

0x0000
Port 0 Configuration Registers

0x0100
Port 1 Configuration Registers

0x0200
Port 2 Configuration Registers

0x0300
Port 3 Configuration Registers

0x0400
Port 4 Configuration Registers

In the GPIO Controller Function Multiplexingtable in the Package and Pinout chapter, each
GPIO line has a unique number. Note that the PA, PB, PC and PX ports do not directly corre-
spond to the GPIO ports. To find the corresponding port and pin the following formula can be
used:

GPIO port = floor((GPIO number) / 32), example: floor((36)/32) = 1
GPIO pin = GPIO number mod 32, example: 36 mod 32 =4

The table below shows the configuration registers for one port. Addresses shown are relative to
the port address offset. The specific address of a configuration register is found by adding the

Alm L 386

Y 5



register offset and the port offset to the GPIO start address. One bit in each of the configuration
registers corresponds to an /O pin.

Table 20-1. GPIO Register Memory Map

Offset Register Function Name Access Reset value
0x00 GPIO Enable Register Read/Write GPER Read/Write ()
0x04 GPIO Enable Register Set GPERS Write-Only
0x08 GPIO Enable Register Clear GPERC Write-Only
0x0C GPIO Enable Register Toggle GPERT Write-Only
0x10 Peripheral Mux Register 0 Read/Write PMRO Read/Write (2)
0x14 Peripheral Mux Register 0 Set PMROS Write-Only
0x18 Peripheral Mux Register 0 Clear PMROC Write-Only
0x1C Peripheral Mux Register 0 Toggle PMROT Write-Only
0x20 Peripheral Mux Register 1 Read/Write PMR1 Read/Write (1)
0x24 Peripheral Mux Register 1 Set PMR1S Write-Only
0x28 Peripheral Mux Register 1 Clear PMR1C Write-Only
0x2C Peripheral Mux Register 1 Toggle PMR1T Write-Only
0x40 Output Driver Enable Register | Read/Write ODER Read/Write Q)
0x44 Output Driver Enable Register Set ODERS Write-Only
0x48 Output Driver Enable Register Clear ODERC Write-Only
0x4C Output Driver Enable Register Toggle ODERT Write-Only
0x50 Output Value Register Read/Write OVR Read/Write (2)
0x54 Output Value Register Set OVRS Write-Only
0x58 Output Value Register Clear OVRC Write-Only
0x5c¢ Output Value Register Toggle OVRT Write-Only
0x60 Pin Value Register Read PVR Read-Only 2
0x70 Pull-up Enable Register Read/Write PUER Read/Write (1)
0x74 Pull-up Enable Register Set PUERS Write-Only
0x78 Pull-up Enable Register Clear PUERC Write-Only
0x7C Pull-up Enable Register Toggle PUERT Write-Only
0x90 Interrupt Enable Register Read/Write IER Read/Write Q)
0x94 Interrupt Enable Register Set IERS Write-Only
0x98 Interrupt Enable Register Clear IERC Write-Only
0x9C Interrupt Enable Register Toggle IERT Write-Only
0xAO0 Interrupt Mode Register 0 Read/Write IMRO Read/Write (1)
0xA4 Interrupt Mode Register 0 Set IMROS Write-Only
0xA8 Interrupt Mode Register 0 Clear IMROC Write-Only
OxAC Interrupt Mode Register 0 Toggle IMROT Write-Only
0xBO Interrupt Mode Register 1 Read/Write IMR1 Read/Write (1)

AIMEL 387

32072H-AVR32-10/2012 I ©



Table 20-1. GPIO Register Memory Map
Offset Register Function Name Access Reset value
0xB4 Interrupt Mode Register 1 Set IMR1S Write-Only
0xB8 Interrupt Mode Register 1 Clear IMR1C Write-Only
0xBC Interrupt Mode Register 1 Toggle IMRLT Write-Only
0xCO Glitch Filter Enable Register Read/Write GFER Read/Write 1)
0xC4 Glitch Filter Enable Register Set GFERS Write-Only
0xC8 Glitch Filter Enable Register Clear GFERC Write-Only
0xCC Glitch Filter Enable Register Toggle GFERT Write-Only
0xDO Interrupt Flag Register Read IFR Read-Only (2)
0xD4 Interrupt Flag Register - - -
0xD8 Interrupt Flag Register Clear IFRC Write-Only
0xDC Interrupt Flag Register - - -

1) The reset value for these registers are device specific. Please refer to the Module Config-
uration section at the end of this chapter.
2) The reset value is undefined depending on the pin states.

20.6.1 Access Types

Each configuration register can be accessed in four different ways. The first address location
can be used to write the register directly. This address can also be used to read the register
value. The following addresses facilitate three different types of write access to the register. Per-
forming a “set” access, all bits written to one will be set. Bits written to zero will be unchanged by
the operation. Performing a “clear” access, all bits written to one will be cleared. Bits written to
zero will be unchanged by the operation. Finally, a toggle access will toggle the value of all bits
written to one. Again all bits written to zero remain unchanged. Note that for some registers (e.g.
IFR), not all access methods are permitted.

Note that for ports with less than 32 bits, the corresponding control registers will have unused
bits. This is also the case for features that are not implemented for a specific pin. Writing to an
unused bit will have no effect. Reading unused bits will always return 0.

388

ATMEL

32072H-AVR32-10/2012 I ©



20.6.2 Enable Register

Name: GPER

Access Type: Read, Write, Set, Clear, Toggle

Offset: 0x00, 0x04, 0x08, 0x0C

Reset Value: -

25 24

31 30 29 28 27 26

| P31 | P30 | P29 | P28 | p27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

¢ PO-P31: Pin Enable
0: A peripheral function controls the corresponding pin.

1: The GPIO controls the corresponding pin.

A mE|,® 389

32072H-AVR32-10/2012



20.6.3 Peripheral Mux Register 0

Name: PMRO

Access Type: Read, Write, Set, Clear, Toggle

Offset: 0x10, 0x14, 0x18, 0x1C

Reset Value: -

25 24

31 30 29 28 27 26

| P31 | P30 | P29 | P28 | p27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e PO0-31: Peripheral Multiplexer Select bit O

A mE|,® 390

32072H-AVR32-10/2012



20.6.4 Peripheral Mux Register 1

Name: PMR1

Access Type: Read, Write, Set, Clear, Toggle

Offset: 0x20, 0x24, 0x28, 0x2C

Reset Value: -

25 24

31 30 29 28 27 26

| P31 | P30 | P29 | P28 | p27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e PO0-31: Peripheral Multiplexer Select bit 1

{PMR1, PMRO} Selected Peripheral Function
00 A
01 B
10 C
11 D

A mE|,® 391

32072H-AVR32-10/2012



20.6.5 Output Driver Enable Register

Name: ODER

Access Type: Read, Write, Set, Clear, Toggle

Offset: 0x40, 0x44, 0x48, 0x4C

Reset Value: -

25 24

31 30 29 28 27 26

| P31 | P30 | P29 | P28 | p27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e PO0-31: Output Driver Enable
0: The output driver is disabled for the corresponding pin.

1: The output driver is enabled for the corresponding pin.

A mE|,® 392

32072H-AVR32-10/2012



20.6.6 Output Value Register

Name: OVR

Access Type: Read, Write, Set, Clear, Toggle

Offset: 0x50, 0x54, 0x58, 0x5C

Reset Value: -
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | p27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

¢ PO0-31: Output Value
0: The value to be driven on the I/O line is 0.

1: The value to be driven on the I/O line is 1.

A mE|,® 393

32072H-AVR32-10/2012



20.6.7 Pin Value Register

Name:
Access Type:

Offset:

PVR
Read
0x60, 0x64, 0x68, 0x6C

Reset Value: -
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | p27 P26 P25 P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 P18 P17 P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 P10 P9 P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 P2 P1 PO |

¢ PO0-31: Pin Value

0: The I/O line is at level ‘0.
1: The I/O line is at level ‘1'.

Note that the level of a pin can only be read when GPER is set or interrupt is enabled for the pin.

32072H-AVR32-10/2012

ATMEL

394



20.6.8 Pull-up Enable Register
PUER

Name:
Access Type:

Offset:

Read, Write, Set, Clear, Toggle

0x70, 0x74, 0x78, Ox7C

Reset Value: -
31 30 29 28 27 26 25 24

| P31 | P30 P29 P28 | p27 P26 P25 P24 |
23 22 21 20 19 18 17 16

| P23 | P22 P21 P20 | P19 P18 P17 P16 |
15 14 13 12 11 10 9 8

| P15 | P14 P13 P12 | P11 P10 P9 P8 |
7 6 5 4 3 2 1 0

| P7 | P6 P5 P4 | P3 P2 P1 PO |

e PO0-31: Pull-up Enable
0: The internal pull-up resistor is disabled for the corresponding pin.

1: The internal pull-up resistor is enabled for the corresponding pin.

32072H-AVR32-10/2012

ATMEL

395



20.6.9 Interrupt Enable Register

Name: IER

Access Type: Read, Write, Set, Clear, Toggle

Offset: 0x90, 0x94, 0x98, 0x9C

Reset Value: -
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | p27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e PO0-31: Interrupt Enable
0: Interrupt is disabled for the corresponding pin.

1: Interrupt is enabled for the corresponding pin.

A mE|,® 396

32072H-AVR32-10/2012



20.6.10 Interrupt Mode Register 0

Name:
Access Type:

Offset:

IMRO
Read, Write, Set, Clear, Toggle
0xAO0, 0xA4, 0xA8, OXAC

Reset Value: -
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | p27 P26 P25 P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 P18 P17 P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 P10 P9 P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 P2 P1 PO |

¢ PO0-31: Interrupt Mode Bit 0

32072H-AVR32-10/2012

ATMEL

397



20.6.11 Interrupt Mode Register 1

Name:
Access Type:

Offset:

IMR1
Read, Write, Set, Clear, Toggle
0xBO0, 0xB4, 0xB8, 0xBC

Reset Value: -
25 24

31 30 28 27 26

| P31 | P30 | P28 | P27 P26 P25 P24 |
23 22 20 19 18 17 16

| P23 | P22 | P20 | P19 P18 P17 P16 |
15 14 12 11 10 9 8

| P15 | P14 | P12 | P11 P10 P9 P8 |
7 6 4 3 2 1 0

| P7 | P6 | P4 | P3 P2 P1 PO |

e PO0-31: Interrupt Mode Bit 1

{IMR1, IMRO} Interrupt Mode
00 Pin Change
01 Rising Edge
10 Falling Edge
11 Reserved

32072H-AVR32-10/2012

ATMEL

398



20.6.12 Glitch Filter Enable Register

Name: GFER

Access Type: Read, Write, Set, Clear, Toggle

Offset: 0xCO0, 0xC4, 0xC8, 0xCC

Reset Value: -

25 24

31 30 29 28 27 26

| P31 | P30 | P29 | P28 | p27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

¢ PO0-31: Glitch Filter Enable
0: Glitch filter is disabled for the corresponding pin.

1: Glitch filter is enabled for the corresponding pin.
NOTE! The value of this register should only be changed when IER is ‘0’. Updating this GFER while interrupt on the
corresponding pin is enabled can cause an unintentional interrupt to be triggered.

AIMEL 399

32072H-AVR32-10/2012 I ©



20.6.13 Interrupt Flag Register

Name: IFR

Access Type: Read, Clear

Offset: 0xDO0, 0xD8

Reset Value: -

25 24

31 30 29 28 27 26

| P31 | P30 | P29 P28 | p27 P26 P25 P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 P20 | P19 P18 P17 P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 P12 | P11 P10 P9 P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 P4 | P3 P2 P1 PO |

e PO0-31: Interrupt Flag
1: An interrupt condition has been detected on the corresponding pin.

0: No interrupt condition has beedn detected on the corresponding pin since reset or the last time it was cleared.

The number of interrupt request lines is dependant on the number of I/O pins on the MCU. Refer to the product specific data for

details. Note also that a bit in the Interrupt Flag register is only valid if the corresponding bit in IER is set.

32072H-AVR32-10/2012

ATMEL

Y 5

400



20.7 Programming Examples

20.7.1 8-bit LED-Chaser
// Set RO to GPIO base address

mov RO, LO(AVR32 GPIO ADDRESS)
orh RO, HI(AVR32 GPIO ADDRESS)

// Enable GPIO control of pin 0-8
mov R1, OxFF
st.w RO[AVR32 GPIO GPERS], R1

// Set initial value of port
mov R2, 0x01
st.w RO[AVR32_GPIO_OVRS], R2

// Set up toggle value. Two pins are toggled
// in each round. The bit that is currently set,

// and the next bit to be set.

mov R2, 0x0303
orh R2, 0x0303
loop:
// Only change 8 LSB
mov R3, O0xOOQOFF
and R3, R2
st.w RO [AVR32 GPIO OVRT], R3
rol R2

rcall delay
rjmp loop

It is assumed in this example that a subroutine "delay" exists that returns after a given time.

20.7.2 Configuration of USART pins
The example below shows how to configure a peripheral module to control I/O pins. It assumed
in this example that the USART receive pin (RXD) is connected to PC16 and that the USART
transmit pin (TXD) is connected to PC17. For both pins, the USART is peripheral B. In this
example, the state of the GPIO registers is assumed to be unknown. The two USART pins are
therefore first set to be controlled by the GPIO with output drivers disabled. The pins can then be
assured to be tri-stated while changing the Peripheral Mux Registers.

// Set up pointer to GPIO, PORTC
mov RO, LO(AVR32 GPIO ADDRESS + PORTC OFFSET)
orh RO, HI(AVR32 GPIO ADDRESS + PORTC OFFSET)

// Disable output drivers

AIMEL 401

32072H-AVR32-10/2012 I ©




mov R1, 0x0000
orh R1, 0x0003
st.w RO [AVR32 GPIO ODERC], R1

// Make the GPIO control the pins
st.w RO [AVR32 GPIO _GPERS], R1

// Select peripheral B on PCl6-PCl7
st.w RO [AVR32 GPIO_ PMROS], R1
st.w RO [AVR32 GPIO PMR1C], R1

// Enable peripheral control
st.w RO [AVR32 GPIO GPERC], R1

AIMEL 402

32072H-AVR32-10/2012 I ©




20.8 Module configuration
The specific configuration for each GPIO instance is listed in the following tables.The module
bus clocks listed here are connected to the system bus clocks according to the table in the Sys-
tem Bus Clock Connections section.

32072H-AVR32-10/2012

Table 20-2. Module configuration
Feature GPIO
Number of GPIO ports 4
Number of peripheral functions 4

Table 20-3.  Module clock name
Module name Clock name
GPIO CLK_GPIO

The reset values for all GPIO registers are zero with the following exceptions:

Table 20-4. Register Reset Values
Port Register Reset Value
0 GPER OXxFFFFFFFF
0 GFER OXFFFFFFFF
1 GPER OXFFFFFFFF
1 GFER OXFFFFFFFF
2 GPER OXFFFFFFFF
2 GFER OxFFFFFFFF
3 GPER 0x00007FFF
3 GFER 0x00007FFF

ATMEL

Y 5

403



21. Serial Peripheral Interface (SPI)

21.1 Features

21.2 Overview

32072H-AVR32-10/2012

Rev: 2.1.0.3

e Compatible with an embedded 32-bit microcontroller
e Supports communication with serial external devices
— Four chip selects with external decoder support allow communication with up to 15
peripherals
— Serial memories, such as DataFlash and 3-wire EEPROMs
— Serial peripherals, such as ADCs, DACs, LCD controllers, CAN controllers and Sensors
— External co-processors
* Master or Slave Serial Peripheral Bus Interface
— 4 -to 16-bit programmable data length per chip select
— Programmable phase and polarity per chip select
— Programmable transfer delays between consecutive transfers and between clock and data
per chip select
— Programmable delay between consecutive transfers
— Selectable mode fault detection
* Connection to Peripheral DMA Controller channel capabilities optimizes data transfers
— One channel for the receiver, one channel for the transmitter
— Next buffer support
— Four character FIFO in reception

The Serial Peripheral Interface (SPI) circuit is a synchronous serial data link that provides com-
munication with external devices in Master or Slave mode. It also enables communication
between processors if an external processor is connected to the system.

The Serial Peripheral Interface is essentially a shift register that serially transmits data bits to
other SPIs. During a data transfer, one SPI system acts as the “master™ which controls the data
flow, while the other devices act as “slaves" which have data shifted into and out by the master.
Different CPUs can take turn being masters (Multiple Master Protocol opposite to Single Master
Protocol where one CPU is always the master while all of the others are always slaves) and one
master may simultaneously shift data into multiple slaves. However, only one slave may drive its
output to write data back to the master at any given time.

A slave device is selected when the master asserts its NSS signal. If multiple slave devices
exist, the master generates a separate slave select signal for each slave (NPCS).

The SPI system consists of two data lines and two control lines:
» Master Out Slave In (MOSI): this data line supplies the output data from the master shifted
into the input(s) of the slave(s).

* Master In Slave Out (MISO): this data line supplies the output data from a slave to the input of
the master. There may be no more than one slave transmitting data during any particular
transfer.

« Serial Clock (SPCK): this control line is driven by the master and regulates the flow of the
data bits. The master may transmit data at a variety of baud rates; the SPCK line cycles once
for each bit that is transmitted.

« Slave Select (NSS): this control line allows slaves to be turned on and off by hardware.

AIMEL 404

Y 5



AT32UC3A3

21.3 Block Diagram

Figure 21-1. SPI Block Diagram

Peripheral DMA
Controller
Peripheral Bus T i
l«—>[] spck
«—>[] wmiso
CLK_SPI «—>[] wos
> >
Spi Interface "o le——>[] nrcsonss
p Controller
«—>[] npcst
Interrupt Control ¢ ’D NPCS2
«—>[] npes3

\4
SPI Interrupt

21.4 Application Block Diagram

Figure 21-2. Application Block Diagram: Single Master/Multiple Slave Implementation

SPCK L (SPCK—\
MISO MISO
MOSI 1 ~ »] mos! Slave 0
Spi Master NPCSOb—o— — 1 NSS
NPCS1 N
NPCS2 |—0O NC »{ spck \
NPCS3 1 MISO
L MOSI Slave 1
| N Vg — NSS
—
1 SPCK
MISO
MOSI Slave 2
NSS
—

AIMEL 405

32072H-AVR32-10/2012 I ©



21.5 /O Lines Description

Table 21-1. 1/O Lines Description

Type
Pin Name Pin Description Master Slave
MISO Master In Slave Out Input Output
MOSI Master Out Slave In Output Input
SPCK Serial Clock Output Input
NPCS1-NPCS3 Peripheral Chip Selects Output Unused
NPCSO/NSS Peripheral Chip Select/Slave Select Output Input

21.6 Product Dependencies

In order to use this module, other parts of the system must be configured correctly, as described
below.

21.6.1 I/O Lines
The pins used for interfacing the compliant external devices may be multiplexed with 1/O lines.
The user must first configure the 1/0O Controller to assign the SPI pins to their peripheral
functions.

21.6.2 Clocks
The clock for the SPI bus interface (CLK_SPI) is generated by the Power Manager. This clock is
enabled at reset, and can be disabled in the Power Manager. It is recommended to disable the
SPI before disabling the clock, to avoid freezing the SPI in an undefined state.

21.6.3 Interrupts
The SPI interrupt request line is connected to the interrupt controller. Using the SPI interrupt
requires the interrupt controller to be programmed first.

21.7 Functional Description

21.7.1 Modes of Operation
The SPI operates in master mode or in slave mode.

Operation in master mode is configured by writing a one to the Master/Slave Mode bit in the
Mode Register (MR.MSTR). The pins NPCSO0 to NPCS3 are all configured as outputs, the SPCK
pin is driven, the MISO line is wired on the receiver input and the MOSI line driven as an output
by the transmitter.

If the MR.MSTR bit is written to zero, the SPI operates in slave mode. The MISO line is driven by
the transmitter output, the MOSI line is wired on the receiver input, the SPCK pin is driven by the
transmitter to synchronize the receiver. The NPCSO pin becomes an input, and is used as a
Slave Select signal (NSS). The pins NPCS1 to NPCS3 are not driven and can be used for other
purposes.

The data transfers are identically programmable for both modes of operations. The baud rate
generator is activated only in master mode.

Alm L 406

32072H-AVR32-10/2012 I ©




21.7.2 Data Transfer

Figure 21-3. SPI Transfer Format (NCPHA = 1, 8 bits per transfer)

Four combinations of polarity and phase are available for data transfers. The clock polarity is
configured with the Clock Polarity bit in the Chip Select Registers (CSRn.CPOL). The clock
phase is configured with the Clock Phase bit in the CSRn registers (CSRn.NCPHA). These two
bits determine the edges of the clock signal on which data is driven and sampled. Each of the
two bits has two possible states, resulting in four possible combinations that are incompatible
with one another. Thus, a master/slave pair must use the same parameter pair values to com-
municate. If multiple slaves are used and fixed in different configurations, the master must
reconfigure itself each time it needs to communicate with a different slave.

Table 21-2 on page 407 shows the four modes and corresponding parameter settings.

Table 21-2. SPI modes
SPI Mode CPOL NCPHA
0 0 1
1 0 0
2 1 1
3 1 0

Figure 21-3 on page 407 and Figure 21-4 on page 408 show examples of data transfers.

SPCK cycle (for reference) 1 2 3 4 5 7 8
| | | | | | |
(CPOL =0)
| | | | | | |
(CPOL = 1)
MOsI MSB 5 4 1 LSB
(from master)
MISO MSB 5 4 1 LSB
(from slave)
NSs
(to slave)

32072H-AVR32-10/2012

*** Not Defined, but normaly MSB of previous character received

ATMEL

Y 5

407



Figure 21-4. SPI Transfer Format (NCPHA = 0, 8 bits per transfer)

SPCK cycle (for reference) 1 2 3 4 5 6 7 8
| | | | | | | |
(CPOL =0)
| | | | | | | |
(CPOL=1)
MoslI MSB 6 5 4 3 2 1 LSB
(from master)
MISO e >< MSB 6 5 4 3 2 1 LSB
(from slave)
NSs
(to slave)

*** Not Defined, but normaly LSB of previous character transmitted

21.7.3 Master Mode Operations
When configured in master mode, the SPI uses the internal programmable baud rate generator
as clock source. It fully controls the data transfers to and from the slave(s) connected to the SPI
bus. The SPI drives the chip select line to the slave and the serial clock signal (SPCK).

The SPI features two holding registers, the Transmit Data Register (TDR) and the Receive Data
Register (RDR), and a single Shift Register. The holding registers maintain the data flow at a
constant rate.

After enabling the SPI, a data transfer begins when the processor writes to the TDR register.
The written data is immediately transferred in the Shift Register and transfer on the SPI bus
starts. While the data in the Shift Register is shifted on the MOSI line, the MISO line is sampled
and shifted in the Shift Register. Transmission cannot occur without reception.

Before writing to the TDR, the Peripheral Chip Select field in TDR (TDR.PCS) must be written in
order to select a slave.

If new data is written to TDR during the transfer, it stays in it until the current transfer is com-
pleted. Then, the received data is transferred from the Shift Register to RDR, the data in TDR is
loaded in the Shift Register and a new transfer starts.

The transfer of a data written in TDR in the Shift Register is indicated by the Transmit Data Reg-
ister Empty bit in the Status Register (SR.TDRE). When new data is written in TDR, this bit is
cleared. The SR.TDRE bit is used to trigger the Transmit Peripheral DMA Controller channel.

The end of transfer is indicated by the Transmission Registers Empty bit in the SR register
(SR.TXEMPTY). If a transfer delay (CSRn.DLYBCT) is greater than zero for the last transfer,
SR.TXEMPTY is set after the completion of said delay. The CLK_SPI can be switched off at this
time.

During reception, received data are transferred from the Shift Register to the reception FIFO.
The FIFO can contain up to 4 characters (both Receive Data and Peripheral Chip Select fields).
While a character of the FIFO is unread, the Receive Data Register Full bit in SR remains high
(SR.RDRF). Characters are read through the RDR register. If the four characters stored in the
FIFO are not read and if a new character is stored, this sets the Overrun Error Status bit in the
SR register (SR.OVRES). The procedure to follow in such a case is described in Section

Alm L 408

32072H-AVR32-10/2012 I ©




21.73.1

Figure 21-5. Master Mode Block Diagram

32072H-AVR32-10/2012

CLK_SPI

In master mode, if the received data is not read fast enough compared to the transfer rhythm
imposed by the write accesses in the TDR, some overrun errors may occur, even if the FIFO is
enabled. To insure a perfect data integrity of received data (especially at high data rate), the
mode Wait Data Read Before Transfer can be enabled in the MR register (MR.WDRBT). When
this mode is activated, no transfer starts while received data remains unread in the RDR. When
data is written to the TDR and if unread received data is stored in the RDR, the transfer is
paused until the RDR is read. In this mode no overrun error can occur. Please note that if this
mode is enabled, it is useless to activate the FIFO in reception.

Figure 21-5 on page 409shows a block diagram of the SPI1 when operating in master mode. Fig-

ure 21-6 on page 410 shows a flow chart describing how transfers are handled.

Master mode block diagram

.

MISO

Baud Rate Generator

SPI
Clock

CSR

BITS

NCPHA

CPOL

MR

PCS

TDR

npeso | ]

LSB

[ ps ]

— |
T |

T Y

RXFIFOEN

D SPCK

RDR
RD

RDRF
OVRES

A

4 — Character FIFO

Shift Register MSB

CSRO0..3

CSNAAT

CSAAT

Current
Peripheral

ATMEL

Y 5

4|:| NPCS3
—— |nres2
4|:| NPCS1

4|:| NPCS0

MOSI

409



21.7.3.2

Master mode flow diagram

Figure 21-6. Master Mode Flow Diagram

SPI Enable

- NPCS defines the current Chip Select
- CSAAT, DLYBS, DLYBCT refer to the fields of the

Chip Select Register corresponding to the Current Chip Select
- When NPCS is OxF, CSAAT is 0.

Fixed
peripheral

CSAAT ?

Variable
peripheral

Fixed
peripheral

Variable
peripheral

TDR(PCS)
=NPCS ?

MR(PCS)
=NPCS ?

NPCS = TDR(PCS) | |

NPCS = MR(PCS)

| | NPCS = OxF | | NPCS = OxF |

! !

| Delay DLYBCS | | Delay DLYBCS |

[reeoreen || [ ™38 |

v 3

Delay DLYBS

Serializer = TDR(TD)
TDRE =1

;

Data Transfer

I

RDR(RD) = Serializer
RDRF =1

!

Delay DLYBCT

CSAAT ?

| NPCS = OxF |

!

| Delay DLYBCS |

32072H-AVR32-10/2012

ATMEL

Y 5

AT32UC3A3

410



21.7.3.3 Clock generation
The SPI Baud rate clock is generated by dividing the CLK_SPI , by a value between 1 and 255.

This allows a maximum operating baud rate at up to CLK_SPI and a minimum operating baud
rate of CLK_SPI divided by 255.

Writing the Serial Clock Baud Rate field in the CSRn registers (CSRn.SCBR) to zero is forbid-
den. Triggering a transfer while CSRn.SCBR is zero can lead to unpredictable results.

At reset, CSRn.SCBR is zero and the user has to configure it at a valid value before performing
the first transfer.

The divisor can be defined independently for each chip select, as it has to be configured in the
CSRN.SCBR field. This allows the SPI to automatically adapt the baud rate for each interfaced
peripheral without reprogramming.

21.7.3.4 Transfer delays
Figure 21-7 on page 411 shows a chip select transfer change and consecutive transfers on the
same chip select. Three delays can be configured to modify the transfer waveforms:

» The delay between chip selects, programmable only once for all the chip selects by writing to
the Delay Between Chip Selects field in the MR register (MR.DLYBCS). Allows insertion of a
delay between release of one chip select and before assertion of a new one.

« The delay before SPCK, independently programmable for each chip select by writing the
Delay Before SPCK field in the CSRn registers (CSRn.DLYBS). Allows the start of SPCK to
be delayed after the chip select has been asserted.

« The delay between consecutive transfers, independently programmable for each chip select
by writing the Delay Between Consecutive Transfers field in the CSRn registers
(CSRNn.DLYBCT). Allows insertion of a delay between two transfers occurring on the same
chip select

These delays allow the SPI to be adapted to the interfaced peripherals and their speed and bus
release time.

Figure 21-7. Programmable Delays

J §
J §

SPCK
DLYBCS DLYBS DLYBCT DLYBCT

Alm L 411

32072H-AVR32-10/2012 I ©



21.7.3.5 Peripheral selection
The serial peripherals are selected through the assertion of the NPCSO0 to NPCS3 signals. By
default, all the NPCS signals are high before and after each transfer.

The peripheral selection can be performed in two different ways:

« Fixed Peripheral Select: SPI exchanges data with only one peripheral
« Variable Peripheral Select: Data can be exchanged with more than one peripheral

Fixed Peripheral Select is activated by writing a zero to the Peripheral Select bit in MR (MR.PS).
In this case, the current peripheral is defined by the MR.PCS field and the TDR.PCS field has no
effect.

