

MCP6271/1R/2/3/4/5

170 µA, 2 MHz Rail-to-Rail Op Amp

Features

- Gain Bandwidth Product: 2 MHz (typical)
- Supply Current: I_O = 170 µA (typical)
- Supply Voltage: 2.0V to 6.0V
- Rail-to-Rail Input/Output
- Extended Temperature Range: –40°C to +125°C
- Available in Single, Dual and Quad Packages
- Parts with Chip Select (\overline{CS})
	- Single (**MCP6273**)
	- Dual (**MCP6275**)

Applications

- Automotive
- Portable Equipment
- Photodiode Amplifier
- Analog Filters
- Notebooks and PDAs
- Battery Powered Systems

Available Tools

- SPICE Macro Models
- FilterLab[®] Software
- Mindi™ Circuit Designer & Simulator
- MAPS (Microchip Advanced Part Selector)
- Analog Demonstration and Evaluation Boards
- Application Notes

Package Types

Description

The Microchip Technology Inc. MCP6271/1R/2/3/4/5 family of operational amplifiers (op amps) provide wide bandwidth for the current. This family has a 2 MHz Gain Bandwidth Product (GBWP) and a 65° Phase Margin. This family also operates from a single supply voltage as low as 2.0V, while drawing 170 µA (typical) quiescent current. The MCP6271/1R/2/3/4/5 supports rail-to-rail input and output swing, with a Commonmode input voltage range of V_{DD} + 300 mV to V_{SS} – 300 mV. This family of op amps is designed with Microchip's advanced CMOS process.

The MCP6275 has a Chip Select input (\overline{CS}) for dual op amps in an 8-pin package and is manufactured by cascading two op amps (the output of op amp A connected to the non-inverting input of op amp B). The CS input puts the device in low power mode.

The MCP6271/1R/2/3/4/5 family operates over the Extended Temperature Range of –40°C to +125°C, with a power supply range of 2.0V to 6.0V.

MCP6271/1R/2/3/4/5

NOTES:

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

†† See **[Section 4.1.2 "Input Voltage and Current Limits"](#page-13-0)**.

DC ELECTRICAL SPECIFICATIONS

Electrical Characteristics: Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = +2.0V$ to +5.5V, $V_{SS} = GND$, $V_{CM} = V_{DD}/2$, $V_{\text{OUT}} \approx V_{\text{DD}}/2$, $V_L = V_{\text{DD}}/2$, $R_L = 10 \text{ k}\Omega$ to V_L and \overline{CS} is tied low. (Refer to [Figure 1-2](#page-5-0) and [Figure 1-3\)](#page-5-1).

Note 1: The MCP6275's V_{CM} for op amp B (pins V_{OUTA}/V_{INB}+ and V_{INB}-) is V_{SS} + 100 mV.

2: The current at the MCP6275's V_{INB} pin is specified by I_B only.

3: This specification does not apply to the MCP6275's V_{OUTA}/V_{INB}+ pin.

- **5:** Set by design and characterization.
- **6:** Does not apply to op amp B of the MCP6275.
- **7:** All parts with date codes November 2007 and later have been screened to ensure operation at $V_{DD} = 6.0V$. However, the other minimum and maximum specifications are measured at 2.0V and 5.5V.

^{4:} The MCP6275's V_{INB}- pin (op amp B) has a Common-mode input voltage range (V_{CMR}) of V_{SS} + 100 mV to V_{DD} – 100 mV. CMRR is not measured for op amp B of the MCP6275. The MCP6275's V_{OUTA}/V_{INB}+ pin (op amp B) has a voltage range specified by V_{OH} and V_{OL} .

DC ELECTRICAL SPECIFICATIONS (CONTINUED)

Electrical Characteristics: Unless otherwise indicated, $T_A = +25^\circ C$, $V_{DD} = +2.0V$ to +5.5V, $V_{SS} = GND$, $V_{CM} = V_{DD}/2$, $V_{\text{OUT}} \approx V_{\text{DD}}/2$, $V_L = V_{\text{DD}}/2$, $R_L = 10$ k Ω to V_L and \overline{CS} is tied low. (Refer to Figure 1-2 and Figure 1-3).