Variable Peripheral Select is activated by writing a one to the MR.PS bit . The TDR.PCS field is
used to select the current peripheral. This means that the peripheral selection can be defined for
each new data.

The Fixed Peripheral Selection allows buffer transfers with a single peripheral. Using the Periph-
eral DMA Controller is an optimal means, as the size of the data transfer between the memory
and the SPI is either 4 bits or 16 bits. However, changing the peripheral selection requires the
Mode Register to be reprogrammed.

The Variable Peripheral Selection allows buffer transfers with multiple peripherals without repro-
gramming the MR register. Data written to TDR is 32-bits wide and defines the real data to be
transmitted and the peripheral it is destined to. Using the Peripheral DMA Controller in this mode
requires 32-bit wide buffers, with the data in the LSBs and the PCS and LASTXFER fields in the
MSBs, however the SPI still controls the number of bits (8 to16) to be transferred through MISO
and MOSI lines with the CSRn registers. This is not the optimal means in term of memory size
for the buffers, but it provides a very effective means to exchange data with several peripherals
without any intervention of the processor.

21.7.3.6 Peripheral chip select decoding
The user can configure the SPI to operate with up to 15 peripherals by decoding the four Chip
Select lines, NPCSO0 to NPCS3 with an external logic. This can be enabled by writing a one to
the Chip Select Decode bit in the MR register (MR.PCSDEC).

When operating without decoding, the SPI makes sure that in any case only one chip select line
is activated, i.e. driven low at a time. If two bits are defined low in a PCS field, only the lowest
numbered chip select is driven low.

When operating with decoding, the SPI directly outputs the value defined by the PCS field of
either the MR register or the TDR register (depending on PS).

As the SPI sets a default value of OxF on the chip select lines (i.e. all chip select lines at one)
when not processing any transfer, only 15 peripherals can be decoded.

The SPI has only four Chip Select Registers, not 15. As a result, when decoding is activated,
each chip select defines the characteristics of up to four peripherals. As an example, the CRS0
register defines the characteristics of the externally decoded peripherals 0 to 3, corresponding to
the PCS values 0x0 to 0x3. Thus, the user has to make sure to connect compatible peripherals
on the decoded chip select lines0to 3,4to7,8to 11 and 12 to 14.

21.7.3.7 Peripheral deselection
When operating normally, as soon as the transfer of the last data written in TDR is completed,
the NPCS lines all rise. This might lead to runtime error if the processor is too long in responding

Alm L 412

32072H-AVR32-10/2012 I ©




to an interrupt, and thus might lead to difficulties for interfacing with some serial peripherals
requiring the chip select line to remain active during a full set of transfers.

To facilitate interfacing with such devices, the CSRn registers can be configured with the Chip
Select Active After Transfer bit written to one (CSRn.CSAAT) . This allows the chip select lines
to remain in their current state (low = active) until transfer to another peripheral is required.

When the CSRn.CSAAT bit is written to gero, the NPCS does not rise in all cases between two
transfers on the same peripheral. During a transfer on a Chip Select, the SR.TDRE bit rises as
soon as the content of the TDR is transferred into the internal shifter. When this bit is detected
the TDR can be reloaded. If this reload occurs before the end of the current transfer and if the
next transfer is performed on the same chip select as the current transfer, the Chip Select is not
de-asserted between the two transfers. This might lead to difficulties for interfacing with some
serial peripherals requiring the chip select to be de-asserted after each transfer. To facilitate
interfacing with such devices, the CSRn registers can be configured with the Chip Select Not
Active After Transfer bit (CSRn.CSNAAT) written to one. This allows to de-assert systematically
the chip select lines during a time DLYBCS. (The value of the CSRn.CSNAAT bit is taken into
account only if the CSRn.CSAAT bit is written to zero for the same Chip Select).

Figure 21-8 on page 414 shows different peripheral deselection cases and the effect of the
CSRN.CSAAT and CSRn.CSNAAT bits.

21.7.3.8 FIFO management

32072H-AVR32-10/2012

A FIFO has been implemented in Reception FIFO (both in master and in slave mode), in order to
be able to store up to 4 characters without causing an overrun error. If an attempt is made to
store a fifth character, an overrun error rises. If such an event occurs, the FIFO must be flushed.
There are two ways to Flush the FIFO:

» By performing four read accesses of the RDR (the data read must be ignored)

« By writing a one to the Flush Fifo Command bit in the CR register (CR.FLUSHFIFO).
After that, the SPI is able to receive new data.

Alm L 413

Y 5



AT32UC3A3

Figure 21-8. Peripheral Deselection

CSAAT = 0 and CSNAAT =0 CSAAT =1 and CSNAAT=0/1

TDRE | |
DLYBCT DLYBCT
NPCSJ0..3] A | A A A A
DLYBCS DLYBCS
PCS=A PCS=A
Write TDR T T
TDRE | |
DLYBCT DLYBCT
NPCS[0..3] A | A A A A
DLYBCS DLYBCS
PCS=A PCS=A
Write TDR T T
TDRE |
DLYBCT DLYBCT
NPCS[0..3] A B A
DLYBCS DLYBCS
PCS=B PCS=B
Write TDR T T
CSAAT =0 and CSNAAT =0 CSAAT =0 and CSNAAT =1
DLYBCT DLYBCT
TDRE | |
NPCSJ0..3] A A A
DLYBCS
PCS=A PCS=A
Write TDR T T
Figure 21-8 on page 414 shows different peripheral deselection cases and the effect of the
CSRN.CSAAT and CSRn.CSNAAT bits.
21.7.3.9 Mode fault detection

32072H-AVR32-10/2012

The SPI is capable of detecting a mode fault when it is configured in master mode and NPCSO,
MOSI, MISO, and SPCK are configured as open drain through the 1/0O Controller with either
internal or external pullup resistors. If the 1/O Controller does not have open-drain capability,
mode fault detection must be disabled by writing a one to the Mode Fault Detection bit in the MR

ATMEL

Y 5

414



register (MR.MODFDIS). In systems with open-drain I/O lines, a mode fault is detected when a
low level is driven by an external master on the NPCSO/NSS signal.

When a mode fault is detected, the Mode Fault Error bit in the SR (SR.MODF) is set until the SR
is read and the SPI is automatically disabled until re-enabled by writing a one to the SPI Enable
bit in the CR register (CR.SPIEN).

By default, the mode fault detection circuitry is enabled. The user can disable mode fault detec-
tion by writing a one to the Mode Fault Detection bit in the MR register (MR.MODFDIS).

21.7.4 SPI Slave Mode

32072H-AVR32-10/2012

When operating in slave mode, the SPI processes data bits on the clock provided on the SPI
clock pin (SPCK).

The SPI waits for NSS to go active before receiving the serial clock from an external master.
When NSS falls, the clock is validated on the serializer, which processes the number of bits
defined by the Bits Per Transfer field of the Chip Select Register 0 (CSRO.BITS). These bits are
processed following a phase and a polarity defined respectively by the CSR0O.NCPHA and
CSRO0.CPOL bits. Note that the BITS, CPOL, and NCPHA bits of the other Chip Select Registers
have no effect when the SPI is configured in Slave Mode.

The bits are shifted out on the MISO line and sampled on the MOSI line.

When all the bits are processed, the received data is transferred in the Receive Data Register
and the SR.RDRF bit rises. If the RDR register has not been read before new data is received,
the SR.OVRES bit is set. Data is loaded in RDR even if this flag is set. The user has to read the
SR register to clear the SR.OVRES bit.

When a transfer starts, the data shifted out is the data present in the Shift Register. If no data
has been written in the TDR register, the last data received is transferred. If no data has been
received since the last reset, all bits are transmitted low, as the Shift Register resets to zero.

When a first data is written in TDR, it is transferred immediately in the Shift Register and the
SR.TDRE bit rises. If new data is written, it remains in TDR until a transfer occurs, i.e. NSS falls
and there is a valid clock on the SPCK pin. When the transfer occurs, the last data written in
TDR is transferred in the Shift Register and the SR.TDRE bit rises. This enables frequent
updates of critical variables with single transfers.

Then, a new data is loaded in the Shift Register from the TDR. In case no character is ready to
be transmitted, i.e. no character has been written in TDR since the last load from TDR to the
Shift Register, the Shift Register is not modified and the last received character is retransmitted.
In this case the Underrun Error Status bit is set in SR (SR.UNDES).

Figure 21-9 on page 416 shows a block diagram of the SPI when operating in slave mode.

Alm L 415

Y 5



AT32UC3A3

Figure 21-9. Slave Mode Functional Block Diagram

SPI
NSS D Clock

[ sPEN ]
| SPIENS RDR > RDRF
[ spiDis_| [ rRD__ }—f OVRES
CSRO T
BITS
NCPHA ﬁ 4 - Character FIFO
CPOL |
MOSI D LSB Shift Register MSB El MISO
A
TDR

[ 7> |-~ 1ORE ]

Allll L 416

32072H-AVR32-10/2012 I ©



21.8 User Interface

Table 21-3. SPI Register Memory Map

Offset Register Register Name Access Reset
0x00 Control Register CR Write-only 0x00000000
0x04 Mode Register MR Read/Write 0x00000000
0x08 Receive Data Register RDR Read-only 0x00000000
0x0C Transmit Data Register TDR Write-only 0x00000000
0x10 Status Register SR Read-only 0x00000000
0x14 Interrupt Enable Register IER Write-only 0x00000000
0x18 Interrupt Disable Register IDR Write-only 0x00000000
0x1C Interrupt Mask Register IMR Read-only 0x00000000
0x30 Chip Select Register 0 CSRO Read/Write 0x00000000
0x34 Chip Select Register 1 CSR1 Read/Write 0x00000000
0x38 Chip Select Register 2 CSR2 Read/Write 0x00000000
0x3C Chip Select Register 3 CSR3 Read/Write 0x00000000
Ox E4 Write Protection Control Register WPCR Read/Write 0X00000000
OxE8 Write Protection Status Register WPSR Read-only 0x00000000
OxFC Version Register VERSION Read-only -@

Note: 1. The reset values are device specific. Please refer to the Module Configuration section at the end of this chapter.

32072H-AVR32-10/2012

ATMEL

Y 5

417




21.8.1 Control Register

Name: CR

Access Type: Write-only

Offset: 0x00

Reset Value: 0x00000000

31 30 29 28 27 26 25 24
- | LASTHRER |
23 22 21 20 19 18 17 16
- - r - r - r - - ;- -} - |
15 14 13 12 11 10 9 8
T T s
7 6 5 4 3 2 1 0
‘SWRST‘ - ‘ - ‘ - ‘ - ‘ - ‘ SPIDIS ‘ SPIEN ‘

¢ LASTXFER: Last Transfer
1: The current NPCS will be deasserted after the character written in TD has been transferred. When CSRn.CSAAT is one, this

allows to close the communication with the current serial peripheral by raising the corresponding NPCS line as soon as TD
transfer has completed.
0: Writing a zero to this bit has no effect.

¢ FLUSHFIFO: Flush Fifo Command
1: If The FIFO Mode is enabled (MR.FIFOEN written to one) and if an overrun error has been detected, this command allows to

empty the FIFO.
0: Writing a zero to this bit has no effect.

* SWRST: SPI Software Reset
1: Writing a one to this bit will reset the SPI. A software-triggered hardware reset of the SPI interface is performed. The SPI is in

slave mode after software reset. Peripheral DMA Controller channels are not affected by software reset.
0: Writing a zero to this bit has no effect.
* SPIDIS: SPI Disable
1: Writing a one to this bit will disable the SPI. As soon as SPIDIS is written to one, the SPI finishes its transfer, all pins are set
in input mode and no data is received or transmitted. If a transfer is in progress, the transfer is finished before the SPI is
disabled. If both SPIEN and SPIDIS are equal to one when the CR register is written, the SPI is disabled.
0: Writing a zero to this bit has no effect.
« SPIEN: SPI Enable
1: Writing a one to this bit will enable the SPI to transfer and receive data.
0: Writing a zero to this bit has no effect.

AIMEL 418

32072H-AVR32-10/2012 I ©




21.8.2 Mode Register

Name: MR

Access Type: Read/Write

Offset: 0x04

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ DLYBCS ‘
23 22 21 20 19 18 17 16

- - - [ - | PCS |
15 14 13 12 11 10 9 8

- - rr - r - r - - - ;- ;- |
7 6 5 4 3 2 1 0

‘ LLB ‘RXFIFOEN‘ WDRBT- ‘MODFDIS‘ - ‘PCSDEC‘ PS ‘ MSTR ‘

* DLYBCS: Delay Between Chip Selects
This field defines the delay from NPCS inactive to the activation of another NPCS. The DLYBCS time guarantees non-

overlapping chip selects and solves bus contentions in case of peripherals having long data float times.
If DLYBCS is less than or equal to six, six CLK_SPI periods will be inserted by default.
Otherwise, the following equation determines the delay:

Delay Between Chip Selects = DLYBCS
CLKSPI

¢ PCS: Peripheral Chip Select
This field is only used if Fixed Peripheral Select is active (PS = 0).

If PCSDEC = 0:
PCS = xxxONPCS[3:0] = 1110
PCS = xx01NPCS[3:0] = 1101
PCS = x011NPCSJ[3:0] = 1011
PCS = 0111NPCS[3:0] = 0111
PCS = 1111forbidden (no peripheral is selected)
(x =don't care)
If PCSDEC = 1:
NPCS[3:0] output signals = PCS.
e LLB: Local Loopback Enable
1: Local loopback path enabled. LLB controls the local loopback on the data serializer for testing in master mode only (MISO is
internally connected on MOSI).
0: Local loopback path disabled.

¢ RXFIFOEN: FIFO in Reception Enable
1: The FIFO is used in reception (four characters can be stored in the SPI).

AIMEL 419

32072H-AVR32-10/2012 I ©




0: The FIFO is not used in reception (only one character can be stored in the SPI).

« WDRBT: Wait Data Read Before Transfer
1: In master mode, a transfer can start only if the RDR register is empty, i.e. does not contain any unread data. This mode

prevents overrun error in reception.
0: No Effect. In master mode, a transfer can be initiated whatever the state of the RDR register is.

MODFDIS: Mode Fault Detection
1: Mode fault detection is disabled. If the 1/0O controller does not have open-drain capability, mode fault detection must be

disabled for proper operation of the SPI.
0: Mode fault detection is enabled.

PCSDEC: Chip Select Decode
0: The chip selects are directly connected to a peripheral device.

1: The four chip select lines are connected to a 4- to 16-bit decoder.

When PCSDEC equals one, up to 15 Chip Select signals can be generated with the four lines using an external 4- to 16-bit
decoder. The CSRn registers define the characteristics of the 15 chip selects according to the following rules:

CSRO defines peripheral chip select signals 0 to 3.

CSR1 defines peripheral chip select signals 4 to 7.

CSR2 defines peripheral chip select signals 8 to 11.

CSR3 defines peripheral chip select signals 12 to 14.

* PS: Peripheral Select
1: Variable Peripheral Select.

0: Fixed Peripheral Select.

¢ MSTR: Master/Slave Mode
1: SPI is in master mode.

0: SPl is in slave mode.

AIMEL 420

32072H-AVR32-10/2012 I ©




21.8.3 Receive Data Register

Name: RDR

Access Type: Read-only

Offset: 0x08

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | I | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

‘ RD[15:8] ‘
7 6 5 4 3 2 1 0

‘ RD[7:0] ‘

* RD: Receive Data
Data received by the SPI Interface is stored in this register right-justified. Unused bits read zero.

A mE|,® 421

32072H-AVR32-10/2012



21.8.4 Transmit Data Register

Name: TDR

Access Type: Write-only

Offset: 0x0C

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ ] ‘ ] ‘ ] ‘ ] ‘ - - ; LASTXFER ‘
23 22 21 20 19 18 17 16

- - - 7 - | PCS |
15 14 13 12 11 10 9 8

‘ TD[15:8] ‘
7 6 5 4 3 2 1 0

‘ TD[7:0] ‘

¢ LASTXFER: Last Transfer
1: The current NPCS will be deasserted after the character written in TD has been transferred. When CSRn.CSAAT is one, this

allows to close the communication with the current serial peripheral by raising the corresponding NPCS line as soon as TD
transfer has completed.
0: Writing a zero to this bit has no effect.

This field is only used if Variable Peripheral Select is active (MR.PS = 1).

¢ PCS: Peripheral Chip Select
If PCSDEC = 0:

PCS = xxxONPCS[3:0] = 1110

PCS = xx01NPCS[3:0] = 1101

PCS = x011NPCSJ[3:0] = 1011

PCS = 0111NPCS[3:0] = 0111

PCS = 1111forbidden (no peripheral is selected)
(x =don'’t care)

If PCSDEC = 1:

NPCS[3:0] output signals = PCS

This field is only used if Variable Peripheral Select is active (MR.PS = 1).

e TD: Transmit Data
Data to be transmitted by the SPI Interface is stored in this register. Information to be transmitted must be written to the TDR
register in a right-justified format.

AIMEL 422

32072H-AVR32-10/2012 I ©



21.8.5 Status Register

Name: SR

Access Type: Read-only

Offset: 0x10

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

. - r - -+ -+ - - [ - [ - |
23 22 21 20 19 18 17 16

I N e e
15 14 13 12 11 10 9 8

‘ - ‘ - ‘ - ‘ - ‘ - ‘ UNDES ‘TXEMPTY‘ NSSR ‘
7 6 5 4 3 2 1 0

‘ - ‘ - ‘ - ‘ - ‘ OVRES ‘ MODF ‘ TDRE ‘ RDRF ‘

« SPIENS: SPI Enable Status
1: This bit is set when the SPI is enabled.

0: This bit is cleared when the SPI is disabled.

« UNDES: Underrun Error Status (Slave Mode Only)
1: This bit is set when a transfer begins whereas no data has been loaded in the TDR register.

0: This bit is cleared when the SR register is read.
e TXEMPTY: Transmission Registers Empty
1: This bit is set when TDR and internal shifter are empty. If a transfer delay has been defined, TXEMPTY is set after the
completion of such delay.
0: This bit is cleared as soon as data is written in TDR.
*« NSSR: NSS Rising
1: A rising edge occurred on NSS pin since last read.

0: This bit is cleared when the SR register is read.

¢ OVRES: Overrun Error Status
1: This bit is set when an overrun has occurred. An overrun occurs when RDR is loaded at least twice from the serializer since

the last read of the RDR.
0: This bit is cleared when the SR register is read.

« MODF: Mode Fault Error
1: This bit is set when a Mode Fault occurred.

0: This bit is cleared when the SR register is read.

e TDRE: Transmit Data Register Empty
1: This bit is set when the last data written in the TDR register has been transferred to the serializer.

0: This bit is cleared when data has been written to TDR and not yet transferred to the serializer.
TDRE equals zero when the SPI is disabled or at reset. The SPI enable command sets this bit to one.

 RDRF: Receive Data Register Full
1: Data has been received and the received data has been transferred from the serializer to RDR since the last read of RDR.

0: No data has been received since the last read of RDR

AIMEL 423

32072H-AVR32-10/2012 I ©




21.8.6 Interrupt Enable Register

Name: IER

Access Type: Write-only

Offset: 0x14

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

L - | | | I |
23 22 21 20 19 18 17 16

| |
15 14 13 12 11 10 9 8

‘ - ‘ ‘ ‘ ‘ UNDES ‘ TXEMPTY ‘ NSSR ‘
7 6 5 4 3 2 1 0

‘ - ‘ ‘ ‘ ‘ OVRES MODF ‘ TDRE ‘ RDRF ‘

Writing a zero to a bit in this register has no effect.

Writing a one to a bit in this register will set the corresponding bit in IMR.

32072H-AVR32-10/2012

ATMEL

424



21.8.7 Interrupt Disable Register

Name: IDR

Access Type: Write-only

Offset: 0x18

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | I | | |
23 22 21 20 19 18 17 16

| | |
15 14 13 12 11 10 9 8

‘ - ‘ - ‘ - ‘ - ‘ - ‘ UNDES ‘ TXEMPTY ‘ NSSR ‘
7 6 5 4 3 2 1 0

‘ - ‘ - ‘ - ‘ - ‘ OVRES ‘ MODF ‘ TDRE ‘ RDRF ‘

Writing a zero to a bit in this register has no effect.
Writing a one to a bit in this register will clear the corresponding bit in IMR.

A mE|,® 425

32072H-AVR32-10/2012



21.8.8 Interrupt Mask Register

Name: IMR

Access Type: Read-only

Offset: 0x1C

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | I | | I |
23 22 21 20 19 18 17 16

| | - | | I |
15 14 13 12 11 10 9 8

‘ - ‘ - ‘ - ‘ - ‘ - ‘ UNDES ‘ TXEMPTY ‘ NSSR ‘
7 6 5 4 3 2 1 0

‘ - ‘ - ‘ - ‘ - ‘ OVRES ‘ MODF ‘ TDRE ‘ RDRF ‘

0: The corresponding interrupt is disabled.

1: The corresponding interrupt is enabled.

A bit in this register is cleared when the corresponding bit in IDR is written to one.
A bit in this register is set when the corresponding bit in IER is written to one.

ATMEL

32072H-AVR32-10/2012

426



21.8.9 Chip Select Register 0

Name: CSRO

Access Type: Read/Write

Offset: 0x30

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ DLYBCT ‘
23 22 21 20 19 18 17 16

‘ DLYBS ‘
15 14 13 12 11 10 9 8

‘ SCBR ‘
7 6 5 4 3 2 1 0

‘ BITS CSAAT CSNAAT NCPHA CPOL ‘

* DLYBCT: Delay Between Consecutive Transfers

This field defines the delay between two consecutive transfers with the same peripheral without removing the chip select. The
delay is always inserted after each transfer and before removing the chip select if needed.

When DLYBCT equals zero, no delay between consecutive transfers is inserted and the clock keeps its duty cycle over the
character transfers.
Otherwise, the following equation determines the delay:

Delay Between Consecutive Transfers

« DLYBS: Delay Before SPCK
This field defines the delay from NPCS valid to the first valid SPCK transition.

When DLYBS equals zero, the NPCS valid to SPCK transition is 1/2 the SPCK clock period.
Otherwise, the following equations determine the delay:

Delay Before SPCK =

¢« SCBR: Serial Clock Baud Rate
In Master Mode, the SPI Interface uses a modulus counter to derive the SPCK baud rate from the CLK_SPI. The Baud rate is

selected by writing a value from 1 to 255 in the SCBR field. The following equations determine the SPCK baud rate:

SPCK Baudrate =

_ CLKSPI
SCBR

DLYBS
CLKSPI

_ 32xDLYBCT

CLKSPI

Writing the SCBR field to zero is forbidden. Triggering a transfer while SCBR is zero can lead to unpredictable results.
At reset, SCBR is zero and the user has to write it to a valid value before performing the first transfer.
If a clock divider (SCBRn) field is set to one and the other SCBR fields differ from one, access on CSn is correct but no correct

access will be possible on other CS.

32072H-AVR32-10/2012

AIMEL 427

Y 5



* BITS: Bits Per Transfer
The BITS field determines the number of data bits transferred. Reserved values should not be used.

BITS Bits Per Transfer
0000 8
0001 9
0010 10
0011 11
0100 12
0101 13
0110 14
0111 15
1000 16
1001 4
1010 5
1011 6
1100 7
1101 Reserved
1110 Reserved
1111 Reserved

e CSAAT: Chip Select Active After Transfer
1: The Peripheral Chip Select does not rise after the last transfer is achieved. It remains active until a new transfer is requested

on a different chip select.
0: The Peripheral Chip Select Line rises as soon as the last transfer is achieved.

« CSNAAT: Chip Select Not Active After Transfer (Ignored if CSAAT = 1)
0: The Peripheral Chip Select does not rise between two transfers if the TDR is reloaded before the end of the first transfer and

if the two transfers occur on the same Chip Select.
1: The Peripheral Chip Select rises systematically between each transfer performed on the same slave for a minimal duration of:

DLYBCS

CLKSPI (if DLYBCT field is different from 0)

DLYBCS *1 (if DLYBCT field equals 0)
CLKSPI

¢ NCPHA: Clock Phase
1: Data is captured after the leading (inactive-to-active) edge of SPCK and changed on the trailing (active-to-inactive) edge of

SPCK.

0: Data is changed on the leading (inactive-to-active) edge of SPCK and captured after the trailing (active-to-inactive) edge of
SPCK.

NCPHA determines which edge of SPCK causes data to change and which edge causes data to be captured. NCPHA is used
with CPOL to produce the required clock/data relationship between master and slave devices.

¢« CPOL: Clock Polarity
1: The inactive state value of SPCK is logic level one.

0: The inactive state value of SPCK is logic level zero.

AIMEL 428

32072H-AVR32-10/2012 I ©




CPOL is used to determine the inactive state value of the serial clock (SPCK). It is used with NCPHA to produce the required
clock/data relationship between master and slave devices.

AImEl 429

32072H-AVR32-10/2012 I ©



21.8.10 Chip Select Register 1

Name: CSR1

Access Type: Read/Write

Offset: 0x34

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ DLYBCT ‘
23 22 21 20 19 18 17 16

‘ DLYBS ‘
15 14 13 12 11 10 9 8

‘ SCBR ‘
7 6 5 4 3 2 1 0

‘ BITS CSAAT CSNAAT NCPHA CPOL ‘

* DLYBCT: Delay Between Consecutive Transfers

This field defines the delay between two consecutive transfers with the same peripheral without removing the chip select. The
delay is always inserted after each transfer and before removing the chip select if needed.

When DLYBCT equals zero, no delay between consecutive transfers is inserted and the clock keeps its duty cycle over the
character transfers.
Otherwise, the following equation determines the delay:

Delay Between Consecutive Transfers

« DLYBS: Delay Before SPCK
This field defines the delay from NPCS valid to the first valid SPCK transition.

When DLYBS equals zero, the NPCS valid to SPCK transition is 1/2 the SPCK clock period.
Otherwise, the following equations determine the delay:

Delay Before SPCK =

¢« SCBR: Serial Clock Baud Rate
In Master Mode, the SPI Interface uses a modulus counter to derive the SPCK baud rate from the CLK_SPI. The Baud rate is

selected by writing a value from 1 to 255 in the SCBR field. The following equations determine the SPCK baud rate:

SPCK Baudrate =

_ CLKSPI
SCBR

DLYBS
CLKSPI

_ 32xDLYBCT

CLKSPI

Writing the SCBR field to zero is forbidden. Triggering a transfer while SCBR is zero can lead to unpredictable results.
At reset, SCBR is zero and the user has to write it to a valid value before performing the first transfer.
If a clock divider (SCBRn) field is set to one and the other SCBR fields differ from one, access on CSn is correct but no correct

access will be possible on other CS.

32072H-AVR32-10/2012

AIMEL 430

Y 5



* BITS: Bits Per Transfer
The BITS field determines the number of data bits transferred. Reserved values should not be used.

BITS Bits Per Transfer
0000 8
0001 9
0010 10
0011 11
0100 12
0101 13
0110 14
0111 15
1000 16
1001 4
1010 5
1011 6
1100 7
1101 Reserved
1110 Reserved
1111 Reserved

e CSAAT: Chip Select Active After Transfer
1: The Peripheral Chip Select does not rise after the last transfer is achieved. It remains active until a new transfer is requested

on a different chip select.
0: The Peripheral Chip Select Line rises as soon as the last transfer is achieved.

« CSNAAT: Chip Select Not Active After Transfer (Ignored if CSAAT = 1)
0: The Peripheral Chip Select does not rise between two transfers if the TDR is reloaded before the end of the first transfer and

if the two transfers occur on the same Chip Select.
1: The Peripheral Chip Select rises systematically between each transfer performed on the same slave for a minimal duration of:

DLYBCS

CLKSPI (if DLYBCT field is different from 0)

DLYBCS *1 (if DLYBCT field equals 0)
CLKSPI

¢ NCPHA: Clock Phase
1: Data is captured after the leading (inactive-to-active) edge of SPCK and changed on the trailing (active-to-inactive) edge of

SPCK.

0: Data is changed on the leading (inactive-to-active) edge of SPCK and captured after the trailing (active-to-inactive) edge of
SPCK.

NCPHA determines which edge of SPCK causes data to change and which edge causes data to be captured. NCPHA is used
with CPOL to produce the required clock/data relationship between master and slave devices.

¢« CPOL: Clock Polarity
1: The inactive state value of SPCK is logic level one.

0: The inactive state value of SPCK is logic level zero.

AIMEL 431

32072H-AVR32-10/2012 I ©




CPOL is used to determine the inactive state value of the serial clock (SPCK). It is used with NCPHA to produce the required
clock/data relationship between master and slave devices.

AImEl 432

32072H-AVR32-10/2012 I ©



21.8.11 Chip Select Register 2

Name: CSR2

Access Type: Read/Write

Offset: 0x38

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ DLYBCT ‘
23 22 21 20 19 18 17 16

‘ DLYBS ‘
15 14 13 12 11 10 9 8

‘ SCBR ‘
7 6 5 4 3 2 1 0

‘ BITS CSAAT CSNAAT NCPHA CPOL ‘

* DLYBCT: Delay Between Consecutive Transfers

This field defines the delay between two consecutive transfers with the same peripheral without removing the chip select. The
delay is always inserted after each transfer and before removing the chip select if needed.

When DLYBCT equals zero, no delay between consecutive transfers is inserted and the clock keeps its duty cycle over the
character transfers.
Otherwise, the following equation determines the delay:

Delay Between Consecutive Transfers

« DLYBS: Delay Before SPCK
This field defines the delay from NPCS valid to the first valid SPCK transition.

When DLYBS equals zero, the NPCS valid to SPCK transition is 1/2 the SPCK clock period.
Otherwise, the following equations determine the delay:

Delay Before SPCK =

¢« SCBR: Serial Clock Baud Rate
In Master Mode, the SPI Interface uses a modulus counter to derive the SPCK baud rate from the CLK_SPI. The Baud rate is

selected by writing a value from 1 to 255 in the SCBR field. The following equations determine the SPCK baud rate:

SPCK Baudrate =

_ CLKSPI
SCBR

DLYBS
CLKSPI

_ 32xDLYBCT

CLKSPI

Writing the SCBR field to zero is forbidden. Triggering a transfer while SCBR is zero can lead to unpredictable results.
At reset, SCBR is zero and the user has to write it to a valid value before performing the first transfer.
If a clock divider (SCBRn) field is set to one and the other SCBR fields differ from one, access on CSn is correct but no correct

access will be possible on other CS.

32072H-AVR32-10/2012

AIMEL 433

Y 5



* BITS: Bits Per Transfer
The BITS field determines the number of data bits transferred. Reserved values should not be used.

BITS Bits Per Transfer
0000 8
0001 9
0010 10
0011 11
0100 12
0101 13
0110 14
0111 15
1000 16
1001 4
1010 5
1011 6
1100 7
1101 Reserved
1110 Reserved
1111 Reserved

e CSAAT: Chip Select Active After Transfer
1: The Peripheral Chip Select does not rise after the last transfer is achieved. It remains active until a new transfer is requested
on a different chip select.
0: The Peripheral Chip Select Line rises as soon as the last transfer is achieved.

« CSNAAT: Chip Select Not Active After Transfer (Ignored if CSAAT = 1)
0: The Peripheral Chip Select does not rise between two transfers if the TDR is reloaded before the end of the first transfer and
if the two transfers occur on the same Chip Select.
1: The Peripheral Chip Select rises systematically between each transfer performed on the same slave for a minimal duration of:

DLYBCS

CLKSPI (if DLYBCT field is different from 0)

DLYBCS + 1 (if DLYBCT field equals 0)
CLKSPI
« NCPHA: Clock Phase
1: Data is captured after the leading (inactive-to-active) edge of SPCK and changed on the trailing (active-to-inactive) edge of
SPCK.
0: Data is changed on the leading (inactive-to-active) edge of SPCK and captured after the trailing (active-to-inactive) edge of
SPCK.
NCPHA determines which edge of SPCK causes data to change and which edge causes data to be captured. NCPHA is used
with CPOL to produce the required clock/data relationship between master and slave devices.

¢« CPOL: Clock Polarity
1: The inactive state value of SPCK is logic level one.

0: The inactive state value of SPCK is logic level zero.

AIMEL 434

32072H-AVR32-10/2012 I ©




CPOL is used to determine the inactive state value of the serial clock (SPCK). It is used with NCPHA to produce the required
clock/data relationship between master and slave devices.

AImEl 435

32072H-AVR32-10/2012 I ©



21.8.12 Chip Select Register 3

Name: CSR3

Access Type: Read/Write

Offset: 0x3C

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ DLYBCT ‘
23 22 21 20 19 18 17 16

‘ DLYBS ‘
15 14 13 12 11 10 9 8

‘ SCBR ‘
7 6 5 4 3 2 1 0

‘ BITS CSAAT CSNAAT NCPHA CPOL ‘

* DLYBCT: Delay Between Consecutive Transfers

This field defines the delay between two consecutive transfers with the same peripheral without removing the chip select. The
delay is always inserted after each transfer and before removing the chip select if needed.

When DLYBCT equals zero, no delay between consecutive transfers is inserted and the clock keeps its duty cycle over the
character transfers.
Otherwise, the following equation determines the delay:

Delay Between Consecutive Transfers

« DLYBS: Delay Before SPCK
This field defines the delay from NPCS valid to the first valid SPCK transition.

When DLYBS equals zero, the NPCS valid to SPCK transition is 1/2 the SPCK clock period.
Otherwise, the following equations determine the delay:

Delay Before SPCK =

¢« SCBR: Serial Clock Baud Rate
In Master Mode, the SPI Interface uses a modulus counter to derive the SPCK baud rate from the CLK_SPI. The Baud rate is

selected by writing a value from 1 to 255 in the SCBR field. The following equations determine the SPCK baud rate:

SPCK Baudrate =

_ CLKSPI
SCBR

DLYBS
CLKSPI

_ 32xDLYBCT

CLKSPI

Writing the SCBR field to zero is forbidden. Triggering a transfer while SCBR is zero can lead to unpredictable results.
At reset, SCBR is zero and the user has to write it to a valid value before performing the first transfer.
If a clock divider (SCBRn) field is set to one and the other SCBR fields differ from one, access on CSn is correct but no correct

access will be possible on other CS.

32072H-AVR32-10/2012

AIMEL 436

Y 5



* BITS: Bits Per Transfer
The BITS field determines the number of data bits transferred. Reserved values should not be used.

BITS Bits Per Transfer
0000 8
0001 9
0010 10
0011 11
0100 12
0101 13
0110 14
0111 15
1000 16
1001 4
1010 5
1011 6
1100 7
1101 Reserved
1110 Reserved
1111 Reserved

e CSAAT: Chip Select Active After Transfer
1: The Peripheral Chip Select does not rise after the last transfer is achieved. It remains active until a new transfer is requested
on a different chip select.
0: The Peripheral Chip Select Line rises as soon as the last transfer is achieved.

« CSNAAT: Chip Select Not Active After Transfer (Ignored if CSAAT = 1)
0: The Peripheral Chip Select does not rise between two transfers if the TDR is reloaded before the end of the first transfer and
if the two transfers occur on the same Chip Select.
1: The Peripheral Chip Select rises systematically between each transfer performed on the same slave for a minimal duration of:

DLYBCS

CLKSPI (if DLYBCT field is different from 0)

DLYBCS + 1 (if DLYBCT field equals 0)
CLKSPI
« NCPHA: Clock Phase
1: Data is captured after the leading (inactive-to-active) edge of SPCK and changed on the trailing (active-to-inactive) edge of
SPCK.
0: Data is changed on the leading (inactive-to-active) edge of SPCK and captured after the trailing (active-to-inactive) edge of
SPCK.
NCPHA determines which edge of SPCK causes data to change and which edge causes data to be captured. NCPHA is used
with CPOL to produce the required clock/data relationship between master and slave devices.

¢« CPOL: Clock Polarity
1: The inactive state value of SPCK is logic level one.

0: The inactive state value of SPCK is logic level zero.

AIMEL 437

32072H-AVR32-10/2012 I ©




CPOL is used to determine the inactive state value of the serial clock (SPCK). It is used with NCPHA to produce the required
clock/data relationship between master and slave devices.

AImEl 438

32072H-AVR32-10/2012 I ©



21.8.13 Write Protection Control Register

Register Name: WPCR

Access Type: Read-write

Offset: OxE4

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ SPIWPKEY[23:16] ‘
23 22 21 20 19 18 17 16

‘ SPIWPKEY[15:8] ‘
15 14 13 12 11 10 9 8

‘ SPIWPKEY[7:0] ‘
7 6 5 4 3 2 1 0

‘ - - - - - - - SPIWPEN ‘

* SPIWPKEY: SPI Write Protection Key Password
If a value is written in SPIWPEN, the value is taken into account only if SPIWPKEY is written with “SPI” (SPI written in ASCII
Code, i.e. 0x535049 in hexadecimal).
* SPIWPEN: SPI Write Protection Enable
1: The Write Protection is Enabled
0: The Write Protection is Disabled

AIMEL 439

32072H-AVR32-10/2012 I ©



21.8.14 Write Protection Status Register

Register Name: WPSR

Access Type: Read-only

Offset: OXE8

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | I | | |
23 22 21 20 19 18 17 16

| | | | R | | |
15 14 13 12 11 10 9 8

‘ SPIWPVSRC ‘
7 6 5 4 3 2 1 0

‘ i . . . - SPIWPVS ‘

¢ SPIWPVSRC: SPI Write Protection Violation Source
This Field indicates the Peripheral Bus Offset of the register concerned by the violation (MR or CSRx)

A mE|,® 440

32072H-AVR32-10/2012



« SPIWPVS: SPI Write Protection Violation Status

SPIWPVS value Violation Type
1 The Write Protection has blocked a Write access to a protected register (since the last read).
2 Software Reset has been performed while Write Protection was enabled (since the last read

or since the last write access on MR, IER, IDR or CSRX).

Both Write Protection violation and software reset with Write Protection enabled have
occurred since the last read.

Write accesses have been detected on MR (while a chip select was active) or on CSRi (while
the Chip Select “i” was active) since the last read.

The Write Protection has blocked a Write access to a protected register and write accesses
5 have been detected on MR (while a chip select was active) or on CSRi (while the Chip Select

“i” was active) since the last read.

Software Reset has been performed while Write Protection was enabled (since the last read
or since the last write access on MR, IER, IDR or CSRx) and some write accesses have been

6 detected on MR (while a chip select was active) or on CSRi (while the Chip Select “i" was
active) since the last read.
- The Write Protection has blocked a Write access to a protected register.
and
7 - Software Reset has been performed while Write Protection was enabled.
and

- Write accesses have been detected on MR (while a chip select was active) or on CSRi
(while the Chip Select “i” was active) since the last read.

Alm L 441

32072H-AVR32-10/2012 I ©




21.8.15 Version Register

Register Name: VERSION
Access Type: Read-only
Offset: OxFC
Reset Value: -
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
- - - [ - | MEN |
15 14 13 12 11 10 9 8
‘ ‘ ‘ ‘ ‘ VERSION[11:8] ‘
7 6 5 4 3 2 1 0
‘ VERSION[7:0] ‘
* MFN
Reserved. No functionality associated.
* VERSION

Version number of the module. No functionality associated.

A mE|,® 442

32072H-AVR32-10/2012



21.9 Module Configuration

The specific configuration for each SPI instance is listed in the following tables.The module bus
clocks listed here are connected to the system bus clocks. Please refer to the Power Manager
section for details.

Table 21-4. Module Clock Name

Module Name Clock Name
SPIO CLK_SPIO
SPI1 CLK_SPI1

Table 21-5. Register Reset Values

Register Reset Value
VERSION 0x00000210

Alm L 443

32072H-AVR32-10/2012 I ©



22. Two-wire Slave Interface (TWIS)
Rev.:1.0.0.1

22.1 Features
¢ Compatible with I2C standard
— Transfer speeds of 100 and 400 kbit/s
— 7 and 10-bit and General Call addressing
* Compatible with SMBus standard
— Hardware Packet Error Checking (CRC) generation and verification with ACK response
— SMBALERT interface
— 25 ms clock low timeout delay
— 25 ms slave cumulative clock low extend time
e Compatible with PMBus
* DMA interface for reducing CPU load
* Arbitrary transfer lengths, including O data bytes
* Optional clock stretching if transmit or receive buffers not ready for data transfer
* 32-bit Peripheral Bus interface for configuration of the interface

22.2 Overview
The Atmel Two-wire Slave Interface (TWIS) interconnects components on a unigue two-wire
bus, made up of one clock line and one data line with speeds of up to 400 kbit/s, based on a
byte-oriented transfer format. It can be used with any Atmel Two-wire Interface bus, I2C, or
SMBus-compatible master. The TWIS is always a bus slave and can transfer sequential or sin-
gle bytes.

Below, Table 22-1 lists the compatibility level of the Atmel Two-wire Slave Interface and a full I12C
compatible device.

Table 22-1.  Atmel TWIS Compatibility with 12C Standard

I2C Standard Atmel TWIS
Standard-mode (100 kbit/s) Supported
Fast-mode (400 kbit/s) Supported

7 or 10 bits Slave Addressing Supported
START BYTE® Not Supported
Repeated Start (Sr) Condition Supported
ACK and NAK Management Supported
Slope control and input filtering (Fast mode) Supported
Clock stretching Supported

Note: 1. START + b000000001 + Ack + Sr

AIMEL 444

32072H-AVR32-10/2012 I ©



Below, Table 22-2 lists the compatibility level of the Atmel Two-wire Slave Interface and a full
SMBus compatible device.

Table 22-2. Atmel TWIS Compatibility with SMBus Standard

SMBus Standard Atmel TWIS
Bus Timeouts Supported
Address Resolution Protocol Supported
Alert Supported
Packet Error Checking Supported

22.3 List of Abbreviations

Table 22-3.  Abbreviations

Abbreviation Description

TWI Two-wire Interface

A Acknowledge

NA Non Acknowledge
Stop

S Start

Sr Repeated Start

SADR Slave Address

ADR Any address except SADR

R Read

w Write

22.4 Block Diagram

Figure 22-1. Block Diagram

Peripheral
Bus Bridge
- TWCK
A
- » I/O Controller [« TWD
y Two-wire <« |TWALM
Interface
Power
Manager [« >
CLK_TWIS Interrupt
» Controller

TWI Interrupt

AIMEL 445

32072H-AVR32-10/2012 I ©



22.5 Application Block Diagram

Figure 22-2. Application Block Diagram

AT32UC3A3

VDD
Rp Rp
TWD
Host with *
TWI
Interface [ TWCK °
Atmel TWI 12C LCD 12C temp.
serial EEPROM FCRTC controller sensor
Slave 1 Slave 2 Slave 3 Slave 4
Rp: Pull up value as given by the 12C Standard
22.6 1/O Lines Description
Table 22-4.  1/O Lines Description
Pin Name Pin Description Type
TWD Two-wire Serial Data Input/Output
TWCK Two-wire Serial Clock Input/Output
TWALM SMBus SMBALERT Input/Output

22.7 Product Dependencies
In order to use this module, other parts of the system must be configured correctly, as described

22.7.1 I/O Lines

32072H-AVR32-10/2012

below.

TWDand TWCK are bidirectional lines, connected to a positive supply voltage via a current
source or pull-up resistor (see Figure 22-5 on page 448). When the bus is free, both lines are
high. The output stages of devices connected to the bus must have an open-drain or open-col-

lector to perform the wired-AND function.

TWALM is used to implement the optional SMBus SMBALERT signal.

TWALM, TWD, and TWCK pins may be multiplexed with I/O Controller lines. To enable the

TWIS, the user must perform the following steps:

* Program the I/O Controller to:

— Dedicate TWD, TWCK, and optionally TWALM as peripheral lines.

— Define TWD, TWCK, and optionally TWALM as open-drain.

ATMEL

Y 5

446




22.7.2 Power Management

22.7.3 Clocks

22.7.4 DMA

22.75 Interrupts

If the CPU enters a sleep mode that disables clocks used by the TWIS, the TWIS will stop func-
tioning and resume operation after the system wakes up from sleep mode.

The clock for the TWIS bus interface (CLK_TWIS) is generated by the Power Manager. This
clock is enabled at reset, and can be disabled in the Power Manager. It is recommended to dis-
able the TWIS before disabling the clock, to avoid freezing the TWIS in an undefined state.

The TWIS DMA handshake interface is connected to the Peripheral DMA Controller. Using the
TWIS DMA functionality requires the Peripheral DMA Controller to be programmed after setting
up the TWIS.

The TWIS interrupt request lines are connected to the interrupt controller. Using the TWIS inter-
rupts requires the interrupt controller to be programmed first.

22.7.6 Debug Operation

When an external debugger forces the CPU into debug mode, the TWIS continues normal oper-
ation. If the TWIS is configured in a way that requires it to be periodically serviced by the CPU
through interrupts or similar, improper operation or data loss may result during debugging.

22.8 Functional Description

22.8.1 Transfer Format

32072H-AVR32-10/2012

The data put on the TWD line must be 8 bits long. Data is transferred MSB first; each byte must
be followed by an acknowledgement. The number of bytes per transfer is unlimited (see Figure
22-4 on page 448).

Each transfer begins with a START condition and terminates with a STOP condition (see Figure
22-3).

« A high-to-low transition on the TWD line while TWCK is high defines the START condition.
* A low-to-high transition on the TWD line while TWCK is high defines a STOP condition.

Figure 22-3. START and STOP Conditions

Alm L 447



AT32UC3A3

Figure 22-4. Transfer Format

Start Address  R/W Ack Data Ack Data Ack

AStopA
22.8.2 Operation
The TWIS has two modes of operation:
« Slave transmitter mode
 Slave receiver mode

A master is a device which starts and stops a transfer and generates the TWCK clock. A slave is

assigned an address and responds to requests from the master. These modes are described in
the following chapters.

Figure 22-5. Typical Application Block Diagram

VDD
Rp Rp
) TWD
Host with hd >
TWI
Interface TWCK >
Atmel TWI 12C RTC 12C LCD 12C Temp.
Serial EEPROM Controller Sensor

Slave 1 Slave 2 Slave 3 Slave 4
Rp: Pull up value as given by the 12C Standard

228.2.1 Bus Timing

The Timing Register (TR) is used to control the timing of bus signals driven by the TWIS. TR

describes bus timings as a function of cycles of the prescaled CLK_TWIS. The clock prescaling
can be selected through TR.EXP.

_ Jow Twis
JPRESCALED = S(EXP 1)

TR has the following fields:

TLOWS: Prescaled clock cycles used to time SMBUS timeout T, qw.sexT-

AIMEL 448

32072H-AVR32-10/2012 I ©




AT32UC3A3

TTOUT: Prescaled clock cycles used to time SMBUS timeout Tyeout-
SUDAT: Non-prescaled clock cycles for data setup and hold count. Used to time Tgy pat-

EXP: Specifies the clock prescaler setting used for the SMBUS timeouts.

Figure 22-6. Bus Timing Diagram

[0
|

| t l—
| tLow ) HIGH t
— LOW

E -

t t
J 'HD:sTA SU:DAT Ho:paT 'Su:DAT Su:sTO

1/

j
|

|
T
J

& )

w3~ —

22.8.2.2 Setting Up and Performing a Transfer
Operation of the TWIS is mainly controlled by the Control Register (CR). The following list pres-
ents the main steps in a typical communication:

4. Before any transfers can be performed, bus timings must be configured by writing to the
Timing Register (TR).If the Peripheral DMA Controller is to be used for the transfers, it
must be set up.

5. The Control Register (CR) must be configured with information such as the slave
address, SMBus mode, Packet Error Checking (PEC), number of bytes to transfer, and
which addresses to match.

The interrupt system can be set up to generate interrupt request on specific events or error con-
ditions, for example when a byte has been received.

The NBYTES register is only used in SMBus mode, when PEC is enabled. In 12C mode or in
SMBus mode when PEC is disabled, the NBYTES register is not used, and should be written to
zero. NBYTES is updated by hardware, so in order to avoid hazards, software updates of
NBYTES can only be done through writes to the NBYTES register.

22.8.2.3 Address Matching
The TWIS can be set up to match several different addresses. More than one address match
may be enabled simultaneously, allowing the TWIS to be assigned to several addresses. The
address matching phase is initiated after a START or REPEATED START condition. When the
TWIS receives an address that generates an address match, an ACK is automatically returned
to the master.

A mE|,® 449

32072H-AVR32-10/2012



In I2C mode:

» The address in CR.ADR is checked for address match if CR.SMATCH is one.

» The General Call address is checked for address match if CR.GCMATCH is one.
In SMBus mode:

» The address in CR.ADR is checked for address match if CR.SMATCH is one.

» The Alert Response Address is checked for address match if CR.SMAL is one.

» The Default Address is checked for address match if CR.SMDA is one.

» The Host Header Address is checked for address match if CR.SMHH is one.

22.8.2.4 Clock Stretching
Any slave or bus master taking part in a transfer may extend the TWCK low period at any time.

The TWIS may extend the TWCK low period after each byte transfer if CR.STREN is one and:

* Module is in slave transmitter mode, data should be transmitted, but THR is empty, or
* Module is in slave receiver mode, a byte has been received and placed into the internal
shifter, but the Receive Holding Register (RHR) is full, or

* Stretch-on-address-match bit CR.SOAM=1 and slave was addressed. Bus clock remains
stretched until all address match bits in the Status Register (SR) have been cleared.

If CR.STREN is zero and:

* Module is in slave transmitter mode, data should be transmitted but THR is empty: Transmit
the value present in THR (the last transmitted byte or reset value), and set SR.URUN.

« Module is in slave receiver mode, a byte has been received and placed into the internal
shifter, but RHR is full: Discard the received byte and set SR.ORUN.

22.8.25 Bus Errors
If a bus error (misplaced START or STOP) condition is detected, the SR.BUSERR bit is set and

the TWIS waits for a new START condition.

22.8.3 Slave Transmitter Mode
If the TWIS matches an address in which the R/W bit in the TWI address phase transfer is set, it

will enter slave transmitter mode and set the SR.TRA bit (note that SR.TRA is set one
CLK_TWIS cycle after the relevant address match bit in the same register is set).

After the address phase, the following actions are performed:

1. If SMBus mode and PEC is used, NBYTES must be set up with the number of bytes to
transmit. This is necessary in order to know when to transmit the PEC byte. NBYTES
can also be used to count the number of bytes received if using DMA.

2. Byte to transmit depends on 12C/SMBus mode and CR.PEC:

— Ifin I2C mode or CR.PEC is zero or NBYTES is non-zero: The TWIS waits until THR
contains a valid data byte, possibly stretching the low period of TWCK. After THR
contains a valid data byte, the data byte is transferred to a shifter, and then
SR.TXRDY is changed to one because the THR is empty again.

— SMBus mode and CR.PEC is one: If NBYTES is zero, the generated PEC byte is
automatically transmitted instead of a data byte from THR. TWCK will not be
stretched by the TWIS.

3. The data byte in the shifter is transmitted.

Alm L 450

Y 5

32072H-AVR32-10/2012



4. NBYTES is updated. If CR.CUP is one, NBYTES is incremented, otherwise NBYTES is
decremented.

5. After each data byte has been transmitted, the master transmits an ACK (Acknowledge)
or NAK (Not Acknowledge) bit. If a NAK bit is received by the TWIS, the SR.NAK bit is
set. Note that this is done two CLK_TWIS cycles after TWCK has been sampled by the
TWIS to be HIGH (see Figure 22-9). The NAK indicates that the transfer is finished, and
the TWIS will wait for a STOP or REPEATED START. If an ACK bit is received, the
SR.NAK bit remains LOW. The ACK indicates that more data should be transmitted,
jump to step 2. At the end of the ACK/NAK clock cycle, the Byte Transfer Finished
(SR.BTF) bit is set. Note that this is done two CLK_TWIS cycles after TWCK has been
sampled by the TWIS to be LOW (see Figure 22-9). Also note that in the event that
SR.NAK bit is set, it must not be cleared before the SR.BTF bit is set to ensure correct
TWIS behavior.

6. If STOP is received, SR.TCOMP and SR.STO will be set.

7. |If REPEATED START is received, SR.REP will be set.

The TWI transfers require the receiver to acknowledge each received data byte. During the
acknowledge clock pulse (9th pulse), the slave releases the data line (HIGH), enabling the mas-
ter to pull it down in order to generate the acknowledge. The slave polls the data line during this
clock pulse and sets the NAK bit in SR if the master does not acknowledge the data byte. A NAK
means that the master does not wish to receive additional data bytes. As with the other status
bits, an interrupt can be generated if enabled in the Interrupt Enable Register (IER).

SR.TXRDY is used as Transmit Ready for the Peripheral DMA Controller transmit channel.

The end of the complete transfer is marked by the SR.TCOMP bit changing from zero to one.
See Figure 22-7 and Figure 22-8.

Figure 22-7. Slave Transmitter with One Data Byte

o X o X X K 5 XX

TCOMP [
™RDY| |
Write THR (DATA) STOP sent by master

NBYTES set to 1

Alm L 451

32072H-AVR32-10/2012 I ©



AT32UC3A3

Figure 22-8. Slave Transmitter with Multiple Data Bytes

LI G @) SEXD Y (N ETTNE EED

TCOMP

-

TXRDY-l .

Write THR (Data n)
NBYTES settom

| N | X
STOP sent by master

Write THR (Data n+1) Write THR (Data n+m)
Last data sent

Figure 22-9. Timing Relationship between TWCK, SR.NAK, and SR.BTF

TWD

TWCK

SR.NAK

SR.BTF

DATA (LSB) N P

<t > <t >

t1: (CLK_TWIS period) x 2

22.8.4 Slave Receiver Mode
If the TWIS matches an address in which the R/W bit in the TWI address phase transfer is
cleared, it will enter slave receiver mode and clear SR.TRA (note that SR.TRA is cleared one
CLK_TWIS cycle after the relevant address match bit in the same register is set).

After the address phase, the following is repeated:

1.

5.
6.

If SMBus mode and PEC is used, NBYTES must be set up with the number of bytes to
receive. This is necessary in order to know which of the received bytes is the PEC byte.
NBYTES can also be used to count the number of bytes received if using DMA.
Receive a byte. Set SR.BTF when done.

Update NBYTES. If CR.CUP is written to one, NBYTES is incremented, otherwise
NBYTES is decremented. NBYTES is usually configured to count downwards if PEC is
used.

After a data byte has been received, the slave transmits an ACK or NAK bit. For ordi-
nary data bytes, the CR.ACK field controls if an ACK or NAK should be returned. If PEC
is enabled and the last byte received was a PEC byte (indicated by NBYTES equal to
zero), The TWIS will automatically return an ACK if the PEC value was correct, other-
wise a NAK will be returned.

If STOP is received, SR.TCOMP will be set.

If REPEATED START is received, SR.REP will be set.

The TWI transfers require the receiver to acknowledge each received data byte. During the
acknowledge clock pulse (9th pulse), the master releases the data line (HIGH), enabling the

32072H-AVR32-10/2012

Alm L 452

Y 5



slave to pull it down in order to generate the acknowledge. The master polls the data line during
this clock pulse.

The SR.RXRDY bit indicates that a data byte is available in the RHR. The RXRDY bit is also
used as Receive Ready for the Peripheral DMA Controller receive channel.

Figure 22-10. Slave Receiver with One Data Byte

N G €)@ WS €@ 6
TCOMP [
RXRDY /l

Read RHR

Figure 22-11. Slave Receiver with Multiple Data Bytes

[
TWD DATA (n+1 DATA (n+m);
8D A \/ K AaX oatA (X _aX P

r
) ! l |
RXFOY [ ] [ ] B J_|

TCOMP

Read RHR Read RHR Read RHR Read RHR
DATA n DATA (n+1) DATA (n+m)-1 DATA (n+m)

22.8.5 Using the Peripheral DMA Controller
The use of the Peripheral DMA Controller significantly reduces the CPU load. The user can set
up ring buffers for the Peripheral DMA Controller, containing data to transmit or free buffer space
to place received data. By initializing NBYTES to zero before a transfer, and writing a one to
CR.CUP, NBYTES is incremented by one each time a data has been transmitted or received.
This allows the user to detect how much data was actually transferred by the DMA system.

To assure correct behavior, respect the following programming sequences:

22.8.5.1 Data Transmit with the Peripheral DMA Controller
1. Initialize the transmit Peripheral DMA Controller (memory pointers, size, etc.).
Configure the TWIS (ADR, NBYTES, etc.).
Start the transfer by enabling the Peripheral DMA Controller to transmit.
Wait for the Peripheral DMA Controller end-of-transmit flag.
Disable the Peripheral DMA Controller.

a b~ wn

22.8.5.2 Data Receive with the Peripheral DMA Controller
1. Initialize the receive Peripheral DMA Controller (memory pointers, size - 1, etc.).
2. Configure the TWIS (ADR, NBYTES, etc.).

Alm L 453

Y 5

32072H-AVR32-10/2012



3. Start the transfer by enabling the Peripheral DMA Controller to receive.
4. Wait for the Peripheral DMA Controller end-of-receive flag.
5. Disable the Peripheral DMA Controller.

22.8.6 SMBus Mode
SMBus mode is enabled by writing a one to the SMBus Mode Enable (SMEN) bit in CR. SMBus
mode operation is similar to 12C operation with the following exceptions:

« Only 7-bit addressing can be used.

» The SMBus standard describes a set of timeout values to ensure progress and throughput on
the bus. These timeout values must be written to TR.

» Transmissions can optionally include a CRC byte, called Packet Error Check (PEC).
« A dedicated bus line, SMBALERT, allows a slave to get a master’s attention.

« A set of addresses have been reserved for protocol handling, such as Alert Response
Address (ARA) and Host Header (HH) Address. Address matching on these addresses can
be enabled by configuring CR appropriately.

22.8.6.1 Packet Error Checking (PEC)
Each SMBus transfer can optionally end with a CRC byte, called the PEC byte. Writing a one to
the Packet Error Checking Enable (PECEN) bit in CR enables automatic PEC handling in the
current transfer. The PEC generator is always updated on every bit transmitted or received, so
that PEC handling on following linked transfers will be correct.

In slave receiver mode, the master calculates a PEC value and transmits it to the slave after all
data bytes have been transmitted. Upon reception of this PEC byte, the slave will compare it to
the PEC value it has computed itself. If the values match, the data was received correctly, and
the slave will return an ACK to the master. If the PEC values differ, data was corrupted, and the
slave will return a NAK value. The SR.SMBPECERR bit is set automatically if a PEC error
occurred.

In slave transmitter mode, the slave calculates a PEC value and transmits it to the master after
all data bytes have been transmitted. Upon reception of this PEC byte, the master will compare
it to the PEC value it has computed itself. If the values match, the data was received correctly. If
the PEC values differ, data was corrupted, and the master must take appropriate action.

The PEC byte is automatically inserted in a slave transmitter transmission if PEC enabled when
NBYTES reaches zero. The PEC byte is identified in a slave receiver transmission if PEC
enabled when NBYTES reaches zero. NBYTES must therefore be set to the total number of
data bytes in the transmission, including the PEC byte.

22.8.6.2 Timeouts

The Timing Register (TR) configures the SMBus timeout values. If a timeout occurs, the slave
will leave the bus. The SR.SMBTOUT bit is also set.

22.8.6.3 SMBALERT
A slave can get the master’s attention by pulling the SMBALERT line low. This is done by writing
a one to the SMBus Alert (SMBALERT) bit in CR. This will also enable address match on the
Alert Response Address (ARA).

Alm L 454

32072H-AVR32-10/2012 I ©



22.8.7

32072H-AVR32-10/2012

Identifying Bus Events

This chapter lists the different bus events, and how these affects the bits in the TWIS registers.
This is intended to help writing drivers for the TWIS.

Table 22-5. Bus Events

Event

Effect

Slave transmitter has sent a
data byte

SR.THR is cleared.
SR.BTF is set.

The value of the ACK bit sent immediately after the data byte is given
by CR.ACK.

Slave receiver has received
a data byte

SR.RHR is set.
SR.BTF is set.

SR.NAK updated according to value of ACK bit received from master.

Start+Sadr on bus, but

address match enable bit in
CR is not set

address is to another slave None.
Start+Sadr on bus, current
slave is addressed, but

None.

Start+Sadr on bus, current
slave is addressed,
corresponding address
match enable bit in CR set

Correct address match bit in SR is set.

SR.TRA updated according to transfer direction (updating is done one
CLK_TWIS cycle after address match bit is set)

Slave enters appropriate transfer direction mode and data transfer
can commence.

Start+Sadr on bus, current
slave is addressed,
corresponding address
match enable bit in CR set,
SR.STREN and SR.SOAM
are set.

Correct address match bit in SR is set.

SR.TRA updated according to transfer direction (updating is done one
CLK_TWIS cycle after address match bit is set).

Slave stretches TWCK immediately after transmitting the address
ACK bit. TWCK remains stretched until all address match bits in SR
have been cleared.

Slave enters appropriate transfer direction mode and data transfer
can commence.

addressed

Repeated Start received SR.REP set.
after being addressed SR.TCOMP unchanged.
Stop received after being SR.STO set.

SR.TCOMP set.

Start, Repeated Start, or
Stop received in illegal
position on bus

SR.BUSERR set.

SR.STO and SR.TCOMP may or may not be set depending on the
exact position of an illegal stop.

Data is to be received in
slave receiver mode,
SR.STREN is set, and RHR
is full

TWCK is stretched until RHR has been read.

Data is to be transmitted in
slave receiver mode,
SR.STREN is set, and THR
is empty

TWCK is stretched until THR has been written.

ATMEL

Y 5

455



Table 22-5. Bus Events

Event Effect

Data is to be received in

slave receiver mode, TWCK is not stretched, read data is discarded.

SR.STREN is cleared, and SR.ORUN is set.

RHR is full

Data is to be transmitted in

slave receiver mode, TWCK is not stretched, previous contents of THR is written to bus.
SR.STREN is cleared, and SR.URUN is set.

THR is empty

SR.SMBTOUT is set.

SMBus timeout received . .
TWCK and TWD are immediately released.

Slave transmitter in SMBus
PEC mode has transmitted Master receiver will transmit a NAK as usual after the last byte of a

a PEC byte, that was not master receiver transfer.

identical to the PEC Master receiver will retry the transfer at a later time.
calculated by the master

receiver.

Slave receiver discovers SR.SMBPECERR is set.

SMBus PEC Error NAK returned after the data byte.

Alm L 456

32072H-AVR32-10/2012 I ©




22.9 User Interface

Table 22-6. TWIS Register Memory Map

Offset Register Register Name Access Reset
0x00 Control Register CR Read/Write 0x00000000
0x04 NBYTES Register NBYTES Read/Write 0x00000000
0x08 Timing Register TR Read/Write 0x00000000
0x0C Receive Holding Register RHR Read-only 0x00000000
0x10 Transmit Holding Register THR Write-only 0x00000000
0x14 Packet Error Check Register PECR Read-only 0x00000000
0x18 Status Register SR Read-only 0x00000002
0x1C Interrupt Enable Register IER Write-only 0x00000000
0x20 Interrupt Disable Register IDR Write-only 0x00000000
0x24 Interrupt Mask Register IMR Read-only 0x00000000
0x28 Status Clear Register SCR Write-only 0x00000000
0x2C Parameter Register PR Read-only -®
0x30 Version Register VR Read-only -®

Note: 1. The reset values for these registers are device specific. Please refer to the Module Configuration section at the end of this

chapter.

32072H-AVR32-10/2012

ATMEL

Y 5

457



229.1 Control Register

Name: CR
Access Type: Read/Write
Offset: 0x00
Reset Value: 0x00000000
31 30 29 28 27 26 25 24
- - - - - TENBIT ADRJ[9:8] ‘
23 22 21 20 19 18 17 16
ADR[7:0] ‘
15 14 13 12 11 10 9 8
‘ SOAM ‘ CUP ‘ ACK ‘ PECEN ‘ SMHH ‘ SMDA ‘ SMBALERT ‘
7 6 5 4 3 2 1 0
SWRST ‘ - ‘ - ‘ STREN ‘ GCMATCH ‘ SMATCH ‘ SMEN ‘ SEN ‘

32072H-AVR32-10/2012

TENBIT: Ten Bit Address Match
0: Disables Ten Bit Address Match.

1: Enables Ten Bit Address Match.

ADR: Slave Address
Slave address used in slave address match. Bits 9:0 are used if in 10-bit mode, bits 6:0 otherwise.

SOAM: Stretch Clock on Address Match
0: Does not stretch bus clock after address match.

1: Stretches bus clock after address match.

CUP: NBYTES Count Up
0: Causes NBYTES to count down (decrement) per byte transferred.

1: Causes NBYTES to count up (increment) per byte transferred.

ACK: Slave Receiver Data Phase ACK Value
0: Causes a low value to be returned in the ACK cycle of the data phase in slave receiver mode.

1: Causes a high value to be returned in the ACK cycle of the data phase in slave receiver mode.

PECEN: Packet Error Checking Enable
0: Disables SMBus PEC (CRC) generation and check.

1: Enables SMBus PEC (CRC) generation and check.

SMHH: SMBus Host Header
0: Causes the TWIS not to acknowledge the SMBus Host Header.

1: Causes the TWIS to acknowledge the SMBus Host Header.

SMDA: SMBus Default Address
0: Causes the TWIS not to acknowledge the SMBus Default Address.

1: Causes the TWIS to acknowledge the SMBus Default Address.

SMBALERT: SMBus Alert
0: Causes the TWIS to release the SMBALERT line and not to acknowledge the SMBus Alert Response Address (ARA).

1: Causes the TWIS to pull down the SMBALERT line and to acknowledge the SMBus Alert Response Address (ARA).

SWRST: Software Reset
This bit will always read as 0.

Writing a zero to this bit has no effect.

AIMEL 458

Y 5



Writing a one to this bit resets the TWIS.

e STREN: Clock Stretch Enable
0: Disables clock stretching if RHR/THR buffer full/empty. May cause over/underrun.
1: Enables clock stretching if RHR/THR buffer full/empty.

¢ GCMATCH: General Call Address Match
0: Causes the TWIS not to acknowledge the General Call Address.

1: Causes the TWIS to acknowledge the General Call Address.

¢ SMATCH: Slave Address Match
0: Causes the TWIS not to acknowledge the Slave Address.

1: Causes the TWIS to acknowledge the Slave Address.

¢ SMEN: SMBus Mode Enable
0: Disables SMBus mode.

1: Enables SMBus mode.

¢ SEN: Slave Enable
0: Disables the slave interface.

1: Enables the slave interface.

AIMEL 459

32072H-AVR32-10/2012 I ©




22.9.2 NBYTES Register

Name: NBYTES

Access Type: Read/Write

Offset: 0x04

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | | | | | |
23 22 21 20 19 18 17 16

| | | | | | | | |
15 14 13 12 11 10 9 8

| | | | | | | | |
7 6 5 4 3 2 1 0

‘ NBYTES ‘

< NBYTES: Number of Bytes to Transfer
Writing to this field updates the NBYTES counter. The field can also be read to learn the progress of the transfer. NBYTES can

be incremented or decremented automatically by hardware.

A mE|,® 460

32072H-AVR32-10/2012



22.9.3 Timing Register

Name: TR

Access Type: Read/Write

Offset: 0x08

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ EXP - - - - ‘
23 22 21 20 19 18 17 16

‘ SUDAT ‘
15 14 13 12 11 10 9 8

‘ TTOUT ‘
7 6 5 4 3 2 1 0

‘ TLOWS ‘

* EXP: Clock Prescaler
Used to specify how to prescale the SMBus TLOWS counter. The counter is prescaled according to the following formula:

I’ _ fewk wis
PRESCALED = (Exp+1)

« SUDAT: Data Setup Cycles
Non-prescaled clock cycles for data setup count. Used to time Tgy par- Data is driven SUDAT cycles after TWCK low detected.
This timing is used for timing the ACK/NAK bits, and any data bits driven in slave transmitter mode.
e TTOUT: SMBuUS Tqyeout Cycles
Prescaled clock cycles used to time SMBuUS Tqjyeout
e TLOWS: SMBus T ow.sext Cycles
Prescaled clock cycles used to time SMBuUS T, qgw-sext

AIMEL 461

32072H-AVR32-10/2012 I ©



2294 Receive Holding Register

Name: RHR

Access Type: Read-only

Offset: 0x0C

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| -] | -] | |
23 22 21 20 19 18 17 16

| -] | -] | |
15 14 13 12 11 10 9 8

| -] | -] | |
7 6 5 4 3 2 1 0

‘ RXDATA ‘

« RXDATA: Received Data Byte

When the RXRDY bit in the Status Register (SR) is one, this field contains a byte received from the TWI bus.

32072H-AVR32-10/2012

ATMEL

462



22.9.5 Transmit Holding Register

Name: THR

Access Type: Write-only

Offset: 0x10

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | | | | | |
23 22 21 20 19 18 17 16

| | | | | | | | |
15 14 13 12 11 10 9 8

| | | | | | | | |
7 6 5 4 3 2 1 0

‘ TXDATA ‘

¢ TXDATA: Data Byte to Transmit
Write data to be transferred on the TWI bus here.

A mE|,® 463

32072H-AVR32-10/2012



22.9.6 Packet Error Check Register

Name: PECR

Access Type: Read-only

Offset: 0x14

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

- - - - - & - [ - [ - /|
23 22 21 20 19 18 17 16

I N S D e e e
15 14 13 12 11 10 9 8

- - - - - & - [ - [ - /|
7 6 5 4 3 2 1 0

‘ PEC ‘

e PEC: Calculated PEC Value
The calculated PEC value. Updated automatically by hardware after each byte has been transferred. Reset by hardware after a
STOP condition. Provided if the user manually wishes to control when the PEC byte is transmitted, or wishes to access the PEC
value for other reasons. In ordinary operation, the PEC handling is done automatically by hardware.

AIMEL 464

32072H-AVR32-10/2012 I ©



22.9.7 Status Register

Name: SR

Access Type: Read-only

Offset: 0x18

Reset Value: 0x000000002
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

‘ BTF ‘ REP ‘ STO | SMBDAM | SMBHHM | SMBALERTM | GCM | SAM ‘
15 14 13 12 11 10 9 8

‘ - ‘ BUSERR ‘ SMBPECERR | SMBTOUT | - | - | - | NAK |
7 6 5 4 3 2 1 0

‘ ORUN ‘ URUN ‘ TRA | - | TCOMP | SEN | TXRDY | RXRDY ‘

e BTF: Byte Transfer Finished
This bit is cleared when the corresponding bit in SCR is written to one.
This bit is set when byte transfer has completed.

¢ REP: Repeated Start Received
This bit is cleared when the corresponding bit in SCR is written to one.
This bit is set when a REPEATED START condition is received.

e STO: Stop Received
This bit is cleared when the corresponding bit in SCR is written to one.
This bit is set when the STOP condition is received.

¢ SMBDAM: SMBus Default Address Match
This hit is cleared when the corresponding bit in SCR is written to one.
This bit is set when the received address matched the SMBus Default Address.

« SMBHHM: SMBus Host Header Address Match
This bit is cleared when the corresponding bit in SCR is written to one.

This bit is set when the received address matched the SMBus Host Header Address.

¢ SMBALERTM: SMBus Alert Response Address Match
This bit is cleared when the corresponding bit in SCR is written to one.

This bit is set when the received address matched the SMBus Alert Response Address.

e GCM: General Call Match
This bit is cleared when the corresponding bit in SCR is written to one.

This bit is set when the received address matched the General Call Address.

¢ SAM: Slave Address Match
This bit is cleared when the corresponding bit in SCR is written to one.

This bit is set when the received address matched the Slave Address.

¢ BUSERR: Bus Error
This hit is cleared when the corresponding bit in SCR is written to one.

This bit is set when a misplaced START or STOP condition has occurred.

AIMEL 465

32072H-AVR32-10/2012 I ©




« SMBPECERR: SMBus PEC Error
This bit is cleared when the corresponding bit in SCR is written to one.
This bit is set when a SMBus PEC error has occurred.
¢ SMBTOUT: SMBus Timeout
This bit is cleared when the corresponding bit in SCR is written to one.
This bit is set when a SMBus timeout has occurred.
¢ NAK: NAK Received
This bit is cleared when the corresponding bit in SCR is written to one.
This bit is set when a NAK was received from the master during slave transmitter operation.
¢ ORUN: Overrun
This bit is cleared when the corresponding bit in SCR is written to one.
This bit is set when an overrun has occurred in slave receiver mode. Can only occur if CR.STREN is zero.
¢ URUN: Underrun
This hit is cleared when the corresponding bit in SCR is written to one.
This bit is set when an underrun has occurred in slave transmitter mode. Can only occur if CR.STREN is zero.
¢ TRA: Transmitter Mode
0: The slave is in slave receiver mode.
1: The slave is in slave transmitter mode.
e TCOMP: Transmission Complete
This bit is cleared when the corresponding bit in SCR is written to one.
This bit is set when transmission is complete. Set after receiving a STOP after being addressed.

¢ SEN: Slave Enabled
0: The slave interface is disabled.

1: The slave interface is enabled.

¢« TXRDY: TX Buffer Ready
0: The TX buffer is full and should not be written to.

1: The TX buffer is empty, and can accept new data.

< RXRDY: RX Buffer Ready
0: No RX data ready in RHR.

1: RX data is ready to be read from RHR.

AIMEL 466

32072H-AVR32-10/2012 I ©




22.9.8 Interrupt Enable Register

Name: IER

Access Type: Write-only

Offset: 0x1C

Reset Value: 0x00000000
31 30 29 28 25 24

| | | | | |
23 22 21 20 17 16

‘ BTF ‘ REP ‘ STO | SMBDAM | SMBHHM | SMBALERTM | GCM SAM ‘
15 14 13 12 9 8

‘ - ‘ BUSERR ‘ SMBPECERR | SMBTOUT | NAK |
7 6 5 4 1 0

‘ ORUN ‘ URUN ‘ - | | TCOMP TXRDY RXRDY ‘

Writing a zero to a bit in this register has no effect.

Writing a one to a bit in this register will write a one to the corresponding bit in IMR.

32072H-AVR32-10/2012

ATMEL

467



22.9.9 Interrupt Disable Register

Name: IDR

Access Type: Write-only

Offset: 0x20

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | | | |
23 22 21 20 19 18 17 16

‘ BTF ‘ REP ‘ STO | SMBDAM | SMBHHM | SMBALERTM | GCM SAM ‘
15 14 13 12 11 10 9 8

‘ - ‘ BUSERR ‘ SMBPECERR | SMBTOUT | | NAK |
7 6 5 4 3 2 1 0

‘ ORUN ‘ URUN ‘ - | | TCOMP | TXRDY RXRDY ‘

Writing a zero to a bit in this register has no effect.
Writing a one to a bit in this register will clear the corresponding bit in IMR.

ATMEL

32072H-AVR32-10/2012

468



22.9.10 Interrupt Mask Register

Name: IMR

Access Type: Read-only

Offset: 0x24

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | [ - ] | | |
23 22 21 20 19 18 17 16

‘ BTF ‘ REP ‘ STO | SMBDAM | SMBHHM | SMBALERTM | GCM | SAM ‘
15 14 13 12 11 10 9 8

‘ - ‘ BUSERR ‘ SMBPECERR | SMBTOUT | - | - | - | NAK |
7 6 5 4 3 2 1 0

‘ ORUN ‘ URUN ‘ - | - | TCOMP | - | TXRDY | RXRDY ‘

0: The corresponding interrupt is disabled.

1: The corresponding interrupt is enabled.

This bit is cleared when the corresponding bit in IDR is written to one.
This bit is set when the corresponding bit in IER is written to one.

A mE|,® 469

32072H-AVR32-10/2012



22.9.11 Status Clear Register

Name: SCR

Access Type: Write-only

Offset: 0x28

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | | | | | |
23 22 21 20 19 18 17 16

‘ BTF ‘ REP ‘ STO | SMBDAM | SMBHHM | SMBALERTM | GCM | SAM ‘
15 14 13 12 11 10 9 8

‘ - ‘ BUSERR ‘ SMBPECERR | SMBTOUT | - | - | - | NAK |
7 6 5 4 3 2 1 0

‘ ORUN ‘ URUN ‘ - | - | TCOMP | - | - | ‘

Writing a zero to a bit in this register has no effect.
Writing a one to a bit in this register will clear the corresponding bit in SR and the corresponding interrupt request.

ATMEL

32072H-AVR32-10/2012

470



22.9.12 Parameter Register

Name: PR

Access Type: Read-only

Offset: 0x2C

Reset Value:
31 30 29 28 27 26 25 24

| | | | | | | | |
23 22 21 20 19 18 17 16

| | | | | | | | |
15 14 13 12 11 10 9 8

| | | | | | | | |
7 6 5 4 3 2 1 0

A mE|,® 471

32072H-AVR32-10/2012



22.9.13 Version Register (VR)

Name: VR

Access Type: Read-only

Offset: 0x30

Reset Value: -
31 30 29 28 27 26 25 24

| | I | |
23 22 21 20 19 18 17 16

‘ - ‘ - ‘ - ‘ - ‘ VARIANT ‘
15 14 13 12 11 10 9 8

‘ ] ‘ ] ‘ ] ‘ - ‘ VERSION [11:8] ‘
7 6 5 4 3 2 1 0

‘ VERSION [7:0] ‘

¢ VARIANT: Variant Number
Reserved. No functionality associated.

* VERSION: Version Number
Version number of the module. No functionality associated.

A mE|,® 472

32072H-AVR32-10/2012



22.10 Module Configuration

The specific configuration for each TWIS instance is listed in the following tables. The module
bus clocks listed here are connected to the system bus clocks according to the table in the
Power Manager section.

Table 22-7. Module Clock Name

Module name Clock name
TWISO CLK_TWISO
TWIS1 CLK_TWIS1

Table 22-8.  Register Reset Values

Register Reset Value
VR 0x00000100
PR 0x00000000

AIMEL 473

32072H-AVR32-10/2012 I ©



23. Two-wire Master Interface (TWIM)
Rev.:1.0.0.1

23.1 Features
¢ Compatible with I2C standard
— Multi-master support
— Transfer speeds of 100 and 400 kbit/s
— 7- and 10-bit and General Call addressing
* Compatible with SMBus standard
— Hardware Packet Error Checking (CRC) generation and verification with ACK control
— SMBus ALERT interface
— 25 ms clock low timeout delay
— 10 ms master cumulative clock low extend time
— 25 ms slave cumulative clock low extend time
* Compatible with PMBus
* Compatible with Atmel Two-wire Interface Serial Memories
* DMA interface for reducing CPU load
e Arbitrary transfer lengths, including 0 data bytes
e Optional clock stretching if transmit or receive buffers not ready for data transfer

23.2 Overview

The Atmel Two-wire Master Interface (TWIM) interconnects components on a unique two-wire
bus, made up of one clock line and one data line with speeds of up to 400 kbit/s, based on a
byte-oriented transfer format. It can be used with any Atmel Two-wire Interface bus serial
EEPROM and I2C compatible device such as a real time clock (RTC), dot matrix/graphic LCD
controller, and temperature sensor, to name a few. The TWIM is always a bus master and can
transfer sequential or single bytes. Multiple master capability is supported. Arbitration of the bus
is performed internally and relinquishes the bus automatically if the bus arbitration is lost.

A configurable baud rate generator permits the output data rate to be adapted to a wide range of
core clock frequencies.Table 23-1 lists the compatibility level of the Atmel Two-wire Interface in
Master Mode and a full 12C compatible device.

Table 23-1.  Atmel TWIM Compatibility with 12C Standard

I2C Standard Atmel TWIM
Standard-mode (100 kbit/s) Supported
Fast-mode (400 kbit/s) Supported
Fast-mode Plus (1 Mbit/s) Supported

7- or 10-bits Slave Addressing Supported
START BYTE® Not Supported
Repeated Start (Sr) Condition Supported
ACK and NACK Management Supported
Slope Control and Input Filtering (Fast mode) Supported
Clock Stretching Supported

Note: 1. START + b000000001 + Ack + Sr

AIMEL 474

32072H-AVR32-10/2012 I ©



Table 23-2 lists the compatibility level of the Atmel Two-wire Master Interface and a full SMBus
compatible master.

Table 23-2. Atmel TWIM Compatibility with SMBus Standard

SMBus Standard Atmel TWIM
Bus Timeouts Supported
Address Resolution Protocol Supported
Alert Supported
Host Functionality Supported
Packet Error Checking Supported

23.3 List of Abbreviations

Table 23-3.  Abbreviations

Abbreviation Description

TWI Two-wire Interface

A Acknowledge

NA Non Acknowledge
Stop

S Start

Sr Repeated Start

SADR Slave Address

ADR Any address except SADR

R Read

w Write

23.4 Block Diagram

Figure 23-1. Block Diagram

Peripheral
Bus Bridge
<> TWCK

A

- > I/O Controller «—» TWD

L Two-wire <« |[TWALM

Interface
Power
Manager |« >
CLK_TWIM INTC
TWI Interrupt

AIMEL 475

32072H-AVR32-10/2012 I ©



AT32UC3A3

23.5 Application Block Diagram

Figure 23-2. Application Block Diagram

VDD
Rp{ Rp{ Rp
TWD I
< y Y 2 Y >
™ | TWCK -
Master |- g
TWALM
T A A T Y v T A A T Y v
Atmel TWI 2 l’CLCD I°C temp
serial EEPROM FCRTC controller sensor
Slave 1 Slave 2 Slave 3 Slave 4
Rp: pull-up value as given by the 12C Standard
23.6 1/0 Lines Description
Table 23-4.  1/O Lines Description
Pin Name Pin Description Type
TWD Two-wire Serial Data Input/Output
TWCK Two-wire Serial Clock Input/Output
TWALM SMBus SMBALERT Input/Output

23.7 Product Dependencies
In order to use this module, other parts of the system must be configured correctly, as described
below.

23.7.1 I/O Lines
TWD and TWCK are bidirectional lines, connected to a positive supply voltage via a current
source or pull-up resistor (see Figure 23-4 on page 478). When the bus is free, both lines are
high. The output stages of devices connected to the bus must have an open-drain or open-col-
lector to perform the wired-AND function.

TWALM is used to implement the optional SMBus SMBALERT signal.

The TWALM, TWD, and TWCK pins may be multiplexed with 1/O Controller lines. To enable the
TWIM, the user must perform the following steps:
« Program the 1/0O Controller to:
— Dedicate TWD, TWCK, and optionally TWALM as peripheral lines.
— Define TWD, TWCK, and optionally TWALM as open-drain.

23.7.2 Power Management
If the CPU enters a sleep mode that disables clocks used by the TWIM, the TWIM will stop func-
tioning and resume operation after the system wakes up from sleep mode.

Alm L 476

32072H-AVR32-10/2012 I ©




23.7.3 Clocks

The clock for the TWIM bus interface (CLK_TWIM) is generated by the Power Manager. This
clock is enabled at reset, and can be disabled in the Power Manager. It is recommended to dis-
able the TWIM before disabling the clock, to avoid freezing the TWIM in an undefined state.

23.7.4 DMA

The TWIM DMA handshake interface is connected to the Peripheral DMA Controller. Using the
TWIM DMA functionality requires the Peripheral DMA Controller to be programmed after setting
up the TWIM.

23.7.5 Interrupts

The TWIM interrupt request lines are connected to the interrupt controller. Using the TWIM inter-
rupts requires the interrupt controller to be programmed first.

23.7.6 Debug Operation
When an external debugger forces the CPU into debug mode, the TWIM continues normal oper-
ation. If the TWIM is configured in a way that requires it to be periodically serviced by the CPU
through interrupts or similar, improper operation or data loss may result during debugging.

Alm L 477

32072H-AVR32-10/2012 I ©



23.8 Functional Description

23.8.1 Transfer Format

The data put on the TWD line must be 8 bits long. Data is transferred MSB first; each byte must
be followed by an acknowledgement. The number of bytes per transfer is unlimited (see Figure
23-4).

Each transfer begins with a START condition and terminates with a STOP condition (see Figure
23-4).

* A high-to-low transition on the TWD line while TWCK is high defines the START condition.
* A low-to-high transition on the TWD line while TWCK is high defines a STOP condition.

Figure 23-3. START and STOP Conditions

Start Address R/W Ack Data Ack Data Ack Stop

23.8.2 Operation
The TWIM has two modes of operation:
* Master transmitter mode
* Master receiver mode

The master is the device which starts and stops a transfer and generates the TWCK clock.
These modes are described in the following chapters.

Alm L 478

32072H-AVR32-10/2012 I ©



23.8.2.1 Clock Generation
The Clock Waveform Generator Register (CWGR) is used to control the waveform of the TWCK
clock. CWGR must be written so that the desired TWI bus timings are generated. CWGR
describes bus timings as a function of cycles of a prescaled clock. The clock prescaling can be
selected through the Clock Prescaler field in CWGR (CWGR.EXP).

y _ Jeu twim
PRESCALER — 2(EXP+1)

CWGR has the following fields:

LOW: Prescaled clock cycles in clock low count. Used to time T o,y and Tgy.

HIGH: Prescaled clock cycles in clock high count. Used to time Tygy.

STASTO: Prescaled clock cycles in clock high count. Used to time Typ sta, Tsy stas Tsu_sto-
DATA: Prescaled clock cycles for data setup and hold count. Used to time Tp par, Tsy pat-
EXP: Specifies the clock prescaler setting.

Note that the total clock low time generated is the sum of T,;5 par + Tsy pat + Trow:

Any slave or other bus master taking part in the transfer may extend the TWCK low period at any
time.

The TWIM hardware monitors the state of the TWCK line as required by the 12C specification.
The clock generation counters are started when a high/low level is detected on the TWCK line,
not when the TWIM hardware releases/drives the TWCK line. This means that the CWGR set-
tings alone do not determine the TWCK frequency. The CWGR settings determine the clock low
time and the clock high time, but the TWCK rise and fall times are determined by the external cir-
cuitry (capacitive load, etc.).

Figure 23-5. Bus Timing Diagram

[

| t —
HIGH
| —> tow « t
\ Low

L LS G M F

t t
J tHD:STA SU:DAT HD:DAT tSU.DAT SU:sTO

~_
S~—_
/

i
|
|
T
J
&)

P

A mE|,® 479

32072H-AVR32-10/2012



23.8.2.2 Setting up and Performing a Transfer

Operation of the TWIM is mainly controlled by the Control Register (CR) and the Command Reg-
ister (CMDR). TWIM status is provided in the Status Register (SR). The following list presents
the main steps in a typical communication:

1. Before any transfers can be performed, bus timings must be configured by writing to the
Clock Waveform Generator Register (CWGR). If operating in SMBus mode, the SMBus
Timing Register (SMBTR) register must also be configured.

2. If the Peripheral DMA Controller is to be used for the transfers, it must be set up.

3. CMDR or NCMDR must be written with a value describing the transfer to be performed.

The interrupt system can be set up to give interrupt requests on specific events or error condi-
tions in the SR, for example when the transfer is complete or if arbitration is lost. The Interrupt
Enable Register (IER) and Interrupt Disable Register (IDR) can be written to specify which bits in
the SR will generate interrupt requests.

The SR.BUSFREE bit is set when activity is completed on the two-wire bus. The SR.CRDY bit is
set when CMDR and/or NCMDR is ready to receive one or more commands.

The controller will refuse to start a new transfer while ANAK, DNAK, or ARBLST in the Status
Register (SR) is one. This is necessary to avoid a race when the software issues a continuation
of the current transfer at the same time as one of these errors happen. Also, if ANAK or DNAK
occurs, a STOP condition is sent automatically. The user will have to restart the transmission by
clearing the error bits in SR after resolving the cause for the NACK.

After a data or address NACK from the slave, a STOP will be transmitted automatically. Note
that the VALID bit in CMDR is NOT cleared in this case. If this transfer is to be discarded, the
VALID bit can be cleared manually allowing any command in NCMDR to be copied into CMDR.

When a data or address NACK is returned by the slave while the master is transmitting, it is pos-
sible that new data has already been written to the THR register. This data will be transferred out
as the first data byte of the next transfer. If this behavior is to be avoided, the safest approach is
to perform a software reset of the TWIM.

23.8.3 Master Transmitter Mode

32072H-AVR32-10/2012

A START condition is transmitted and master transmitter mode is initiated when the bus is free
and CMDR has been written with START=1 and READ=0. START and SADR+W will then be
transmitted. During the address acknowledge clock pulse (9th pulse), the master releases the
data line (HIGH), enabling the slave to pull it down in order to acknowledge the address. The
master polls the data line during this clock pulse and sets the Address Not Acknowledged bit
(ANAK) in the Status Register if no slave acknowledges the address.

After the address phase, the following is repeated:
while (NBYTES>0)

1. Wait until THR contains a valid data byte, stretching low period of TWCK. SR.TXRDY
indicates the state of THR. Software or the Peripheral DMA Controller must write the
data byte to THR.

2. Transmit this data byte
3. Decrement NBYTES
4. If (NBYTES==0) and STOP=1, transmit STOP condition

Writing CMDR with START=STOP=1 and NBYTES=0 will generate a transmission with no data
bytes, ie START, SADR+W, STOP.

Alm L 480

Y 5



TWI transfers require the slave to acknowledge each received data byte. During the acknowl-
edge clock pulse (9th pulse), the master releases the data line (HIGH), enabling the slave to pull
it down in order to generate the acknowledge. The master polls the data line during this clock
pulse and sets the Data Acknowledge bit (DNACK) in the Status Register if the slave does not
acknowledge the data byte. As with the other status bits, an interrupt can be generated if
enabled in the Interrupt Enable Register (IER).

TXRDY is used as Transmit Ready for the Peripheral DMA Controller transmit channel.

The end of a command is marked when the TWIM sets the SR.CCOMP bit. See Figure 23-6 and
Figure 23-7.

Figure 23-6. Master Write with One Data Byte
TWD S X DADR XW X A

|
|
SR.DLE | |
|

I
.y
i
I
i

TXRDY |

Write THR (DATA) STOP sent automatically
NBYTES set to 1 (ACK received and NBYTES=0)

Figure 23-7. Master Write with Multiple Data Bytes

o X BADR XWX A K o XA

I I
SR.DLE | | | I [
| | I
I | I
TXRDY | |!
; wmg THR Write THR STOP sent automatically
Write THR (DATAN+1) (DATAR+m) (ACK received and NBYTES=0)

(DATAN)
NBYTES setton

Last data sent

23.8.4 Master Receiver Mode

32072H-AVR32-10/2012

A START condition is transmitted and master receiver mode is initiated when the bus is free and
CMDR has been written with START=1 and READ=1. START and SADR+R will then be trans-
mitted. During the address acknowledge clock pulse (9th pulse), the master releases the data
line (HIGH), enabling the slave to pull it down in order to acknowledge the address. The master
polls the data line during this clock pulse and sets the Address Not Acknowledged bit (ANAK) in
the Status Register if no slave acknowledges the address.

After the address phase, the following is repeated:

while (NBYTES>0)

Alm L 481

Y 5



1. Wait until RHR is empty, stretching low period of TWCK. SR.RXRDY indicates the state
of RHR. Software or the Peripheral DMA Controller must read any data byte present in
RHR.

Release TWCK generating a clock that the slave uses to transmit a data byte.
Place the received data byte in RHR, set RXRDY.

If NBYTES=0, generate a NAK after the data byte, otherwise generate an ACK.
Decrement NBYTES

6. If (NBYTES==0) and STOP=1, transmit STOP condition.

Writing CMDR with START=STOP=1 and NBYTES=0 will generate a transmission with no data
bytes, ie START, DADR+R, STOP

ok~ wn

The TWI transfers require the master to acknowledge each received data byte. During the
acknowledge clock pulse (9th pulse), the slave releases the data line (HIGH), enabling the mas-
ter to pull it down in order to generate the acknowledge. All data bytes except the last are
acknowledged by the master. Not acknowledging the last byte informs the slave that the transfer
is finished.

RXRDY is used as Receive Ready for the Peripheral DMA Controller receive channel.

Figure 23-8. Master Read with One Data Byte

TWD S ﬂm P

|

| |
|

|

SR.IDLE |

[
I
\ |
RXRDY | : ;

Write START & Read RHR
STOP bit
NBYTES set to 1

Figure 23-9. Master Read with Multiple Data Bytes

TWD S X DADR X R X A X DATAn )@@AnnXDATAmm 1

SR.DLE |

-

RXRDY

i |
| | ! |
\/ v, \/ \/

7]
I

Write START +
STOP bit

NBYTES settom

32072H-AVR32-10/2012

/

Read RHR Read RHR Read RHR Read RHR
DATAN DATANn+m-2 DATANn+m-1 DATANn+m

Send STOP
When NBYTES=0

A mE|,® 482



23.8.5 Using the Peripheral DMA Controller
The use of the Peripheral DMA Controller significantly reduces the CPU load. The user can set
up ring buffers for the Peripheral DMA Controller, containing data to transmit or free buffer space
to place received data.

To assure correct behavior, respect the following programming sequences:

23.85.1 Data Transmit with the Peripheral DMA Controller
1. [Initialize the transmit Peripheral DMA Controller (memory pointers, size, etc.).
Configure the TWIM (ADR, NBYTES, etc.).
Start the transfer by enabling the Peripheral DMA Controller to transmit.
Wait for the Peripheral DMA Controller end-of-transmit flag.
Disable the Peripheral DMA Controller.

a s~ DN

23.85.2 Data Receive with the Peripheral DMA Controller
1. Initialize the receive Peripheral DMA Controller (memory pointers, size, etc.).
Configure the TWIM (ADR, NBYTES, etc.).
Start the transfer by enabling the Peripheral DMA Controller to receive.
Wait for the Peripheral DMA Controller end-of-receive flag.
Disable the Peripheral DMA Controller.

a s~ w N

23.8.6 Multi-master Mode
More than one master may access the bus at the same time without data corruption by using
arbitration.

Arbitration starts as soon as two or more masters place information on the bus at the same time,
and stops (arbitration is lost) for the master that intends to send a logical one while the other
master sends a logical zero.

As soon as arbitration is lost by a master, it stops sending data and listens to the bus in order to
detect a STOP. The SR.ARBLST flag will be set. When the STOP is detected, the master who
lost arbitration may reinitiate the data transfer.

Arbitration is illustrated in Figure 23-11.

If the user starts a transfer and if the bus is busy, the TWIM automatically waits for a STOP con-
dition on the bus before initiating the transfer (see Figure 23-10).

Note:  The state of the bus (busy or free) is not indicated in the user interface.

Alm L 483

32072H-AVR32-10/2012 I ©



AT32UC3A3

Figure 23-10. User Sends Data While the Bus is Busy

1
e Nt Ko mmm e e e
TWD . DATA sent by a master |I l DATA sent by the TWI
: Bus is busy _ : :
' Bus is frée

TWI DATA transfer | Transfer is kept '|

A transfer is programmed Bus is considered as free
(DADR + W + START + Write THR) Transfer is initiated

Figure 23-11. Arbitration Cases

ARBLST= = = = = = = = = = = = - | I— ------------- E-----' ---------------------

E Bus is busy 1Bus is free s :
TWI DATA transfer | | | Transfer is kept 1
A transfer is programmed Transfer is stopped T Bus is considered as free
i Transfer is programmed again Transfer is initiated
(DADR + W + START + Write THR) (DADR + W + START + er%e THR)

23.8.7 Combined Transfers
CMDR and NCMDR may be used to generate longer sequences of connected transfers, since
generation of START and/or STOP conditions is programmable on a per-command basis.

Writing NCMDR with START=1 when the previous transfer was written with STOP=0 will cause
a REPEATED START on the bus. The ability to generate such connected transfers allows arbi-
trary transfer lengths, since it is legal to write CMDR with both START=0 and STOP=0. If this is
done in master receiver mode, the CMDR.ACKLAST bit must also be controlled.

A mEl% 484

32072H-AVR32-10/2012



As for single data transfers, the TXRDY and RXRDY bits in the Status Register indicates when
data to transmit can be written to THR, or when received data can be read from RHR. Transfer
of data to THR and from RHR can also be done automatically by DMA, see Section 23.8.5

23.8.7.1 Write Followed by Write
Consider the following transfer:

START, DADR+W, DATA+A, DATA+A, REPSTART, DADR+W, DATA+A, DATA+A, STOP.
To generate this transfer:

1. Write CMDR with START=1, STOP=0, DADR, NBYTES=2 and READ=0.
Write NCMDR with START=1, STOP=1, DADR, NBYTES=2 and READ=0.
Wait until SR.TXRDY==1, then write first data byte to transfer to THR.
Wait until SR.TXRDY==1, then write second data byte to transfer to THR.
Wait until SR.TXRDY==1, then write third data byte to transfer to THR.
Wait until SR.TXRDY==1, then write fourth data byte to transfer to THR.

2

23.8.7.2 Read Followed by Read
Consider the following transfer:

START, DADR+R, DATA+A, DATA+NA, REPSTART, DADR+R, DATA+A, DATA+NA, STOP.
To generate this transfer:

1. Write CMDR with START=1, STOP=0, DADR, NBYTES=2 and READ=1.
Write NCMDR with START=1, STOP=1, DADR, NBYTES=2 and READ=1.
Wait until SR.RXRDY==1, then read first data byte received from RHR.
Wait until SR.RXRDY==1, then read second data byte received from RHR.
Wait until SR.RXRDY==1, then read third data byte received from RHR.

6. Wait until SR.RXRDY==1, then read fourth data byte received from RHR.

If combining several transfers, without any STOP or REPEATED START between them, remem-
ber to write a one to the ACKLAST bit in CMDR to keep from ending each of the partial transfers
with a NACK.

a bk wn

23.8.7.3 Write Followed by Read
Consider the following transfer:

START, DADR+W, DATA+A, DATA+A, REPSTART, DADR+R, DATA+A, DATA+NA, STOP.

Alm L 485

32072H-AVR32-10/2012 I ©



Figure 23-12. Combining a Write and Read Transfer
THR DATAO  XDATA1 |

RHR I ‘ ! <; DATA2 :}—(; DATA3 Iy—

| | | !
WD T S D (D €D D 6 O i O D T D,

| | I
L 1o
! |
!

SR.IDLE |

1 |
L

TXRDY

RXRDY

To generate this transfer:

1. Write CMDR with START=1, STOP=0, DADR, NBYTES=2 and READ=0.
Write NCMDR with START=1, STOP=1, DADR, NBYTES=2 and READ=1.
Wait until SR.TXRDY==1, then write first data byte to transfer to THR.
Wait until SR.TXRDY==1, then write second data byte to transfer to THR.
Wait until SR.RXRDY==1, then read first data byte received from RHR.
Wait until SR.RXRDY==1, then read second data byte received from RHR.

2

23.8.7.4 Read Followed by Write
Consider the following transfer:

START, DADR+R, DATA+A, DATA+NA, REPSTART, DADR+W, DATA+A, DATA+A, STOP.

Figure 23-13. Combining a Read and Write Transfer
THR <1 DATA2 > DATA3 | >
|
| ] |

RHR DATAO DATA3

D__| |
TWD a0 Y A oaar Y AN omor YWY A X ormz XA X o KREX D
| | | | P!

o

5 I

SR.DLE |

TXRDY

Read

RXRDY TWI_RHR ™~ | '

To generate this transfer:

1. Write CMDR with START=1, STOP=0, DADR, NBYTES=2 and READ=1.
Write NCMDR with START=1, STOP=1, DADR, NBYTES=2 and READ=0.
Wait until SR.RXRDY==1, then read first data byte received from RHR.
Wait until SR.RXRDY==1, then read second data byte received from RHR.
Wait until SR.TXRDY==1, then write first data byte to transfer to THR.
Wait until SR.TXRDY==1, then write second data byte to transfer to THR.

2

Alm L 486

32072H-AVR32-10/2012 I ©



23.8.8 Ten Bit Addressing

Writing a one to CMDR.TENBIT enables 10-bit addressing in hardware. Performing transfers
with 10-bit addressing is similar to transfers with 7-bit addresses, except that bits 9:7 of
CMDR.SADR must be written appropriately.

In Figure 23-14 and Figure 23-15, the grey boxes represent signals driven by the master, the
white boxes are driven by the slave.

23.8.8.1 Master Transmitter

To perform a master transmitter transfer:

1. Write CMDR with TENBIT=1, REPSAME=0, READ=0, START=1, STOP=1 and the
desired address and NBYTES value.

Figure 23-14. A Write Transfer with 10-bit Addressing

1

11 1 0 X X 0

SLAVE ADDRESS 57 SLAVE ADDRESS -

1st 7 bits RW| A1 2nd byte A2| DATA | A DATA [AA| P

23.8.8.2 Master Receiver

When using master receiver mode with 10-bit addressing, CMDR.REPSAME must also be con-
trolled. CMDR.REPSAME must be written to one when the address phase of the transfer should
consist of only 1 address byte (the 11110xx byte) and not 2 address bytes. The 12C standard
specifies that such addressing is required when addressing a slave for reads using 10-bit
addressing.

To perform a master receiver transfer:

1. Write CMDR with TENBIT=1, REPSAME=0, READ=0, START=1, STOP=0,
NBYTES=0 and the desired address.

2. Write NCMDR with TENBIT=1, REPSAME=1, READ=1, START=1, STOP=1 and the
desired address and NBYTES value.

Figure 23-15. A Read Transfer with 10-bit Addressing

111 1 0 X X 0 11 1 1 0 X X 1
s SLAVE ADI?RESS Rl A1 SLAVE ADDRESS A2l sr SLAVE ADI?RESS vl a3l paTa | A oata | &l e
1st 7 bits 2nd byte 1st 7 bits

23.8.9 SMBus Mode

32072H-AVR32-10/2012

SMBus mode is enabled and disabled by writing to the SMEN and SMDIS bits in CR. SMBus
mode operation is similar to I12C operation with the following exceptions:

» Only 7-bit addressing can be used.

« The SMBus standard describes a set of timeout values to ensure progress and throughput on
the bus. These timeout values must be written into SMBTR.

 Transmissions can optionally include a CRC byte, called Packet Error Check (PEC).
« A dedicated bus line, SMBALERT, allows a slave to get a master’s attention.

« A set of addresses have been reserved for protocol handling, such as Alert Response
Address (ARA) and Host Header (HH) Address.

Alm L 487

Y 5



23.8.9.1

23.8.9.2

23.8.9.3

Packet Error Checking

Timeouts

Each SMBus transfer can optionally end with a CRC byte, called the PEC byte. Writing a one to
CMDR.PECEN enables automatic PEC handling in the current transfer. Transfers with and with-
out PEC can freely be intermixed in the same system, since some slaves may not support PEC.
The PEC LFSR is always updated on every bit transmitted or received, so that PEC handling on
combined transfers will be correct.

In master transmitter mode, the master calculates a PEC value and transmits it to the slave after
all data bytes have been transmitted. Upon reception of this PEC byte, the slave will compare it
to the PEC value it has computed itself. If the values match, the data was received correctly, and
the slave will return an ACK to the master. If the PEC values differ, data was corrupted, and the
slave will return a NACK value. The DNAK bit in SR reflects the state of the last received
ACK/NACK value. Some slaves may not be able to check the received PEC in time to return a
NACK if an error occurred. In this case, the slave should always return an ACK after the PEC
byte, and some other mechanism must be implemented to verify that the transmission was
received correctly.

In master receiver mode, the slave calculates a PEC value and transmits it to the master after all
data bytes have been transmitted. Upon reception of this PEC byte, the master will compare it to
the PEC value it has computed itself. If the values match, the data was received correctly. If the
PEC values differ, data was corrupted, and SR.PECERR is set. In master receiver mode, the
PEC byte is always followed by a NACK transmitted by the master, since it is the last byte in the
transfer.

The PEC byte is automatically inserted in a master transmitter transmission if PEC is enabled
when NBYTES reaches zero. The PEC byte is identified in a master receiver transmission if
PEC is enabled when NBYTES reaches zero. NBYTES must therefore be written with the total
number of data bytes in the transmission, including the PEC byte.

In combined transfers, the PECEN bit should only be written to one in the last of the combined
transfers. Consider the following transfer:

S, ADR+W, COMMAND_BYTE, ACK, SR, ADR+R, DATA_BYTE, ACK, PEC_BYTE, NACK, P

This transfer is generated by writing two commands to the command registers. The first com-
mand is a write with NBYTES=1 and PECEN=0, and the second is a read with NBYTES=2 and
PECEN=1.

Writing a one to the STOP bit in CR will place a STOP condition on the bus after the current
byte. No PEC byte will be sent in this case.

The TLOWS and TLOWM fields in SMBTR configure the SMBus timeout values. If a timeout
occurs, the master will transmit a STOP condition and leave the bus. The SR.TOUT bit is set.

SMBus ALERT Signal

32072H-AVR32-10/2012

A slave can get the master’s attention by pulling the TWALM line low. The TWIM will then set the
SR.SMBALERT bit. This can be set up to trigger an interrupt, and software can then take the
appropriate action, as defined in the SMBus standard.

Alm L 488

Y 5



23.8.10

32072H-AVR32-10/2012

Identifying Bus Events

This chapter lists the different bus events, and how they affect bits in the TWIM registers. This is
intended to help writing drivers for the TWIM.

Table 23-5. Bus Events

Event

Effect

Master transmitter has sent
a data byte

SR.THR is cleared.

Master receiver has
received a data byte

SR.RHR is set.

Start+Sadr sent, no ack
received from slave

SR.ANAK is set.

SR.CCOMP not set.

CMDR.VALID remains set.

STOP automatically transmitted on bus.

Data byte sent to slave, no
ack received from slave

SR.DNAK is set.

SR.CCOMP not set.

CMDR.VALID remains set.

STOP automatically transmitted on bus.

Arbitration lost

SR.ARBLST is set.

SR.CCOMP not set.

CMDR.VALID remains set.

TWCK and TWD immediately released to a pulled-up state.

SMBus Alert received

SR.SMBALERT is set.

SMBus timeout received

SR.SMBTOUT is set.

SR.CCOMP not set.

CMDR.VALID remains set.

STOP automatically transmitted on bus.

Master transmitter receives
SMBus PEC Error

SR.DNAK is set.

SR.CCOMP not set.

CMDR.VALID remains set.

STOP automatically transmitted on bus.

Master receiver discovers
SMBus PEC Error

SR.PECERR is set.

SR.CCOMP not set.

CMDR.VALID remains set.

STOP automatically transmitted on bus.

CR.STOP is written by user

SR.STOP is set.
SR.CCOMP set.
CMDR.VALID remains set.

STOP transmitted on bus after current byte transfer has finished.

ATMEL

Y 5

489



23.9 User Interface

Table 23-6. TWIM Register Memory Map

Offset Register Register Name Access Reset
0x00 Control Register CR Write-only 0x00000000
0x04 Clock Waveform Generator Register CWGR Read/Write 0x00000000
0x08 SMBus Timing Register SMBTR Read/Write 0x00000000
0x0C Command Register CMDR Read/Write 0x00000000
0x10 Next Command Register NCMDR Read/Write 0x00000000
0x14 Receive Holding Register RHR Read-only 0x00000000
0x18 Transmit Holding Register THR Write-only 0x00000000
0x1C Status Register SR Read-only 0x00000002
0x20 Interrupt Enable Register IER Write-only 0x00000000
0x24 Interrupt Disable Register IDR Write-only 0x00000000
0x28 Interrupt Mask Register IMR Read-only 0x00000000
0x2C Status Clear Register SCR Write-only 0x00000000
0x30 Parameter Register PR Read-only -@
0x34 Version Register VR Read-only -@

Note: 1. The reset values for these registers are device specific. Please refer to the Module Configuration section at the end of this
chapter.

AIMEL 490

32072H-AVR32-10/2012 I ©



23.9.1 Control Register

Name: CR

Access Type: Write-only

Offset: 0x00

Reset Value: 0x00000000

31 30 29 28 27 26 25 24
- - - r - - & - [ - [ - /|
23 22 21 20 19 18 17 16
I S D I e e
15 14 13 12 11 10 9 8
- - - - - @ - [ - [ swor |
7 6 5 4 3 2 1 0
‘SWRST‘ - ‘ SMDIS ‘ SMEN ‘ - ‘ - ‘ MDIS ‘ MEN ‘

e STOP: Stop the Current Transfer
Writing a one to this bit terminates the current transfer, sending a STOP condition after the shifter has become idle. If there are

additional pending transfers, they will have to be explicitly restarted by software after the STOP condition has been successfully
sent.
Writing a zero to this bit has no effect.
¢ SWRST: Software Reset
If the TWIM master interface is enabled, writing a one to this bit resets the TWIM. All transfers are halted immediately, possibly
violating the bus semantics.
If the TWIM master interface is not enabled, it must first be enabled before writing a one to this bit.
Writing a zero to this bit has no effect.

e SMDIS: SMBus Disable
Writing a one to this bit disables SMBus mode.

Writing a zero to this bit has no effect.

¢ SMEN: SMBus Enable
Writing a one to this bit enables SMBus mode.

Writing a zero to this bit has no effect.

* MDIS: Master Disable
Writing a one to this bit disables the master interface.

Writing a zero to this bit has no effect.

« MEN: Master Enable
Writing a one to this bit enables the master interface.
Writing a zero to this bit has no effect.

AIMEL 491

32072H-AVR32-10/2012 I ©




23.9.2 Clock Waveform Generator Register

Name: CWGR

Access Type: Read/Write

Offset: 0x04

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ - EXP DATA ‘
23 22 21 20 19 18 17 16

‘ STASTO ‘
15 14 13 12 11 10 9 8

‘ HIGH ‘
7 6 5 4 3 2 1 0

‘ LOW ‘

« EXP: Clock Prescaler

Used to specify how to prescale the TWCK clock. Counters are prescaled according to the following formula

7. _ JCLK_TwIM
PRESCALER ~ —Z(EXP+1)

« DATA: Data Setup and Hold Cycles
Clock cycles for data setup and hold count. Prescaled by CWGR.EXP. Used to time Typ pan Tsu par
e STASTO: START and STOP Cycles
Clock cycles in clock high count. Prescaled by CWGR.EXP. Used to time T,p stas Tsu star Tsu sto
* HIGH: Clock High Cycles
Clock cycles in clock high count. Prescaled by CWGR.EXP. Used to time Tygp-
e LOW: Clock Low Cycles
Clock cycles in clock low count. Prescaled by CWGR.EXP. Used to time T, ows Tgup

AIMEL 492

32072H-AVR32-10/2012 I ©



23.9.3 SMBus Timing Register

Name: SMBTR

Access Type: Read/Write

Offset: 0x08

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ EXP - - - - ‘
23 22 21 20 19 18 17 16

‘ THMAX ‘
15 14 13 12 11 10 9 8

‘ TLOWM ‘
7 6 5 4 3 2 1 0

‘ TLOWS ‘

* EXP: SMBus Timeout Clock Prescaler
Used to specify how to prescale the TIM and TLOWM counters in SMBTR. Counters are prescaled according to the following

formula .
f — fCLKTW]M
Jprescaled, SMBus — Z(EXP+ 1)

¢ THMAX: Clock High Maximum Cycles
Clock cycles in clock high maximum count. Prescaled by SMBTR.EXP. Used for bus free detection. Used to time T,gu.max-
NOTE: Uses the prescaler specified by CWGR, NOT the prescaler specified by SMBTR.
e TLOWM: Master Clock Stretch Maximum Cycles
Clock cycles in master maximum clock stretch count. Prescaled by SMBTR.EXP. Used to time T, ow-mexT
« TLOWS: Slave Clock Stretch Maximum Cycles
Clock cycles in slave maximum clock stretch count. Prescaled by SMBTR.EXP. Used to time T, ow.sext

AIMEL 493

32072H-AVR32-10/2012 I ©




2394 Command Register

Name: CMDR
Access Type: Read/Write
Offset: 0x0C
Reset Value: 0x00000000
31 30 29 28 27 26 25 24
- - - - ACKLAST PECEN ‘
23 22 21 20 19 18 17 16
NBYTES ‘
15 14 13 12 11 10 9 8
VALID STOP START REPSAME TENBIT SADRJ[9:7] ‘
7 6 5 4 3 2 1 0
SADR][6:0] READ ‘

32072H-AVR32-10/2012

ACKLAST: ACK Last Master RX Byte
0: Causes the last byte in master receive mode (when NBYTES has reached 0) to be NACKed. This is the standard way of

ending a master receiver transfer.

1: Causes the last byte in master receive mode (when NBYTES has reached 0) to be ACKed. Used for performing linked
transfers in master receiver mode with no STOP or REPEATED START between the subtransfers. This is needed when more
than 255 bytes are to be received in one single transmission.

PECEN: Packet Error Checking Enable
0: Causes the transfer not to use PEC byte verification. The PEC LFSR is still updated for every bit transmitted or received. Must

be used if SMBus mode is disabled.
1: Causes the transfer to use PEC. PEC byte generation (if master transmitter) or PEC byte verification (if master receiver) will
be performed.

NBYTES: Number of Data Bytes in Transfer
The number of data bytes in the transfer. After the specified number of bytes have been transferred, a STOP condition is

transmitted if CMDR.STOP is one. In SMBus mode, if PEC is used, NBYTES includes the PEC byte, i.e. there are NBYTES-1
data bytes and a PEC byte.

VALID: CMDR Valid
0: Indicates that CMDR does not contain a valid command.

1: Indicates that CMDR contains a valid command. This bit is cleared when the command is finished.

STOP: Send STOP Condition
0: Do not transmit a STOP condition after the data bytes have been transmitted.

1: Transmit a STOP condition after the data bytes have been transmitted.

START: Send START Condition
0: The transfer in CMDR should not commence with a START or REPEATED START condition.

1: The transfer in CMDR should commence with a START or REPEATED START condition. If the bus is free when the command
is executed, a START condition is used. If the bus is busy, a REPEATED START is used.

REPSAME: Transfer is to Same Address as Previous Address
Only used in 10-bit addressing mode, always write to 0 in 7-bit addressing mode.

AIMEL 494

Y 5



Write this bit to one if the command in CMDR performs a repeated start to the same slave address as addressed in the previous
transfer in order to enter master receiver mode.
Write this bit to zero otherwise.

« TENBIT: Ten Bit Addressing Mode
0: Use 7-bit addressing mode.

1: Use 10-bit addressing mode. Must not be used when the TWIM is in SMBus mode.

¢ SADR: Slave Address
Address of the slave involved in the transfer. Bits 9-7 are don’t care if 7-bit addressing is used.

¢ READ: Transfer Direction
0: Allow the master to transmit data.

1: Allow the master to receive data.

AIMEL 495

32072H-AVR32-10/2012 I ©




23.9.5 Next Command Register

Name: NCMDR

Access Type: Read/Write

Offset: 0x10

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ - - - - ACKLAST PECEN ‘
23 22 21 20 19 18 17 16

‘ NBYTES ‘
15 14 13 12 11 10 9 8

‘ VALID STOP START REPSAME TENBIT SADRI[9:7] ‘
7 5 4 3 2 1 0

‘ SADR[6:0] READ ‘

This register is identical to CMDR. When the VALID bit in CMDR becomes 0, the content of NCMDR is copied into CMDR,
clearing the VALID bit in NCMDR. If the VALID bit in CMDR is cleared when NCMDR is written, the content is copied

immediately.

32072H-AVR32-10/2012

ATMEL

Y 5

496



23.9.6 Receive Holding Register

Name: RHR

Access Type: Read-only

Offset: 0x14

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

-] | | | | |
23 22 21 20 19 18 17 16

L - ] | | | | |
15 14 13 12 11 10 9 8

-] | | | | |
7 6 5 4 3 2 1 0

‘ RXDATA ‘

« RXDATA: Received Data

When the RXRDY bit in the Status Register (SR) is one, this field contains a byte received from the TWI bus.

32072H-AVR32-10/2012

ATMEL

497



23.9.7 Transmit Holding Register

Name: THR

Access Type: Write-only

Offset: 0x18

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | | | | | |
23 22 21 20 19 18 17 16

| | | | | | | | |
15 14 13 12 11 10 9 8

| | | | | | | | |
7 6 5 4 3 2 1 0

‘ TXDATA ‘

¢ TXDATA: Data to Transmit
Write data to be transferred on the TWI bus here.

A mE|,® 498

32072H-AVR32-10/2012



23.9.8 Status Register

Name: SR

Access Type: Read-only

Offset: 0x1C

Reset Value: 0x00000002
31 30 29 28 27 26 25 24

- - - r - - & - [ - [ - /|
23 22 21 20 19 18 17 16

A e e e I e e e
15 14 13 12 11 10 9 8

‘ - ‘ STOP ‘PECERR‘ TOUT ‘SMBALERT‘ ARBLST ‘ DNAK ‘ ANAK ‘
7 6 5 4 3 2 1 0

‘ - ‘ - ‘BUSFREE‘ IDLE ‘ CCOMP ‘ CRDY ‘ TXRDY ‘ RXRDY ‘

« MENB: Master Interface Enable
0: Master interface is disabled.

1: Master interface is enabled.
e STOP: Stop Request Accepted

This bit is one when a STOP request caused by writing a one to CR.STOP has been accepted, and transfer has stopped.

This bit is cleared by writing 1 to the corresponding bit in the Status Clear Register (SCR).
« PECERR: PEC Error

This bit is one when a SMBus PEC error occurred.

This bit is cleared by writing 1 to the corresponding bit in the Status Clear Register (SCR).
e TOUT: Timeout

This bit is one when a SMBus timeout occurred.

This bit is cleared by writing 1 to the corresponding bit in the Status Clear Register (SCR).
¢ SMBALERT: SMBus Alert

This bit is one when an SMBus Alert was received.

This bit is cleared by writing 1 to the corresponding bit in the Status Clear Register (SCR).
¢ ARBLST: Arbitration Lost

This bit is one when the actual state of the SDA line did not correspond to the data driven onto it, indicating a higher-priority

transmission in progress by a different master.

This bit is cleared by writing 1 to the corresponding bit in the Status Clear Register (SCR).
« DNAK: NAK in Data Phase Received

This bit is one when no ACK was received form slave during data transmission.

This bit is cleared by writing 1 to the corresponding bit in the Status Clear Register (SCR).
¢ ANAK: NAK in Address Phase Received

This bit is one when no ACK was received from slave during address phase

This bit is cleared by writing 1 to the corresponding bit in the Status Clear Register (SCR).

¢ BUSFREE: Two-wire Bus is Free
This bit is one when activity has completed on the two-wire bus.

Otherwise, this bit is cleared.
ATMEL 499

32072H-AVR32-10/2012 I ©




* IDLE: Master Interface is Idle
This bit is one when no command is in progress, and no command waiting to be issued.

Otherwise, this bit is cleared.

¢ CCOMP: Command Complete
This bit is one when the current command has completed successfully.

This bit is zero if the command failed due to conditions such as a NAK receved from slave.
This bit is cleared by writing 1 to the corresponding bit in the Status Clear Register (SCR).

¢ CRDY: Ready for More Commands
This bit is one when CMDR and/or NCMDR is ready to receive one or more commands.

This hit is cleared when this is no longer true.

¢« TXRDY: THR Data Ready
This bit is one when THR is ready for one or more data bytes.

This bit is cleared when this is no longer true (i.e. THR is full or transmission has stopped).

« RXRDY: RHR Data Ready
This bit is one when RX data are ready to be read from RHR.

This bit is cleared when this is no longer true.

AIMEL 500

32072H-AVR32-10/2012 I ©



23.9.9 Interrupt Enable Register

Name: IER

Access Type: Write-only

Offset: 0x20

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | -] | |
23 22 21 20 19 18 17 16

| | | | -] | |
15 14 13 12 11 10 9 8

‘ - ‘ - ‘ PECERR ‘ TOUT ‘ SMBALERT ‘ ARBLST ‘ DNAK ANAK ‘
7 6 5 4 3 2 1 0

‘ - ‘ - ‘ BUSFREE ‘ IDLE ‘ CCOMP ‘ CRDY ‘ TXRDY RXRDY ‘

Writing a zero to a bit in this register has no effect.
Writing a one to a bit in this register will set the corresponding bit in IMR

32072H-AVR32-10/2012

ATMEL

501



23.9.10 Interrupt Disable Register

Name: IDR

Access Type: Write-only

Offset: 0x24

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | -] | |
23 22 21 20 19 18 17 16

| | | | -] | |
15 14 13 12 11 10 9 8

‘ - ‘ - ‘ PECERR ‘ TOUT ‘ SMBALERT ‘ ARBLST ‘ DNAK ANAK ‘
7 6 5 4 3 2 1 0

‘ - ‘ - ‘ BUSFREE ‘ IDLE ‘ CCOMP ‘ CRDY ‘ TXRDY RXRDY ‘

Writing a zero to a bit in this register has no effect.
Writing a one to a bit in this register will clear the corresponding bit in IMR

32072H-AVR32-10/2012

ATMEL

502



23.9.11 Interrupt Mask Register

Name: IMR

Access Type: Read-only

Offset: 0x28

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | | | | | |
23 22 21 20 19 18 17 16

| | | | | | | | |
15 14 13 12 11 10 9 8

‘ - ‘ - ‘ PECERR ‘ TOUT ‘ SMBALERT ‘ ARBLST ‘ DNAK ‘ ANAK ‘
7 6 5 4 3 2 1 0

‘ - ‘ - ‘ BUSFREE ‘ IDLE ‘ CCOMP ‘ CRDY ‘ TXRDY ‘ RXRDY ‘

0: The corresponding interrupt is disabled.

1: The corresponding interrupt is enabled.

This bit is cleared when the corresponding bit in IDR is written to one.
This bit is set when the corresponding bit in IER is written to one.

A mE|,® 503

32072H-AVR32-10/2012



23.9.12 Status Clear Register

Name: SCR

Access Type: Write-only

Offset: 0x2C

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | -] | | | |
23 22 21 20 19 18 17 16

| | | -] | | | |
15 14 13 12 11 10 9 8

‘ - ‘ STOP ‘ PECERR ‘ TOUT ‘ SMBALERT ‘ ARBLST ‘ DNAK ‘ ANAK ‘

7 6 5 4 3 2 1 0

Writing a zero to a bit in this register has no effect.
Writing a one to a bit in this register will clear the corresponding bit in SR and the corresponding interrupt request.

ATMEL

32072H-AVR32-10/2012

504



23.9.13 Parameter Register (PR)

Name: PR

Access Type: Read-only

Offset: 0x30

Reset Value:
31 30 29 28 27 26 25 24

| | | | | | | | |
23 22 21 20 19 18 17 16

| | | | | | | | |
15 14 13 12 11 10 9 8

| | | | | | | | |
7 6 5 4 3 2 1 0

A mE|,® 505

32072H-AVR32-10/2012



23.9.14 Version Register (VR)

Name: VR

Access Type: Read-only

Offset: 0x34

Reset Value:
31 30 29 28 27 26 25 24

| | I | |
23 22 21 20 19 18 17 16

‘ - ‘ - ‘ - ‘ - ‘ VARIANT ‘
15 14 13 12 11 10 9 8

‘ ] ‘ ] ‘ ] ‘ - ‘ VERSION [11:8] ‘
7 6 5 4 3 2 1 0

‘ VERSION [7:0] ‘

¢ VARIANT: Variant Number
Reserved. No functionality associated.

* VERSION: Version Number
Version number of the module. No functionality associated.

A mE|,® 506

32072H-AVR32-10/2012



23.10 Module Configuration

The specific configuration for each TWIM instance is listed in the following tables.The module
bus clocks listed here are connected to the system bus clocks according to the table in the
Power Manager section.

Table 23-7. Module Clock Name

Module name Clock name
TWIMO CLK_TWIMO
TWIM1 CLK_TWIM1

Table 23-8. Register Reset Values

Register Reset Value
VR 0x00000100
PR 0x00000000

AIMEL 507

32072H-AVR32-10/2012 I ©



24. Synchronous Serial Controller (SSC)
Rev: 3.2.0.2

24.1 Features
* Provides serial synchronous communication links used in audio and telecom applications
* Independent receiver and transmitter, common clock divider
* Interfaced with two Peripheral DMA Controller channels to reduce processor overhead
* Configurable frame sync and data length
* Receiver and transmitter can be configured to start automatically or on detection of different
events on the frame sync signal
* Receiver and transmitter include a data signal, a clock signal and a frame synchronization signal

24.2 Overview

The Synchronous Serial Controller (SSC) provides a synchronous communication link with
external devices. It supports many serial synchronous communication protocols generally used
in audio and telecom applications such as 12S, Short Frame Sync, Long Frame Sync, etc.

The SSC consists of a receiver, a transmitter, and a common clock divider. Both the receiver
and the transmitter interface with three signals:

« the TX_DATA/RX_DATA signal for data

» the TX_CLOCK/RX_CLOCK signal for the clock

» the TX_FRAME_SYNC/RX_FRAME_SYNC signal for the frame synchronization
The transfers can be programmed to start automatically or on different events detected on the
Frame Sync signal.

The SSC's high-level of programmability and its two dedicated Peripheral DMA Controller chan-
nels of up to 32 bits permit a continuous high bit rate data transfer without processor
intervention.

Featuring connection to two Peripheral DMA Controller channels, the SSC permits interfacing
with low processor overhead to the following:

* CODEC's in master or slave mode

« DAC through dedicated serial interface, particularly 12S

* Magnetic card reader

AIMEL 508

32072H-AVR32-10/2012 I ©



24.3 Block Diagram

Figure 24-1. SSC Block Diagram

Hgh
Speed
Bus
Peripheral Bus
Bridge
A
Peripheral DVA
¢ P Controler
Peripheralf v
Bus
<« 1—>D TX FRAVE_SYNC

%
5
=4
5

Manager > 110
SSC Interface Cortraller

Interrupt Control

SSC Interrupt
24.4 Application Block Diagram

Figure 24-2. SSC Application Block Diagram

OS or RTOS Driver Power Interrupt Test
Management Management | Management

SSC

Serial AUDIO Codec Time Slot Frame Line Interface
Management | Management

Alm L 509

32072H-AVR32-10/2012 I ©



24.5 1/0O Lines Description

Table 24-1.  1/O Lines Description

Pin Name Pin Description Type
RX_FRAME_SYNC Receiver Frame Synchro Input/Output
RX_CLOCK Receiver Clock Input/Output
RX_DATA Receiver Data Input
TX_FRAME_SYNC Transmitter Frame Synchro Input/Output
TX_CLOCK Transmitter Clock Input/Output
TX_DATA Transmitter Data Output

24.6 Product Dependencies

In order to use this module, other parts of the system must be configured correctly, as described
below.

24.6.1 I/O Lines
The pins used for interfacing the compliant external devices may be multiplexed with 1/O lines.

Before using the SSC receiver, the 1/0O Controller must be configured to dedicate the SSC
receiver 1/O lines to the SSC peripheral mode.

Before using the SSC transmitter, the 1/O Controller must be configured to dedicate the SSC
transmitter I/O lines to the SSC peripheral mode.

24.6.2 Clocks
The clock for the SSC bus interface (CLK_SSC) is generated by the Power Manager. This clock
is enabled at reset, and can be disabled in the Power Manager. It is recommended to disable the
SSC before disabling the clock, to avoid freezing the SSC in an undefined state.

24.6.3 Interrupts
The SSC interrupt request line is connected to the interrupt controller. Using the SSC interrupt
requires the interrupt controller to be programmed first.

24.7 Functional Description
This chapter contains the functional description of the following: SSC functional block, clock
management, data framing format, start, transmitter, receiver, and frame sync.

The receiver and the transmitter operate separately. However, they can work synchronously by
programming the receiver to use the transmit clock and/or to start a data transfer when transmis-
sion starts. Alternatively, this can be done by programming the transmitter to use the receive
clock and/or to start a data transfer when reception starts. The transmitter and the receiver can
be programmed to operate with the clock signals provided on either the TX_CLOCK or
RX_CLOCK pins. This allows the SSC to support many slave-mode data transfers. The maxi-
mum clock speed allowed on the TX_CLOCK and RX_CLOCK pins is CLK_SSC divided by two.

Alm L 510

32072H-AVR32-10/2012 I ©



Figure 24-3. SSC Functional Block Diagram

Transmitter Clock Output | | .|
Controller [ "~
TX_CLOCK Input
CLK_SSC, Clock 4| Transmit Clock | TXdlock | | Frame Sync | ylqy
Divider "]  Controller "] Controller
RX clock ——
TX_FRAME_SYNC v
| | =¥ Start o ] | N
RX_FRAME_SYNC Selector —)I ATransm|t Shift ReglsterA I
; TX DMA [ Transmit Holding Transmit Sync
Peripheral A )
erg)usera Register Holding Register
> Load Shift — & A
User
Interface
Receiver
Clock Qutput |
——t—— Controller
RX_CLOCK
Input | Recsive Clock |RX dlock | Framesync | |
Controller Controller [
TX clock —»
TX_FRAME_SYN Y
- ——Cﬁ Start . - - 1,
RX_FRAME_SYNG | Selector —>| Receive Shift Register €
v
RX_DMA | Receive Holding Receive Sync
vy <« Register Holding Register
DMA ’ Interrupt Control Load Shift A A

24.7.1

32072H-AVR32-10/2012

l

Interrupt Controller

Clock Management
The transmitter clock can be generated by:

 an external clock received on the TX_CLOCK pin

« the receiver clock

« the internal clock divider

 an external clock received on the RX_CLOCK pin

« the transmitter clock

« the internal clock divider

The receiver clock can be generated by:

ATMEL

Y 5

TX_CLOCK

TX_FRAME_SYNC

TX_DATA

RX_CLOCK

RX_FRAME_SYNC

RX_DATA

This allows the SSC to support many Master and Slave Mode data transfers.

Furthermore, the transmitter block can generate an external clock on the TX_CLOCK pin, and
the receiver block can generate an external clock on the RX_CLOCK pin.

511



24.7.1.1 Clock divider

Figure 24-4. Divided Clock Block Diagram
Clock Divider

CMR

CLKSSC| [~ f2-6it Counter | | DVideg ook

The peripheral clock divider is determined by the 12-bit Clock Divider field (its maximal value is
4095) in the Clock Mode Register (CMR.DIV), allowing a peripheral clock division by up to 8190.
The divided clock is provided to both the receiver and transmitter. When this field is written to
zero, the clock divider is not used and remains inactive.

When CMR.DIV is written to a value equal to or greater than one, the divided clock has a fre-
quency of CLK_SSC divided by two times CMR.DIV. Each level of the divided clock has a
duration of the peripheral clock multiplied by CMR.DIV. This ensures a 50% duty cycle for the
divided clock regardless of whether the CMR.DIV value is even or odd.

Figure 24-5. Divided Clock Generation

.

Divided Clock I I_ I—

DIV =1 | |

I i I I I
Divided Clock Frequency = CLK_SSC/2

CLK_SsC _I_‘rl__l_l_l_ﬂ_l_l_l_l_u_

Divided Clock S
DIV=3 !

I
i
(Y
'

Divided Clock Frequency = CLK_SSC/6

Y

Table 24-2. Range of Clock Divider

Maximum Minimum
CLK_SSC /2 CLK_SSC /8190
24.7.1.2 Transmitter clock management

The transmitter clock is generated from the receiver clock, the divider clock, or an external clock
scanned on the TX_CLOCK pin. The transmitter clock is selected by writing to the Transmit
Clock Selection field in the Transmit Clock Mode Register (TCMR.CKS). The transmit clock can

Alm L 512

32072H-AVR32-10/2012 I ©




be inverted independently by writing a one to the Transmit Clock Inversion bit in TCMR
(TCMR.CKI).

The transmitter can also drive the TX_CLOCK pin continuously or be limited to the actual data
transfer, depending on the Transmit Clock Output Mode Selection field in the TCMR register
(TCMR.CKO). The TCMR.CKI bit has no effect on the clock outputs.

Writing 0b10 to the TCMR.CKS field to select TX_CLOCK pin and 0b001 to the TCMR.CKO field
to select Continuous Transmit Clock can lead to unpredictable results.

Figure 24-6. Transmitter Clock Management

TX_CLOCK
MUX Tri-state . Clock
) Controller ” Output
Receiver n »
Clock d
Divider >
Clock
T CKO Data Transfer
CKS
I\IIITJ\; N Tri-state Transmitter
d d Controller Clock
CKI CKG
24.7.1.3 Receiver clock management

32072H-AVR32-10/2012

The receiver clock is generated from the transmitter clock, the divider clock, or an external clock
scanned on the RX_CLOCK pin. The receive clock is selected by writing to the Receive Clock
Selection field in the Receive Clock Mode Register (RCMR.CKS). The receive clock can be
inverted independently by writing a one to the Receive Clock Inversion bit in RCMR
(RCMR.CKI).

The receiver can also drive the RX_CLOCK pin continuously or be limited to the actual data
transfer, depending on the Receive Clock Output Mode Selection field in the RCMR register
(RCMR.CKO). The RCMR.CKI bit has no effect on the clock outputs.

Writing 0b10 to the RCMR.CKS field to select RX_CLOCK pin and 0b001 to the RCMR.CKO
field to select Continuous Receive Clock can lead to unpredictable results.

Alm L 513

Y 5



Figure 24-7. Receiver Clock Management

RX_CLOCK

——>
MUX Tri-state Clock
Controller > Ou(tﬁut
Transmitter >
Ll
Clock
Divider >
Clock
CKO Data Transfer
CKS INV Tri-state
> MUX > Controller —3 Receiver
Clock
CKl CKG
24.7.1.4 Serial clock ratio considerations

The transmitter and the receiver can be programmed to operate with the clock signals provided
on either the TX_CLOCK or RX_CLOCK pins. This allows the SSC to support many slave-mode
data transfers. In this case, the maximum clock speed allowed on the RX_CLOCK pin is:

— CLK_SSC divided by two if RX_FRAME_SYNC is input.

— CLK_SSC divided by three if RX_FRAME_SYNC is output.
In addition, the maximum clock speed allowed on the TX_CLOCK pin is:

— CLK_SSC divided by six if TX_FRAME_SYNC is input.
— CLK_SSC divided by two if TX_FRAME_SYNC is output.

24.7.2 Transmitter Operations

A transmitted frame is triggered by a start event and can be followed by synchronization data
before data transmission.

The start event is configured by writing to the TCMR register. See Section 24.7.4.

The frame synchronization is configured by writing to the Transmit Frame Mode Register
(TFMR). See Section 24.7.5.

To transmit data, the transmitter uses a shift register clocked by the transmitter clock signal and
the start mode selected in the TCMR register. Data is written by the user to the Transmit Holding
Register (THR) then transferred to the shift register according to the data format selected.

When both the THR and the transmit shift registers are empty, the Transmit Empty bit is set in
the Status Register (SR.TXEMPTY). When the THR register is transferred in the transmit shift
register, the Transmit Ready bit is set in the SR register (SR.TXREADY) and additional data can
be loaded in the THR register.

Alm L 514

32072H-AVR32-10/2012 I ©




Figure 24-8. Transmitter

AT32UC3A3

Block Diagram

CR.TXEN

| srRTxen |}
CRTXDIS
TFMR.DATDEF TCMR.STTDLY
TFMR.FSDEN
TFMR.DATNB
)
L~
TX_FRAME_SYNC TEMRMSEE 0 |~ —|:|TX_DATA
RX_FRAME_SYNC
Transmitter Clock +Sta " |
—> Selector Transmit Shift Register I—
TFMR.FSDEN
TCMR.STTDLY
TFMR.DATLEN—| THR | | TSHR |_ TFMR FSLEN

24.7.3

32072H-AVR32-10/2012

Receiver Operations

A received frame is triggered by a start event and can be followed by synchronization data
before data transmission.

The start event is configured by writing to the RCMR register. See Section 24.7.4.

The frame synchronization is configured by writing to the Receive Frame Mode Register
(RFMR). See Section 24.7.5.

The receiver uses a shift register clocked by the receiver clock signal and the start mode
selected in the RCMR register. The data is transferred from the shift register depending on the
data format selected.

When the receiver shift register is full, the SSC transfers this data in the Receive Holding Regis-
ter (RHR), the Receive Ready bit is set in the SR register (SR.RXREADY) and the data can be
read in the RHR register. If another transfer occurs before a read of the RHR register, the
Receive Overrun bit is set in the SR register (SR.OVRUN) and the receiver shift register is trans-
ferred to the RHR register.

515

ATMEL

Y 5



Figure 24-9. Receiver Block Diagram

RX_CLOCK 3
MUX Tri-state Clock
Controller > Output
Transmitter > »
Clock
Divider >
Clock
T CKO Data Transfer
CKS INV Tri-state
>» MUX > Controller _»Receiver
Clock
CKI CKG
24.7.4 Start

The transmitter and receiver can both be programmed to start their operations when an event
occurs, respectively in the Transmit Start Selection field of the TCMR register (TCMR.START)
and in the Receive Start Selection field of the RCMR register (RCMR.START).

Under the following conditions the start event is independently programmable:
« Continuous: in this case, the transmission starts as soon as a word is written to the THR
register and the reception starts as soon as the receiver is enabled
» Synchronously with the transmitter/receiver
« On detection of a falling/rising edge on TX_FRAME_SYNC/RX_FRAME_SYNC
* On detection of a low/high level on TX_FRAME_SYNC/RX_FRAME_SYNC
* On detection of a level change or an edge on TX_FRAME_SYNC/RX_FRAME_SYNC

A start can be programmed in the same manner on either side of the Transmit/Receive Clock
Mode Register (TCMR/RCMR). Thus, the start could be on TX_FRAME_SYNC (transmit) or
RX_FRAME_SYNC (receive).

Moreover, the receiver can start when data is detected in the bit stream with the compare func-
tions. See Section 24.7.6 for more details on receive compare modes.

Detection on TX_FRAME_SYNC input/output is done by the Transmit Frame Sync Output
Selection field in the TFMR register (TFMR.FSOS). Similarly, detection on RX_FRAME_SYNC
input/output is done by the Receive Frame Output Sync Selection field in the RFMR register
(RFMR.FSOS).

Alm L 516

32072H-AVR32-10/2012 I ©



AT32UC3A3

Figure 24-10. Transmit Start Mode

TX_CLOCK (Input) _I_’_|_’_|_

TX_FRAME_SYNC (Input)

LI L

-
C

TX_DATA (Output)
Start= Low Level on TX_FRAME_SYNC < < BO > STTDLY
Y
TX_DATA (Output) a \
Start= Falling Edge on TX_FRAME_SYNC N STTDLY
Y
TX_DATA (Output) BO
Start= High Level on TX_FRAME_SYNC ; STTDLY
|
1
TX_DATA (Output) B1
Start= Rising Edge on TX_FRAME_SYNC STTDLY

N/
Ae e AC
\/

TX_DATA (Output) F—
Start= Level Change on TX_FRAME_SYNC< /

m
STTDLY

TX_DATA (Output) ¢ >
Start= Any Edge on TX_FRAME_SYNC BO

SRolcle

() 12

STTDLY

Figure 24-11. Receive Pulse/Edge Start Modes

RX_FRAME_SYNC (Input)

RX_DATA (Input)

Start = Low Level on RX_FRAME_SYNC < )

RX_DATA (Input) < >
Start = Falling Edge on RX_FRAME_SYNC X

RX_DATA (Input)
Start = High Level on RX_FRAME_SYNC

(J

STTDLY

<
Y
STTDLY
0
STTDLY

STTDLY

STTDLY

1e) 1)

N

RX_DATA (Input) <
Start = Rising Edge on RX_FRAME_SYNC

M G D
Start = Level Change on RX_FRAME_SYNC
RX_DATA (Input)
Start = Any Edge on RX_FRAME_SYNC @

N
W
o
e A@ e A@

CASAS
A\e elk

STTDLY

AIMEL 517

32072H-AVR32-10/2012 I ©



24.7.5

24.75.1

24.7.5.2

Frame Sync

The transmitter and receiver frame synchro pins, TX_FRAME_SYNC and RX_FRAME_SYNC,
can be programmed to generate different kinds of frame synchronization signals. The
RFMR.FSOS and TFMR.FSOS fields are used to select the required waveform.

« Programmable low or high levels during data transfer are supported.

« Programmable high levels before the start of data transfers or toggling are also supported.

If a pulse waveform is selected, in reception, the Receive Frame Sync Length High Part and the
Receive Frame Sync Length fields in the RFMR register (RFMR.FSLENHI and RFMR.FSLEN)
define the length of the pulse, from 1 bit time up to 256 bit time.

Reception Pulse Length = ((16 x FSLENHI) + FSLEN + 1) receive clock periods

Similarly, in transmission, the Transmit Frame Sync Length High Part and the Transmit Frame
Sync Length fields in the TFMR register (TFMR.FSLENHI and TFMR.FSLEN) define the length
of the pulse, from 1 bit up to 256 bit time.

Transmission Pulse Length = ((16 x FSLENHI) + FSLEN + 1) transmit clock periods

The periodicity of the RX_FRAME_SYNC and TX_FRAME_SYNC pulse outputs can be config-
ured respectively through the Receive Period Divider Selection field in the RCMR register
(RCMR.PERIOD) and the Transmit Period Divider Selection field in the TCMR register
(TCMR.PERIOD).

Frame sync data

Frame Sync Data transmits or receives a specific tag during the Frame Sync signal.

During the Frame Sync signal, the receiver can sample the RX_DATA line and store the data in
the Receive Sync Holding Register (RSHR) and the transmitter can transfer the Transmit Sync
Holding Register (TSHR) in the shifter register.

The data length to be sampled in reception during the Frame Sync signal shall be written to the
RFMR.FSLENHI and RFMR.FSLEN fields.

The data length to be shifted out in transmission during the Frame Sync signal shall be written to
the TFMR.FSLENHI and TFMR.FSLEN fields.

Concerning the Receive Frame Sync Data operation, if the Frame Sync Length is equal to or
lower than the delay between the start event and the actual data reception, the data sampling
operation is performed in the RSHR through the receive shift register.

The Transmit Frame Sync operation is performed by the transmitter only if the Frame Sync Data
Enable bit in TFMR register (TFMR.FSDEN) is written to one. If the Frame Sync length is equal
to or lower than the delay between the start event and the actual data transmission, the normal
transmission has priority and the data contained in the TSHR is transferred in the transmit regis-
ter, then shifted out.

Frame sync edge detection

32072H-AVR32-10/2012

The Frame Sync Edge detection is configured by writing to the Frame Sync Edge Detection bit in
the RFMR/TFMR registers (RFMR.FSEDGE and TFMR.FSEDGE). This sets the Receive Sync

Alm L 518

Y 5



and Transmit Sync bits in the SR register (SR.RXSYN and SR.TXSYN) on frame synchro edge
detection (signals RX_FRAME_SYNC/TX_FRAME_SYNC).

24.7.6 Receive Compare Modes

Figure 24-12. Receive Compare Modes

RX_CLOCK l % % % l % l l l ¢

ey uPOQue o tgrerea Xm0 et X 82 )
Ean

» d
L)
{FSLENHI,FSLEN} STTDLY DATLEN
Up to 256 Bits
(4 in This Example)

A
\4
A

24.7.6.1 Compare functions
Compare 0 can be one start event of the receiver. In this case, the receiver compares at each
new sample the last {RFMR.FSLENHI, RFMR.FSLEN} bits received to the {RFMR.FSLENHI,
RFMR.FSLEN} lower bits of the data contained in the Receive Compare 0 Register (RCOR).
When this start event is selected, the user can program the receiver to start a new data transfer
either by writing a new Compare 0, or by receiving continuously until Compare 1 occurs. This
selection is done with the Receive Stop Selection bit in the RCMR register (RCMR.STOP).

24.7.7 Data Framing Format
The data framing format of both the transmitter and the receiver are programmable through the
TFMR, TCMR, RFMR, and RCMR registers. In either case, the user can independently select:
« the event that starts the data transfer RCMR.START and TCMR.START)

« the delay in number of bit periods between the start event and the first data bit
(RCMR.STTDLY and TCMR.STTDLY)

« the length of the data (RFMR.DATLEN and TFMR.DATLEN)
« the number of data to be transferred for each start event (RFMR.DATNB and TFMR.DATLEN)

« the length of synchronization transferred for each start event (RFMR.FSLENHI,
RFMR.FSLEN, TFMR.FSLENHI, and TFMR.FSLEN)

* the bit sense: most or lowest significant bit first (RFMR.MSBF and TFMR.MSBF)
Additionally, the transmitter can be used to transfer synchronization and select the level driven
on the TX_DATA pin while not in data transfer operation. This is done respectively by writing to
the Frame Sync Data Enable and the Data Default Value bits in the TFMR register
(TFMR.FSDEN and TFMR.DATDEF).

Table 24-3. Data Framing Format Registers

Transmitter Receiver Bit/Field Length Comment
TCMR RCMR PERIOD Up to 512 Frame size
TCMR RCMR START Start selection
TCMR RCMR STTDLY Up to 255 Size of transmit start delay

Alm L 519

32072H-AVR32-10/2012 I ©



Table 24-3. Data Framing Format Registers

Transmitter Receiver Bit/Field Length Comment

TEMR REMR DATNB Up to 16 Number of words transmitted in
frame
TFMR RFMR DATLEN Up to 32 Size of word
TFMR RFMR {FSLENHI,FSLEN} Up to 256 Size of Synchro data register
TFMR RFMR MSBF Most significant bit first
TFMR FSDEN Enable send TSHR
TFMR DATDEF Data default value ended
Figure 24-13. Transmit and Receive Frame Format in Edge/Pulse Start Modes
Start Start
< PERIOD -
TX_FRAME_SYNC VY "v

/ (1)
RX_FRAM E_SYNC—l—

1
' “FSLEN i
: ! ' 1 1
TX_DATA \{ ; : V% I
(IfFSDEN =1) /| Sync Data >< Default >< Data X Data X Default >\Sync Data >:<
| From TSHR | From DATDEF From THR From THR . From DATDER |
1 1
TX_DATA \{ : % ! : |
(If FSDEN = 0) X Default >\ Data X Data >< Default .
. y i
E From iDATDEF From THR i From THR i Fromi DATDEF i
1 | I
| ! | | i !
RX_DATA | Sync Data Ignored ‘ Data /:< Data (_ lgnored Xsync Data ><
1 ! I 1 1 I 1
| ToRSHR | ! To RHR ! To RHR ! ! |
< > | |
STTDLY DATLEN DATLEN
DATNB

Note:  Example of input on falling edge of TX_FRAME_SYNC/RX_FRAME_SYNC.

Figure 24-14. Transmit Frame Format in Continuous Mode

L Start
\
! 1
! !
i !
! !
! :
{ )
TX_DATA Data : Data >1: Default ><
From THR ! From THR |
«—p !
DATLEN ' DATLEN :

Start: 1. TXEMPTY set to one
2. Write into the THR

Note: STTDLY is written to zero. In this example, THR is loaded twice. FSDEN value has no effect on the
transmission. SyncData cannot be output in continuous mode.

AIMEL 520

32072H-AVR32-10/2012 I ©




24.7.8

24.7.9

Loop Mode

Interrupt

32072H-AVR32-10/2012

AT32UC3A3

Figure 24-15. Receive Frame Format in Continuous Mode

lStart = Enable Receiver

RX_DATA>< Data

To RHR

Data ><

To RHR

DATLEN DATLEN
Note: STTDLY is written to zero.

The receiver can be programmed to receive transmissions from the transmitter. This is done by
writing a one to the Loop Mode bit in RFMR register (RFMR.LOOP). In this case, RX_DATA is
connected to TX_DATA, RX_FRAME_SYNC is connected to TX_FRAME_SYNC and
RX_CLOCK is connected to TX_ CLOCK.

Most bits in the SR register have a corresponding bit in interrupt management registers.

The SSC can be programmed to generate an interrupt when it detects an event. The interrupt is
controlled by writing to the Interrupt Enable Register (IER) and Interrupt Disable Register (IDR).
These registers enable and disable, respectively, the corresponding interrupt by setting and
clearing the corresponding bit in the Interrupt Mask Register (IMR), which controls the genera-
tion of interrupts by asserting the SSC interrupt line connected to the interrupt controller.

Figure 24-16. Interrupt Block Diagram

Transmitter

TXRDY
TXEMPTY

»
>
TXSYNC |— 3

SSC Interrupt

Interrupt >

Control

Receiver
RXRDY >
OVRUN >
RXSYNC »

Alm L 521

Y 5



24.8 SSC Application Examples

The SSC can support several serial communication modes used in audio or high speed serial
links. Some standard applications are shown in the following figures. All serial link applications
supported by the SSC are not listed here.

Figure 24-17. Audio Application Block Diagram

Clock SCK

y
\ 4

TX_CLOCK

Word Select WS

A 4

12S
RECEIVER

A

TX_FRAME_SYNC|

Data SD
TX_DATA >

RX_DATA Clock SCK

RX_FRAME_SYNC Word Select WS N

SSC

Left Channel Right Channel
Figure 24-18. Codec Application Block Diagram
——] Serial Data Clock (SCLK)
TX_CLOCK >
— Frame sync (FSYNC)
TX_FRAME_SYNC|
— CODEC
— Serial Data Out
TX_DATA >
SSC —
— Serial Data In
RX_DATA <
RX_FRAME_SYN |—||—||—||—|"‘7'j-||—||—
- - SYNC Serial Data Clock (SCLK)
— I |
RX_CLOCK Frame sync (FSYNC) First Time Slot
iDstart

A mE|,® 522

32072H-AVR32-10/2012



Figure 24-19. Time Slot Application Block Diagram

—] SCLK
TX _CLOCK »
— FSYNC
TX FRAME_SYNC CODEC
First
TX DATA Data Out > Time Slot
SSC L
RX_DATA < Data in
RX_FRAME_SYNC
L »
RX_CLOCK J|  CopEc
Second
Time Slot
»

Serial Data Clock (SCLK) 55

Frame sync (FSYNC) f First Time Slot ( i Second Time Slot
) ;

Serial Data In m :

Alm L 523

32072H-AVR32-10/2012 I ©




24.9 User Interface

Table 24-4. SSC Register Memory Map

Offset Register Register Name Access Reset

0x00 Control Register CR Write-only 0x00000000
0x04 Clock Mode Register CMR Read/Write 0x00000000
0x10 Receive Clock Mode Register RCMR Read/Write 0x00000000
0x14 Receive Frame Mode Register RFMR Read/Write 0x00000000
0x18 Transmit Clock Mode Register TCMR Read/Write 0x00000000
0x1C Transmit Frame Mode Register TFMR Read/Write 0x00000000
0x20 Receive Holding Register RHR Read-only 0x00000000
0x24 Transmit Holding Register THR Write-only 0x00000000
0x30 Receive Synchronization Holding Register RSHR Read-only 0x00000000
0x34 Transmit Synchronization Holding Register TSHR Read/Write 0x00000000
0x38 Receive Compare 0 Register RCOR Read/Write 0x00000000
0x3C Receive Compare 1 Register RC1R Read/Write 0x00000000
0x40 Status Register SR Read-only 0x000000CC
0x44 Interrupt Enable Register IER Write-only 0x00000000
0x48 Interrupt Disable Register IDR Write-only 0x00000000
0x4C Interrupt Mask Register IMR Read-only 0x00000000

32072H-AVR32-10/2012

ATMEL

524



249.1 Control Register

Name: CR

Access Type: Write-only

Offset: 0x00

Reset value: 0x00000000
31 30 29 28 27 26 25 24

. - r - -+ -+ - - [ - [ - |
23 22 21 20 19 18 17 16

- - r - r - r - - ;- -} - |
15 14 13 12 11 10 9 8

‘SWRST‘ - ‘ - ‘ - ‘ - ‘ - ‘ TXDIS ‘ TXEN ‘
7 6 5 4 3 2 1 0

| : | : | : | : | : | : | RXDIS | RXEN |

¢ SWRST: Software Reset
1: Writing a one to this bit will perform a software reset. This software reset has priority on any other bit in CR.
0: Writing a zero to this bit has no effect.
¢ TXDIS: Transmit Disable
1: Writing a one to this bit will disable the transmission. If a character is currently being transmitted, the disable occurs at the end
of the current character transmission.
0: Writing a zero to this bit has no effect.
e TXEN: Transmit Enable
1: Writing a one to this bit will enable the transmission if the TXDIS bit is not written to one.
0: Writing a zero to this bit has no effect.
* RXDIS: Receive Disable
1: Writing a one to this bit will disable the reception. If a character is currently being received, the disable occurs at the end of
current character reception.
0: Writing a zero to this bit has no effect.
¢ RXEN: Receive Enable
1: Writing a one to this bit will enables the reception if the RXDIS bit is not written to one.
0: Writing a zero to this bit has no effect.

AIMEL 525

32072H-AVR32-10/2012 I ©




24.9.2 Clock Mode Register

Name: CMR

Access Type: Read/Write

Offset: 0x04

Reset value: 0x00000000
31 30 29 28 27 26 25 24

I N T S
23 22 21 20 19 18 17 16

I B T T ]
15 14 13 12 11 10 9 8

‘ : ‘ ] ‘ ] ‘ ] ‘ DIV[11:8] ‘
7 6 5 4 3 2 1 0

| DIV[7:0] |

* DIV[11:0]: Clock Divider
The divided clock equals the CLK_SSC divided by two times DIV. The maximum bit rate is CLK_SSC/2. The minimum bit rate is
CLK_SSC/(2 x 4095) = CLK_SSC/8190.
The clock divider is not active when DIV equals zero.

Divided Clock = CLK_SSC/(DIV x 2)

AIMEL 526

32072H-AVR32-10/2012 I ©



24.9.3 Receive Clock Mode Register

Name: RCMR

Access Type: Read/Write

Offset: 0x10

Reset value: 0x00000000
31 30 29 28 27 26 25 24

‘ PERIOD ‘
23 22 21 20 19 18 17 16

‘ STTDLY ‘
15 14 13 12 11 10 9 8

‘ - - ‘ - ‘ STOP START ‘
7 6 5 4 3 2 1 0

‘ CKG ‘ CKI ‘ CKO CKS ‘

¢ PERIOD: Receive Period Divider Selection
This field selects the divider to apply to the selected receive clock in order to generate a periodic Frame Sync Signal.
If equal to zero, no signal is generated.
If not equal to zero, a signal is generated each 2 x (PERIOD+1) receive clock periods.
e STTDLY: Receive Start Delay
If STTDLY is not zero, a delay of STTDLY clock cycles is inserted between the start event and the actual start of reception.
When the receiver is programmed to start synchronously with the transmitter, the delay is also applied.
Note: It is very important that STTDLY be written carefully. If STTDLY must be written, it should be done in relation to Receive
Sync Data reception.
¢ STOP: Receive Stop Selection
1: After starting a receive with a Compare 0, the receiver operates in a continuous mode until a Compare 1 is detected.
0: After completion of a data transfer when starting with a Compare 0, the receiver stops the data transfer and waits for a new
Compare 0.

AIMEL 527

32072H-AVR32-10/2012 I ©




START: Receive Start Selection

START Receive Start
0 Continuous, as soon as the receiver is enabled, and immediately after the end of
transfer of the previous data.
1 Transmit start
2 Detection of a low level on RX_FRAME_SYNC signal
3 Detection of a high level on RX_FRAME_SYNC signal
4 Detection of a falling edge on RX_FRAME_SYNC signal
5 Detection of a rising edge on RX_FRAME_SYNC signal
6 Detection of any level change on RX_FRAME_SYNC signal
7 Detection of any edge on RX_FRAME_SYNC signal
8 Compare 0
Others Reserved

+« CKG: Receive Clock Gating Selection

CKG Receive Clock Gating
0 None, continuous clock
1 Receive Clock enabled only if RX_FRAME_SYNC is low
2 Receive Clock enabled only if RX_FRAME_SYNC is high
3 Reserved

CKI: Receive Clock Inversion
CKI affects only the receive clock and not the output clock signal.

1: The data inputs (Data and Frame Sync signals) are sampled on receive clock rising edge. The Frame Sync signal output is
shifted out on receive clock falling edge.
0: The data inputs (Data and Frame Sync signals) are sampled on receive clock falling edge. The Frame Sync signal output is
shifted out on receive clock rising edge.

e CKO: Receive Clock Output Mode Selection

CKO Receive Clock Output Mode RX_CLOCK pin
0 None Input-only
1 Continuous receive clock Output
2 Receive clock only during data transfers Output
Others Reserved

CKS: Receive Clock Selection

CKS Selected Receive Clock
0 Divided clock
1 TX_CLOCK clock signal
2 RX_CLOCK pin
3 Reserved

ATMEL

32072H-AVR32-10/2012 I ©

528



2494 Receive Frame Mode Register

Name: RFMR

Access Type: Read/Write

Offset: 0x14

Reset value: 0x00000000
31 30 29 28 27 26 25 24

‘ FSLENHI ‘ - - - FSEDGE ‘
23 22 21 20 19 18 17 16

‘ - ‘ FSOS ‘ FSLEN ‘
15 14 13 12 11 10 9 8

- 1 - [ - T -] |
7 6 5 4 3 2 1 0

‘ MSBF ‘ - ‘ LOOP ‘ DATLEN ‘

e FSLENHI: Receive Frame Sync Length High Part

The four MSB of the FSLEN field.

* FSEDGE: Receive Frame Sync Edge Detection

Determines which edge on Frame Sync will generate the SR.RXSYN interrupt.

FSEDGE Frame Sync Edge Detection
0 Positive edge detection
1 Negative edge detection

*« FSOS: Receive Frame Sync Output Selection

FSOS Selected Receive Frame Sync Signal RX_FRAME_SYNC Pin
0 None Input-only
1 Negative Pulse Output
2 Positive Pulse Output
3 Driven Low during data transfer Output
4 Driven High during data transfer Output
5 Toggling at each start of data transfer Output
Others Reserved Undefined

e FSLEN: Receive Frame Sync Length
This field defines the length of the Receive Frame Sync signal and the number of bits sampled and stored in the RSHR register.

When this mode is selected by the RCMR.START field, it also determines the length of the sampled data to be compared to the
Compare 0 or Compare 1 register.
Note: The four most significant bits for this field are located in the FSLENHI field.
The pulse length is equal to ({FSLENHI,FSLEN} + 1) receive clock periods. Thus, if {FSLENHI,FSLEN} is zero, the Receive
Frame Sync signal is generated during one receive clock period.

32072H-AVR32-10/2012

ATMEL

Y 5

529



« DATNB: Data Number per Frame
This field defines the number of data words to be received after each transfer start, which is equal to (DATNB + 1).
« MSBF: Most Significant Bit First
1: The most significant bit of the data register is sampled first in the bit stream.
0: The lowest significant bit of the data register is sampled first in the bit stream.
e LOOP: Loop Mode
1: RX_DATA is driven by TX_DATA, RX_FRAME_SYNC is driven by TX_FRAME_SYNC and TX_CLOCK drives RX_CLOCK.
0: Normal operating mode.
* DATLEN: Data Length
The bit stream contains (DATLEN + 1) data bits.
This field also defines the transfer size performed by the Peripheral DMA Controller assigned to the receiver.

DATLEN Transfer Size
0 Forbidden value
1-7 Data transfer are in bytes
8-15 Data transfer are in halfwords
Others Data transfer are in words

AIMEL 530

32072H-AVR32-10/2012 I ©



24.9.5 Transmit Clock Mode Register

Name: TCMR

Access Type: Read/Write

Offset: 0x18

Reset value: 0x00000000
31 30 29 28 27 26 25 24

‘ PERIOD ‘
23 22 21 20 19 18 17 16

‘ STTDLY ‘
15 14 13 12 11 10 9 8

‘ - - ‘ - ‘ - START ‘
7 6 5 4 3 2 1 0

‘ CKG ‘ CKI ‘ CKO CKS ‘

« PERIOD: Transmit Period Divider Selection
This field selects the divider to apply to the selected transmit clock in order to generate a periodic Frame Sync Signal.
If equal to zero, no signal is generated.
If not equal to zero, a signal is generated each 2 x (PERIOD+1) transmit clock periods.
e STTDLY: Transmit Start Delay
If STTDLY is not zero, a delay of STTDLY clock cycles is inserted between the start event and the actual start of transmission.

When the transmitter is programmed to start synchronously with the receiver, the delay is also applied.
Note: STTDLY must be written carefully, in relation to Transmit Sync Data transmission.
* START: Transmit Start Selection

START Transmit Start
0 _Continl_Jous, as soon as a word is written to the _THR Register (if Transmit is enabled), and
immediately after the end of transfer of the previous data.
1 Receive start
2 Detection of a low level on TX_FRAME_SYNC signal
3 Detection of a high level on TX_FRAME_SYNC signal
4 Detection of a falling edge on TX_FRAME_SYNC signal
5 Detection of a rising edge on TX_FRAME_SYNC signal
6 Detection of any level change on TX_FRAME_SYNC signal
7 Detection of any edge on TX_FRAME_SYNC signal
Others Reserved

AIMEL 531

32072H-AVR32-10/2012 I ©




e CKG: Transmit Clock Gating Selection

CKG Transmit Clock Gating
0 None, continuous clock
1 Transmit Clock enabled only if TX_FRAME_SYNC is low
2 Transmit Clock enabled only if TX_FRAME_SYNC is high
3 Reserved

CKI: Transmit Clock Inversion
CKI affects only the Transmit Clock and not the output clock signal.

1: The data outputs (Data and Frame Sync signals) are shifted out on transmit clock rising edge. The Frame sync signal input is
sampled on transmit clock falling edge.
0: The data outputs (Data and Frame Sync signals) are shifted out on transmit clock falling edge. The Frame sync signal input is
sampled on transmit clock rising edge.

« CKO: Transmit Clock Output Mode Selection

CKO Transmit Clock Output Mode TX_CLOCK pin
0 None Input-only
1 Continuous transmit clock Output
2 Transmit clock only during data transfers Output
Others Reserved

CKS: Transmit Clock Selection

CKS Selected Transmit Clock
0 Divided Clock
1 RX_CLOCK clock signal
2 TX_CLOCK Pin
3 Reserved

32072H-AVR32-10/2012

ATMEL

Y 5

532



24.9.6 Transmit Frame Mode Register

Name: TEMR

Access Type: Read/Write

Offset: 0x1C

Reset value: 0x00000000
31 30 29 28 27 26 25 24

‘ FSLENHI - - - FSEDGE ‘
23 22 21 20 19 18 17 16

‘ FSDEN ‘ FSOS FSLEN ‘
15 14 13 12 11 10 9 8

- T - T - T |
7 6 5 4 3 2 1 0

‘ MSBF ‘ - ‘ DATDEF ‘ DATLEN ‘

e FSLENHI: Transmit Frame Sync Length High Part
The four MSB of the FSLEN field.

* FSEDGE: Transmit Frame Sync Edge Detection
Determines which edge on Frame Sync will generate the SR.TXSYN interrupt.

FSEDGE Frame Sync Edge Detection
0 Positive Edge Detection
1 Negative Edge Detection

¢ FSDEN: Transmit Frame Sync Data Enable
1: TSHR value is shifted out during the transmission of the Transmit Frame Sync signal.

0: The TX_DATA line is driven with the default value during the Transmit Frame Sync signal.
« FSOS: Transmit Frame Sync Output Selection

FSOS Selected Transmit Frame Sync Signal TX_FRAME_SYNC Pin
0 None Input-only
1 Negative Pulse Output
2 Positive Pulse Output
3 Driven Low during data transfer Output
4 Driven High during data transfer Output
5 Toggling at each start of data transfer Output
Others Reserved Undefined

e FSLEN: Transmit Frame Sync Length
This field defines the length of the Transmit Frame Sync signal and the number of bits shifted out from the TSHR register if

TFMR.FSDEN is equal to one.
Note: The four most significant bits for this field are located in the FSLENHI field.

32072H-AVR32-10/2012

ATMEL

533



The pulse length is equal to ({FSLENHI,FSLEN} + 1) transmit clock periods, i.e., the pulse length can range from 1 to 256
transmit clock periods. If {FSLENHI,FSLEN} is zero, the Transmit Frame Sync signal is generated during one transmit clock
period.

« DATNB: Data Number per Frame
This field defines the number of data words to be transferred after each transfer start, which is equal to (DATNB + 1).

< MSBF: Most Significant Bit First
1: The most significant bit of the data register is shifted out first in the bit stream.

0: The lowest significant bit of the data register is shifted out first in the bit stream.

¢ DATDEF: Data Default Value
This bit defines the level driven on the TX_DATA pin while out of transmission.

Note that if the pin is defined as multi-drive by the 1/0 Controller, the pin is enabled only if the TX_DATA output is one.
1: The level driven on the TX_DATA pin while out of transmission is one.
0: The level driven on the TX_DATA pin while out of transmission is zero.

e DATLEN: Data Length
The bit stream contains (DATLEN + 1) data bits.

This field also defines the transfer size performed by the Peripheral DMA Controller assigned to the transmitter.

DATLEN Transfer Size
0 Forbidden value (1-bit data length is not supported)
1-7 Data transfer are in bytes
8-15 Data transfer are in halfwords
Others Data transfer are in words

AIMEL 534

32072H-AVR32-10/2012 I ©



24.9.7 Receive Holding Register

Name: RHR

Access Type: Read-only

Offset: 0x20

Reset value: 0x00000000
31 30 29 28 27 26 25 24

‘ RDAT[31:24] ‘
23 22 21 20 19 18 17 16

‘ RDAT([23:16] ‘
15 14 13 12 11 10 9 8

‘ RDAT[15:8] ‘
7 6 5 4 3 2 1 0

‘ RDAT[7:0] ‘

« RDAT: Receive Data

Right aligned regardless of the number of data bits defined by the RFMR.DATLEN field.

32072H-AVR32-10/2012

ATMEL

Y 5

535



24.9.8 Transmit Holding Register

Name: THR

Access Type: Write-only

Offset: 0x24

Reset value: 0x00000000
31 30 29 28 27 26 25 24

‘ TDAT[31:24] ‘
23 22 21 20 19 18 17 16

‘ TDAT[23:16] ‘
15 14 13 12 11 10 9 8

‘ TDAT[15:8] ‘
7 6 5 4 3 2 1 0

‘ TDAT[7:0] ‘

« TDAT: Transmit Data

Right aligned regardless of the number of data bits defined by the TFMR.DATLEN field.

32072H-AVR32-10/2012

ATMEL

Y 5

536



24.9.9 Receive Synchronization Holding Register

Name: RSHR
Access Type: Read-only
Offset: 0x30
Reset value: 0x00000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
‘ RSDAT[15:8] ‘
7 6 5 4 3 2 1 0
‘ RSDAT([7:0] ‘

* RSDAT: Receive Synchronization Data

32072H-AVR32-10/2012

ATMEL

537



24.9.10 Transmit Synchronization Holding Register

Name: TSHR

Access Type: Read/Write

Offset: 0x34

Reset value: 0x00000000
31 30 29 28 27 26 25 24

| | | | | | | | |
23 22 21 20 19 18 17 16

| | | | | | | | |
15 14 13 12 11 10 9 8

‘ TSDAT[15:8] ‘
7 6 5 4 3 2 1 0

‘ TSDAT[7:0] ‘

e TSDAT: Transmit Synchronization Data

A “'lEl,® 538

32072H-AVR32-10/2012



24.9.11 Receive Compare 0 Register

Name: RCOR

Access Type: Read/Write

Offset: 0x38

Reset value: 0x00000000
31 30 29 28 27 26 25 24

| | | | | | | | |
23 22 21 20 19 18 17 16

| | | | | | | | |
15 14 13 12 11 10 9 8

‘ CPO[15:8] \
7 6 5 4 3 2 1 0

‘ CPO[7:0] ‘

* CPO: Receive Compare Data 0

A “'lEl,® 539

32072H-AVR32-10/2012



24.9.12 Receive Compare 1 Register

Name: RC1R

Access Type: Read/Write

Offset: 0x3C

Reset value: 0x00000000
31 30 29 28 27 26 25 24

| | | | | | | | |
23 22 21 20 19 18 17 16

| | | | | | | | |
15 14 13 12 11 10 9 8

‘ CP1[[15:8] ‘
7 6 5 4 3 2 1 0

‘ CP1[7:0] ‘

¢ CP1: Receive Compare Data 1

A “'lEl,® 540

32072H-AVR32-10/2012



24.9.13 Status Register

Name: SR

Access Type: Read-only

Offset: 0x40

Reset value: 0x000000CC
31 30 29 28 27 26 25 24

- - r - rr - r - - - [ - |
23 22 21 20 19 18 17 16

S e e
15 14 13 12 11 10 9 8

‘ - ‘ - ‘ - ‘ - ‘ RXSYN ‘ TXSYN ‘ CP1 ‘ CPO ‘
7 6 5 4 3 2 1 0

‘ - ‘ - ‘ OVRUN ‘ RXRDY ‘ - ‘ - ‘TXEMPTY‘ TXRDY ‘

« RXEN: Receive Enable
This bit is set when the CR.RXEN bit is written to one.

This bit is cleared when no data are being processed and the CR.RXDIS bit has been written to one.

« TXEN: Transmit Enable
This bit is set when the CR.TXEN bit is written to one.

This bit is cleared when no data are being processed and the CR.TXDIS bit has been written to one.

« RXSYN: Receive Sync
This bit is set when a Receive Sync has occurred.

This bit is cleared when the SR register is read.

e TXSYN: Transmit Sync
This bit is set when a Transmit Sync has occurred.

This bit is cleared when the SR register is read.

¢ CP1: Compare 1
This bit is set when compare 1 has occurred.

This bit is cleared when the SR register is read.

e CPO: Compare O
This bit is set when compare 0 has occurred.

This bit is cleared when the SR register is read.

*« OVRUN: Receive Overrun
This bit is set when data has been loaded in the RHR register while previous data has not yet been read.

This bit is cleared when the SR register is read.

< RXRDY: Receive Ready
This bit is set when data has been received and loaded in the RHR register.

This bit is cleared when the RHR register is empty.
e TXEMPTY: Transmit Empty

This bit is set when the last data written in the THR register has been loaded in the TSR register and last data loaded in the TSR

register has been transmitted.
This bit is cleared when data remains in the THR register or is currently transmitted from the TSR register.

ATMEL

Y 5

32072H-AVR32-10/2012

541



¢ TXRDY: Transmit Ready
This bit is set when the THR register is empty.

This bit is cleared when data has been loaded in the THR register and is waiting to be loaded in the TSR register.

AIMEL 542

32072H-AVR32-10/2012 I ©



24.9.14 Interrupt Enable Register

Name: IER

Access Type: Write-only

Offset: 0x44

Reset value: 0x00000000
31 30 29 28 27 26 25 24

| | | | | | | | |
23 22 21 20 19 18 17 16

| | | | | | | | |
15 14 13 12 11 10 9 8

‘ - ‘ - ‘ - ‘ - ‘ RXSYN ‘ TXSYN ‘ CP1 ‘ CPO ‘
7 6 5 4 3 2 1 0

‘ - ‘ - ‘ OVRUN ‘ RXRDY ‘ - ‘ - ‘ TXEMPTY ‘ TXRDY ‘

Writing a zero to a bit in this register has no effect.
Writing a one to a bit in this register will set the corresponding bit in IMR.

A “'lEl,® 543

32072H-AVR32-10/2012



24.9.15 Interrupt Disable Register

Name: IDR

Access Type: Write-only

Offset: 0x48

Reset value: 0x00000000
31 30 29 28 27 26 25 24

| | | | | | | | |
23 22 21 20 19 18 17 16

| | | | | | | | |
15 14 13 12 11 10 9 8

‘ - ‘ - ‘ - ‘ - ‘ RXSYN ‘ TXSYN ‘ CP1 ‘ CPO ‘
7 6 5 4 3 2 1 0

‘ - ‘ - ‘ OVRUN ‘ RXRDY ‘ - ‘ - ‘ TXEMPTY ‘ TXRDY ‘

Writing a zero to a bit in this register has no effect.
Writing a one to a bit in this register will clear the corresponding bit in IMR.

A “'lEl,® 544

32072H-AVR32-10/2012



24.9.16 Interrupt Mask Register

Name: IMR

Access Type: Read-only

Offset: 0x4C

Reset value: 0x00000000
31 30 29 28 27 26 25 24

N R R R R R - -
23 22 21 20 19 18 17 16

R N N R R - ]
15 14 13 12 11 10 9 8

‘ - ‘ - ‘ - ‘ - ‘ RXSYN ‘ TXSYN CP1 CPO ‘
7 6 5 4 3 2 1 0

‘ - ‘ - ‘OVRUN ‘ RXRDY ‘ - ‘ - TXEMPTY TXRDY ‘

0: The corresponding interrupt is disabled.

1: The corresponding interrupt is enabled.

A bit in this register is cleared when the corresponding bit in IDR is written to one.
A bit in this register is set when the corresponding bit in IER is written to one.

ATMEL

32072H-AVR32-10/2012 I ©

545



25. Universal Synchronous Asynchronous Receiver Transmitter (USART)
Rev: 4.2.0.6

25.1 Features
* Configurable baud rate generator
e 5-to 9-bit full-duplex, synchronous and asynchronous, serial communication
— 1, 1.5, or 2 stop bits in asynchronous mode, and 1 or 2 in synchronous mode
Parity generation and error detection
Framing- and overrun error detection
MSB- or LSB-first
Optional break generation and detection
Receiver frequency oversampling by 8 or 16 times
— Optional RTS-CTS hardware handshaking
— Optional DTR-DSR-DCD-RI modem signal management
— Receiver Time-out and transmitter Timeguard
— Optional Multidrop mode with address generation and detection
RS485 with line driver control
1ISO7816, T=0 and T=1 protocols for Interfacing with smart cards
— , NACK handling, and customizable error counter
* IrDA modulation and demodulation
— Communication at up to 115.2Kbit/s
* SPI Mode
— Master or slave
— Configurable serial clock phase and polarity
— CLK SPI serial clock frequency up to a quarter of the CLK_USART internal clock frequency
* LIN Mode
— Compliant with LIN 1.3 and LIN 2.0 specifications
— Master or slave
— Processing of Frames with up to 256 data bytes
— Configurable response data length, optionally defined automatically by the Identifier
— Self synchronization in slave node configuration
— Automatic processing and verification of the “Break Field” and “Sync Field”
— The “Break Field” is detected even if it is partially superimposed with a data byte
— Optional, automatic identifier parity management
— Optional, automatic checksum management
— Supports both “Classic” and “Enhanced” checksum types
— Full LIN error checking and reporting
— Frame Slot Mode: the master allocates slots to scheduled frames automatically.
— Wakeup signal generation
* Test Modes
— Automatic echo, remote- and local loopback
e Supports two Peripheral DMA Controller channels
— Buffer transfers without processor intervention

25.2 Overview
The Universal Synchronous Asynchronous Receiver Transmitter (USART) provides a full
duplex, universal, synchronous/asynchronous serial link. Data frame format is widely configu-
rable, including basic length, parity, and stop bit settings, maximizing standards support. The
receiver implements parity-, framing-, and overrun error detection, and can handle un-fixed

AIMEL 546

32072H-AVR32-10/2012 I ©




frame lengths with the time-out feature. The USART supports several operating modes, provid-
ing an interface to RS485, LIN, and SPI buses, with ISO7816 T=0 and T=1 smart card slots,
infrared transceivers, and modem port connections. Communication with slow and remote
devices is eased by the timeguard. Duplex multidrop communication is supported by address
and data differentiation through the parity bit. The hardware handshaking feature enables an
out-of-band flow control, automatically managing RTS and CTS pins. The Peripheral DMA Con-
troller connection enables memory transactions, and the USART supports chained buffer
management without processor intervention. Automatic echo, remote-, and local loopback test
modes are also supported.

25.3 Block Diagram

Figure 25-1. USART Block Diagram
Peripheral DMA
Controller
Channel Channel
USART 1’0
Controller
y
< <—>|:| RXD
Receiver
> <—>|:| RTS
Interrupt USART > < <—>|:| TXD
Controller | Interrupt Transmitter
< <—>|:| CcTS
> > | DR
CLK_USART Modem < HD DSR
l ” Signals
Power o |oLK usaRTDIV Control < «—{ | pcp
Manager 4_>| RI
BaudRate MM |:| CLK
Generator
User
Interface
Peripheral bus *
- -

32072H-AVR32-10/2012

ATMEL

Y 5

547



Table 25-1.  SPI Operating Mode
PIN USART SPI Slave SPI Master
RXD RXD MOSI MISO
TXD TXD MISO MOSI
RTS RTS - Cs
CTS CTS CS -
25.4 1/0 Lines Description
Table 25-2.  1/O Lines Description
Name Description Type Active Level
CLK Serial Clock /0
Transmit Serial Data
TXD or Master Out Slave In (MOSI) in SPI master mode Output
or Master In Slave Out (MISO) in SPI slave mode
Receive Serial Data
RXD or Master In Slave Out (MISO) in SPI master mode Input
or Master Out Slave In (MOSI) in SPI slave mode
RI Ring Indicator Input Low
DSR Data Set Ready Input Low
DCD Data Carrier Detect Input Low
DTR Data Terminal Ready Output Low
Clear to Send
CTS . Input Low
or Slave Select (NSS) in SPI slave mode
Request to Send
RTS . Output Low
or Slave Select (NSS) in SPI master mode

25.5 Product Dependencies
In order to use this module, other parts of the system must be configured correctly, as described

2551

I/O Lines

32072H-AVR32-10/2012

below.

The USART pins may be multiplexed with the I/O Controller lines. The user must first configure
the I/0O Controller to assign these pins to their peripheral functions. Unused I/O lines may be

used for other purposes.

To prevent the TXD line from falling when the USART is disabled, the use of an internal pull-up
is required. If the hardware handshaking feature or modem mode is used, the internal pull-up on

RTS must also be enabled.

All the pins of the modems may or may not be implemented on the USART. On USARTS not
equipped with the corresponding pins, the associated control bits and statuses have no effect on

the behavior of the USART.

ATMEL

Y 5

548



25.5.2 Clocks
The clock for the USART bus interface (CLK_USART) is generated by the Power Manager. This
clock is enabled at reset, and can be disabled in the Power Manager. It is recommended to dis-
able the USART before disabling the clock, to avoid freezing the USART in an undefined state.

255.3 Interrupts
The USART interrupt request line is connected to the interrupt controller. Using the USART
interrupt requires the interrupt controller to be programmed first.

Alm L 549

32072H-AVR32-10/2012 I ©



25.6 Functional Description

25.6.1 USART Operating Modes

The USART can operate in several modes:
* Normal
* RS485, described in Section 25.6.5 "RS485 Mode” on page 560
« Hardware handshaking, described in Section 25.6.6 "Hardware Handshaking” on page 561
* Modem, described in Section 25.6.7 "Modem Mode” on page 562
* 1SO7816, described in Section 25.6.8 "ISO7816 Mode” on page 563
« IrDA, described in Section 25.6.9 "IrDA Mode” on page 566
 LIN Master, described in Section 25.6.10 "LIN Mode” on page 568
« LIN Slave, described in Section 25.6.10 "LIN Mode” on page 568
» SPI Master, described in Section 25.6.15 "SPI Mode” on page 580
» SPI Slave, described in Section 25.6.15 "SPI Mode” on page 580

The operating mode is selected by writing to the Mode field in the “Mode Register” (MR.MODE).

Table 25-3. MR.MODE

MR.MODE Mode of the USART

0x0 Normal
Ox1 RS485
0x2 Hardware Handshaking
0x3 Modem
0x4 IS07816 Protocol: T =0
0x6 1IS07816 Protocol: T=1
0x8 IrDA
OxA LIN Master
0xB LIN Slave
OxE SPI Master
OxF SPI Slave

Others Reserved

In addition, Synchronous or Asynchronous mode is selected by writing to the Synchronous
Mode Select bit in MR (MR.SYNC). By default, MR.MODE and MR.SYNC are both zero, and the
USART operates in Normal Asynchronous mode.

25.6.2 Basic Operation
To start using the USART, the user must perform the following steps:
1. Configure the baud rate by writing to the Baud Rate Generator Register (BRGR) as
described in "Baud Rate Generator” on page 558
2. Select the operating mode by writing to the relevant fields in the Mode Regiser (MR)

3. Enable the transmitter and/or receiver, by writing a one to CR.TXEN and/or CR.RXEN
respectively

Alm L 550

32072H-AVR32-10/2012 I ©



4. Check that CSR.TXRDY and/or CSR.RXRDY is one before writing to THR and/or read-
ing from RHR respectively

25.6.2.1 Receiver and Transmitter Control

After a reset, the transceiver is disabled. The receiver/transmitter is enabled by writing a one to
the Receiver Enable/Transmitter Enable bit in the Control Register (CR.RXEN/CR.TXEN)
respectively. They may be enabled together and can be configured both before and after they
have been enabled. The user can reset the USART receiver/transmitter at any time by writing a
one to the Reset Receiver/Reset Transmitter bit (CR.RSTRX/CR.RSTTX) respectively. This
software reset clears status bits and resets internal state machines, immediately halting any
communication. The user interface configuration registers will retain their values.

The user can disable the receiver/transmitter by writing a one to either the Receiver Disable, or
Transmitter Disable bit (CR.RXDIS, or CR.TXDIS). If the receiver is disabled during a character
reception, the USART will wait for the current character to be received before disabling. If the
transmitter is disabled during transmission, the USART will wait until both the current character
and the character stored in the Transmitter Holding Register (THR) are transmitted before dis-
abling. If a timeguard has been implemented it will remain functional during the transmission.

25.6.2.2 Transmitter Operations

The transmitter operates equally in both Synchronous and Asynchronous operating modes
(MR.SYNC). One start bit, up to 9 data bits, an optional parity bit, and up to two stop bits are
successively shifted out on the TXD pin at each falling edge of the serial clock. The humber of
data bits is selected by the Character Length field (MR.CHRL) and the 9-bit Character Length bit
in the Mode Register (MR.MODED9). Nine bits are selected by writing a one to MR.MODE9, over-
riding any value in MR.CHRL. The parity bit configuration is selected in the MR.PAR field. The
Most Significant Bit First bit (MR.MSBF) selects which data bit to send first. The number of stop
bits is selected by the MR.NBSTOP field. The 1.5 stop bit configuration is only supported in
asynchronous mode.

Figure 25-2. Character Transmit

Example: 8-bit, Parity Enabled One Stop

P oo SpEREEEEEEEEEEEEEREN

TXD

‘Start DO DI D2 D3 D4 D5 D6 D7 |Parity Stop
Bit Bit  Bit

The characters are sent by writing to the Character to be Transmitted field (THR.TXCHR). The
transmitter status can be read from the Transmitter Ready and Transmitter Empty bits in the
Channel Status Register (CSR.TXRDY/CSR.TXEMPTY). CSR.TXRDY is set when THR is
empty. CSR.TXEMPTY is set when both THR and the transmit shift register are empty (trans-
mission complete). An interrupt request is generated if the corresponding bit in the Interrupt
Mask Register (IMR) is set (IMR.TXRDY/IMR.TXEMPTY). Both CSR.TXRDY and
CSR.TXEMPTY are cleared when the transmitter is disabled. CSR.TXRDY and CSR.TXEMPY
can also be cleared by writing a one to the Start Break bit in CR (CR.STTBRK). Writing a char-
acter to THR while CSR.TXRDY is zero has no effect and the written character will be lost.

Alm L 551

32072H-AVR32-10/2012 I ©



AT32UC3A3

Figure 25-3. Transmitter Status
Baud Rate
Clock I|IlI|||IlI|||IlI|||IlI|||||||||||||||||||||||||
vo | [T T T TTTTITIT LI LTI TITITITT]

Start Parity Stop Start Parity Stop
Bit DO D1 D2 D3 D4 D5 D6 D7 Bit Bit Bit DO D1 D2 D3 D4 D5 D6 D7 Bit Bit
Write T T
THR
TXRDY | I | I
TXEMPTY | |

Asynchronous Receiver

32072H-AVR32-10/2012

If the USART is configured in an asynchronous operating mode (MR.SYNC is zero), the receiver
will oversample the RXD input line by either 8 or 16 times the Baud Rate Clock, as selected by
the Oversampling Mode bit (MR.OVER). If the line is zero for half a bit period (four or eight con-
secutive samples, respectively), a start bit will be assumed, and the following 8th or 16th sample
will determine the logical value on the line, resulting in bit values being determined at the middle
of the bit period.

The number of data bits, endianess, parity mode, and stop bits are selected by the same bits
and fields as for the transmitter (MR.CHRL, MR.MODE9, MR.MSBF, MR.PAR, and
MR.NBSTOP). The synchronization mechanism will only consider one stop bit, regardless of the
used protocol, and when the first stop bit has been sampled, the receiver will automatically begin
looking for a new start bit, enabling resynchronization even if there is a protocol mismatch. Fig-
ure 25-4 and Figure 25-5 illustrate start bit detection and character reception in asynchronous
mode.

Figure 25-4. Asynchronous Start Bit Detection

g | | —

Clock (x16)
wo ] 1
Sk N I N N B N
1 2 3 4 5 6 7 8

Start Sampling
Detection

Lttt
123 456 7 8 910111213141516
RXD—”
S I IO O O A

1 2 3 45 6 7 0 1 2 3 4

Start
Reiection

Alm L 552

Y 5



AT32UC3A3

Figure 25-5. Asynchronous Mode Character Reception

Example: 8-bit, Parity Enabled

P G mm—u—um—m_ﬂ_ﬂ_p
o S P T T T T T T ]]

Start 16 16 16 16 16 16 16 16 16 16
Detection samples|samples|samples|samples|samples|samples|samples|samples|samples|samples
DO D1 D2 D3 D4 D5 D6 D7 Parity  Stop
Bit Bit
25.6.2.4 Synchronous Receiver

In synchronous mode (MR.SYNC is one), the receiver samples the RXD signal on each rising
edge of the Baud Rate Clock, as illustrated in Figure 25-6. If a low level is detected, it is consid-
ered as a start bit. Configuration bits and fields are the same as in asynchronous mode.

Figure 25-6. Synchronous Mode Character Reception
Example: 8-bit, Parity Enabled 1 Stop

Baud Rate

- mmmmmmmmﬂ_p
0 || T T T T T T T[T

Sampling |
Start DO D1 D2 D3 D4 D5 D6 D7 Stop Bit

Parity Bit

Figure 25-7. Receiver Status

Baud Rate
Clock

RXD_IIIIIIIIIIIJTIIIIIIIIIIIJ?

Start Parity Stpp Start Parity Stpp
Bit DO D1 D2 D3 D4 D5 D6 D7 Bit it Bit DO D1 D2 D3 D4 D5 D6 D7 Bit it
RSTSTA=1
Write
CR
Read T
RHR

RXRDY |
OVRE _| —\—

25.6.2.5 Receiver Operations
When a character reception is completed, it is transferred to the Received Character field in the
Receive Holding Register (RHR.RXCHR), and the Receiver Ready bit in the Channel Status
Register (CSR.RXRDY) is set. An interrupt request is generated if the Receiver Ready bit in the

AIMEL 553

32072H-AVR32-10/2012 I ©




Interrupt Mask Register (IMR.RXRDY) is set. If CSR.RXRDY is already set, RHR will be over-
written and the Overrun Error bit (CSR.OVRE) is set. An interrupt request is generated if the
Overrun Error bit in IMR is set. Reading RHR will clear CSR.RXRDY, and writing a one to the
Reset Status bit in the Control Register (CR.RSTSTA) will clear CSR.OVRE. Refer to Figure 25-
7.

25.6.3 Other Considerations

25.6.3.1 Parity

32072H-AVR32-10/2012

The USART supports five parity modes, selected by MR.PAR:

« Even parity

» Odd parity

« Parity forced to zero (space)

« Parity forced to one (mark)

* No parity
The PAR field also enables the Multidrop mode, see "Multidrop Mode” on page 555. If even par-
ity is selected (MR.PAR is 0x0), the parity bit will be zero if there is an even number of ones in
the data character, and one if there is an odd number. For odd parity the reverse applies. If

space or mark parity is chosen (MR.PAR is 0x2 or 0x3, respectively), the parity bit will always be
a zero or one, respectively. See Table 25-4.

Table 25-4.  Parity Bit Examples

Alphanum Parity Mode

Character Hex Bin Odd Even Mark Space None
A 0x41 0100 0001 1 0 1 0 -
\ 0x56 0101 0110 1 0 1 0 -
R 0x52 0101 0010 0 1 1 0 -

The receiver will report parity errors in CSR.PARE, unless parity is disabled. An interrupt request
is generated if the PARE bit in the Interrupt Mask Register is set (IMR.PARE). Writing a one to
CR.RSTSTA will clear CSR.PARE. See Figure 25-8.

Figure 25-8. Parity Error

Baud Rate
Clock ||||||||||||||||||J|_|U|_||_||_||_||_||_||_
o ] [T TTTTTTTI]

Start Bad Stpp
Bit DO D1 D2 D3 D4 D5 D6 D7 Parity Bt
Bit RSTSTA=1
Write
CR

PARE |_
RXRDY _|

Alm L 554

Y 5



25.6.3.2 Multidrop Mode

If MR.PAR is either 0x6 or 0x7, the USART runs in Multidrop mode. This mode differentiates
data and address characters. Data has the parity bit zero and addresses have a one. By writing
a one to the Send Address bit (CR.SENDA) the user will cause the next character written to THR
to be transmitted as an address. Receiving a character with a one as parity bit will report parity
error by setting CSR.PARE. An interrupt request is generated if the PARE bit in the Interrupt
Mask Register is set (IMR.PARE).

25.6.3.3 Transmitter Timeguard

The timeguard feature enables the USART to interface slow devices by inserting an idle state on
the TXD line in between two characters. This idle state corresponds to a long stop bit, whose
duration is selected by the Timeguard Value field in the Transmitter Timeguard Register
(TTGR.TG). The transmitter will hold the TXD line high for TTGR.TG bit periods, in addition to
the number of stop bits. As illustrated in Figure 25-9, the behavior of TXRDY and TXEMPTY is
modified when TG has a non-zero value. If a pending character has been written to THR, the
CSR.TXRDY bit will not be set until this characters start bit has been sent. CSR.TXEMPTY wiill
remain low until the timeguard transmission has completed.

Figure 25-9. Timeguard Operation

e JUUUUUUULUUU UL VUYLV uuu UL

vo L [TTTTTTTT] HEEEEEEEN

Start
Bit

Write T
THR

DO D1 D2 D3 D4 D5 D6 D7

Parity Stop Start Parity Stop
Bit Bit Bit DO D1 D2 D3 D4 D5 D6 D7 Bit Bit

1

TXRDY | I
TXEMPTY |

32072H-AVR32-10/2012

Table 25-5.  Maximum Baud Rate Dependent Timeguard Durations

Baud Rate (bit/sec) Bit time (us) Timeguard (ms)
1200 833 212.50
9 600 104 26.56
14400 69.4 17.71
19200 52.1 13.28
28800 34.7 8.85
33400 29.9 7.63
56000 17.9 4.55
57600 17.4 4.43
115200 8.7 2.21
Alm L 555
Y 5



25.6.3.4 Receiver Time-out

The Time-out Value field in the Receiver Time-out Register (RTOR.TO) enables handling of vari-
able-length frames by detection of selectable idle durations on the RXD line. The value written to
TO is loaded to a decremental counter, and unless it is zero, a time-out will occur when the
amount of inactive bit periods matches the initial counter value. If a time-out has not occurred,
the counter will reload and restart every time a new character arrives. A time-out sets the
Receiver Time-out bit in CSR (CSR.TIMEOUT). An interrupt request is generated if the Receiver
Time-out bit in the Interrupt Mask Register (IMR.TIMEOUT) is set. Clearing TIMEOUT can be
done in two ways:

 Writing a one to the Start Time-out bit (CR.STTTO). This also aborts count down until the
next character has been received.

« Writing a one to the Reload and Start Time-out bit (CR.RETTO). This also reloads the
counter and restarts count down immediately.

Figure 25-10. Receiver Time-out Block Diagram

Baud Rate | TO I

Clock
16-bit
1—bp Q % 16-bit Time-out Value
> Counter -
Load 0 —»
Character Clear
Received
Table 25-6. Maximum Time-out Period
Baud Rate (bit/sec) Bit Time (us) Time-out (Ms)
600 1667 109 225
1200 833 54 613
2400 417 27 306
4800 208 13 653
9 600 104 6 827
14400 69 4551
19200 52 3413
28800 35 2276
33400 30 1962
56000 18 1170
57600 17 1138
200000 5 328

AIMEL 556

32072H-AVR32-10/2012 I ©



25.6.3.5 Framing Error
The receiver is capable of detecting framing errors. A framing error has occurred if a stop bit
reads as zero. This can occur if the transmitter and receiver are not synchronized. A framing
error is reported by CSR.FRAME as soon as the error is detected, at the middle of the stop bit.
An interrupt request is generated if the Framing Error bit in the Interrupt Mask Register
(IMR.FRAME) is set. CSR.FRAME is cleared by writing a one to CR.RSTSTA.

Figure 25-11. Framing Error Status

Baud Rate
Clock
o L [T T T T TTTTI
S:aai? DO D1 D2 D3 D4 D5 D6 D7 PaBriitryS i RSTSTA=1
Write T
CR

FRAME |_
RXRDY _|

25.6.3.6 Transmit Break

When CSR.TXRDY is set, the user can request the transmitter to generate a break condition on
the TXD line by writing a one to the Start Break bit (CR.STTBRK). The break is treated as a nor-
mal 0x00 character transmission, clearing CSR.TXRDY and CSR.TXEMPTY, but with zeroes for
preambles, start, parity, stop, and time guard bits. Writing a one to the Stop Break bit (CR.STT-
BRK) will stop the generation of new break characters, and send ones for TG duration or at least
12 bit periods, ensuring that the receiver detects end of break, before resuming normal opera-
tion. Figure 25-12 illustrates CR.STTBRK and CR.STPBRK effect on the TXD line.

Writing to CR.STTBRK and CR.STPBRK simultaneously can lead to unpredictable results.
Writes to THR before a pending break has started will be ignored.

Figure 25-12. Break Transmission

Baud Rate I‘ll’llllllllllllllllll Illllllllllllllllllllll
Clock ||||||||||||||||||| L
o [T T TTTTTT]

Start Parity Stop
Bit DO D1 D2 D3 D4 D5 D6 D7 Bit  Bit

STTBRK =1 STPBRK =1
Write I
CR

Break Transmission End of Break

TXRDY |

TXEMPTY _|

Alm L 557

32072H-AVR32-10/2012 I ©



25.6.3.7 Receive Break

A break condition is assumed when incoming data, parity, and stop bits are zero. This corre-
sponds to a framing error, but CSR.FRAME will remain zero while the Break Received/End of
Break bit (CSR.RXBRK) is set. An interrupt request is generated if the Breadk Received/End of
Break bit in the Interrupt Mask Register is set (IMR.RXBRK). Writing a one to CR.RSTSTA will
clear CSR.RXBRK. An end of break will also set CSR.RXBRK, and is assumed when TX is high
for at least 2/16 of a bit period in asynchronous mode, or when a high level is sampled in syn-
chronous mode.

25.6.4 Baud Rate Generator

The baud rate generator provides the bit period clock named the Baud Rate Clock to both
receiver and transmitter. It is based on a 16-bit divider, which is specified in the Clock Divider
field in the Baud Rate Generator Register (BRGR.CD). A non-zero value enables the generator,
and if BRGR.CD is one, the divider is bypassed and inactive. The Clock Selection field in the
Mode Register (MR.USCLKS) selects clock source between:

« CLK_USART (internal clock, refer to Power Manager chapter for details)
* CLK_USART/DIV (a divided CLK_USART, refer to Module Configuration section)
* CLK (external clock, available on the CLK pin)

If the external clock CLK is selected, the duration of the low and high levels of the signal pro-
vided on the CLK pin must be at least 4.5 times longer than those provided by CLK_USART.

Figure 25-13. Baud Rate Generator

USCLKS @

CLK_USART _ I

[ co ] LK

CLK_USART/DIV 1
16-bit Counter D
CLK Reserved 2 >3 = —
[] 3 1 (o T oo
0—» 0 Sampling 0
Divider
BaudRate
1 Clock
1
SYNC )
Sampling
USCLKS=3 » Clock

25.6.4.1 Baud Rate in Asynchronous Mode

32072H-AVR32-10/2012

If the USART is configured to operate in asynchronous mode (MR.SYNC is zero), the selected
clock is divided by the BRGR.CD value before it is provided to the receiver as a sampling clock.
Depending on the Oversampling Mode bit (MR.OVER) value, the clock is then divided by either
8 (MR.OVER=1), or 16 (MR.OVER=0). The baud rate is calculated with the following formula:

SelectedClock
(8(2—-0OVER)CD)

Alm L 558

Y 5

BaudRate =



This gives a maximum baud rate of CLK_USART divided by 8, assuming that CLK_USART is
the fastest clock available, and that MR.OVER is one.

25.6.4.2 Baud Rate Calculation Example
Table 25-7 shows calculations based on the CD field to obtain 38400 baud from different source
clock frequencies. This table also shows the actual resulting baud rate and error.

Table 25-7. Baud Rate Example (OVER=0)

Expected Baud
Source Clock (Hz) Rate (bit/s) Calculation Result CD Actual Baud Rate (bit/s) Error
3 686 400 38 400 6.00 6 38 400.00 0.00%
4915 200 38 400 8.00 8 38 400.00 0.00%
5 000 000 38 400 8.14 8 39 062.50 1.70%
7 372 800 38 400 12.00 12 38 400.00 0.00%
8 000 000 38 400 13.02 13 38 461.54 0.16%
12 000 000 38 400 19.53 20 37 500.00 2.40%
12 288 000 38 400 20.00 20 38 400.00 0.00%
14 318 180 38 400 23.30 23 38 908.10 1.31%
14 745 600 38 400 24.00 24 38 400.00 0.00%
18 432 000 38 400 30.00 30 38 400.00 0.00%
24 000 000 38 400 39.06 39 38 461.54 0.16%
24 576 000 38 400 40.00 40 38 400.00 0.00%
25 000 000 38 400 40.69 40 38 109.76 0.76%
32 000 000 38 400 52.08 52 38 461.54 0.16%
32 768 000 38 400 53.33 53 38 641.51 0.63%
33 000 000 38 400 53.71 54 38 194.44 0.54%
40 000 000 38 400 65.10 65 38 461.54 0.16%
50 000 000 38 400 81.38 81 38 580.25 0.47%
60 000 000 38 400 97.66 98 38 265.31 0.35%

The baud rate is calculated with the following formula (MR.OVER=0):

BaudRate = CLK_USART
CD-16

The baud rate error is calculated with the following formula. It is not recommended to work with
an error higher than 5%.

_ 1 ExpectedBaudRate)
Error = ( ActualBaudRate
25.6.4.3 Fractional Baud Rate in Asynchronous Mode

The baud rate generator has a limitation: the source frequency is always a multiple of the baud
rate. An approach to this problem is to integrate a high resolution fractional N clock generator,
outputting fractional multiples of the reference source clock. This fractional part is selected with

AIMEL 559

32072H-AVR32-10/2012 I ©




the Fractional Part field in BRGR (BRGR.FP), and is activated by giving it a non-zero value. The
resolution is one eighth of CD. The resulting baud rate is calculated using the following formula:

SelectedClock
(8(2 - OVER)(CD + %)))

BaudRate =

The modified architecture is shown in Figure 25-14.

Figure 25-14. Fractional Baud Rate Generator

%]

@I III Modulus

Control
FP
CLK_USART |\ | LK
CLK_USART/DIV 1 D
CLK Reserved 5 16-bit Counter glitch-free
logic  |3p>1 SYNC
3 OVER
] [ 1 \
0—»0 Sampling 0
Divider
BaudRate
1 » Clock

SYNC Sampling
USCLKS =3 »  Clock

25.6.4.4 Baud Rate in Synchronous and SPI Mode

If the USART is configured to operate in synchronous mode (MR.SYNC is one), the selected
clock is divided by BRGR.CD. This does not apply when the external clock CLK is selected.

SelectedClock
CD

BaudRate =

When CLK is selected, the frequency of the external clock must be at least 4.5 times lower than
the system clock, and when either CLK or CLK_USART/DIV are selected, BRGR.CD must be
even to ensure a 50/50 duty cycle. If CLK_USART is selected, the generator ensures this
regardless of value.

25.6.5 RS485 Mode
The USART features an RS485 mode, supporting line driver control. This supplements normal
synchronous and asynchronous mode by driving the RTS pin high when the transmitter is oper-
ating. The RTS pin level is the inverse of the CSR.TXEMPTY value. The RS485 mode is
enabled by writing Ox1 to MR.MODE. A typical connection to a RS485 bus is shown in Figure
25-15.

Alm L 560

32072H-AVR32-10/2012 I ©



AT32UC3A3

Figure 25-15. Typical Connection to a RS485 Bus

USART

RXD %
Differential

TXD Bus

RTS

If a timeguard has been configured the RTS pin will remain high for the duration specified in TG,
as shown in Figure 25-16.

Figure 25-16. Example of RTS Drive with Timeguard Enabled

Baud Rate
Clock Illllllllllllllllllllll Illllll_
o L TTTTTTTT]

Start Parity Stop
Bit DO D1 D2 D3 D4 D5 D6 D7 Bit Bit

Write T

THR

TXEMPTY

RTS

TXRDY —l_l
_|
_

25.6.6 Hardware Handshaking

The USART features an out-of-band hardware handshaking flow control mechanism, imple-
mentable by connecting the RTS and CTS pins with the remote device, as shown in Figure 25-
17.

Figure 25-17. Connection with a Remote Device for Hardware Handshaking

USART Remote
Device
TXD » RXD
RXD TXD
CTS RTS
RTS » CTS

Alm 