Note 1: The MCP6275's V_{CM} for op amp B (pins V_{OUTA}/V_{INB}+ and V_{INB}-) is V_{SS} + 100 mV.

2: The current at the MCP6275's V_{INB} – pin is specified by I_{B} only.

3: This specification does not apply to the MCP6275's V_{OUTA}/V_{INB}+ pin.

4: The MCP6275's V_{INB}- pin (op amp B) has a Common-mode input voltage range (V_{CMR}) of V_{SS} + 100 mV to V_{DD} – 100 mV. CMRR is not measured for op amp B of the MCP6275. The MCP6275's $V_{OUTA}V_{INB}$ + pin (op amp B) has a voltage range specified by V_{OH} and V_{OL} .

- **5:** Set by design and characterization.
- **6:** Does not apply to op amp B of the MCP6275.

7: All parts with date codes November 2007 and later have been screened to ensure operation at $V_{DD} = 6.0V$. However, the other minimum and maximum specifications are measured at 2.0V and 5.5V.

AC ELECTRICAL SPECIFICATIONS

Electrical Characteristics: Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = +2.0V$ to +5.5V, $V_{SS} = GND$, $V_{CM} = V_{DD}/2$, $V_{\text{OUT}} \approx V_{\text{DD}}/2$, $V_{\text{L}} = V_{\text{DD}}/2$, $R_{\text{L}} = 10$ kΩ to V_{L} , $C_{\text{L}} = 60$ pF and $\overline{\text{CS}}$ is tied low. (Refer to [Figure 1-2](#page-5-0) and [Figure 1-3](#page-5-1)).

FIGURE 1-1: Timing Diagram for the Chip Select (CS) pin on the MCP6273 and MCP6275.

TEMPERATURE SPECIFICATIONS

Note: The Junction Temperature (T_J) must not exceed the Absolute Maximum specification of +150°C.

MCP6273/MCP6275 CHIP SELECT SPECIFICATIONS

Note 1: The input condition (V_{1N}) specified applies to both op amp A and B of the MCP6275. The dynamic specification is tested at the output of op amp B (V_{OUTB}).

1.1 Test Circuits

The test circuits used for the DC and AC tests are shown in [Figure 1-2](#page-5-0) and [Figure 1-3](#page-5-1). The bypass capacitors are laid out according to the rules discussed in **[Section 4.7 "Supply Bypass"](#page-15-0)**.

FIGURE 1-2: AC and DC Test Circuit for Most Non-Inverting Gain Conditions.

FIGURE 1-3: AC and DC Test Circuit for Most Inverting Gain Conditions.

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, $T_A = +25^{\circ}$ C, $V_{DD} = +2.0V$ to $+5.5V$, $V_{SS} = GND$, $V_{CM} = V_{DD}/2$, $V_{OUT} \approx V_{DD}/2$, $V_L = V_{DD}/2$, R_L = 10 k Ω to V_L , C_L = 60 pF and \overline{CS} is tied low.

FIGURE 2-3: Input Offset Voltage vs. Common-mode Input Voltage, with V_{DD} = 2.0V.

FIGURE 2-6: Input Offset Voltage vs. Common-mode Input Voltage, with V_{DD} = 5.5V.

Note: Unless otherwise indicated, T_A = +25°C, V_{DD} = +2.0V to +5.5V, V_{SS} = GND, V_{CM} = $V_{DD}/2$, $V_{OUT} \approx V_{DD}/2$, $V_L = V_{DD}/2$, R_L = 10 k Ω to V_L , C_L = 60 pF and \overline{CS} is tied low.

FIGURE 2-7: Common-mode Input Voltage Range Lower Limit vs. Temperature.

FIGURE 2-8: Input Offset Voltage vs. Output Voltage.

Frequency.

FIGURE 2-10: Common-mode Input Voltage Range Upper Limit vs. Temperature.

FIGURE 2-11: Input Bias, Input Offset Currents vs. Temperature.

FIGURE 2-12: CMRR, PSRR vs. Temperature.

Note: Unless otherwise indicated, $T_A = +25^{\circ}$ C, $V_{DD} = +2.0V$ to $+5.5V$, $V_{SS} = GND$, $V_{CM} = V_{DD}/2$, $V_{OUT} \approx V_{DD}/2$, $V_L = V_{DD}/2$, R_L = 10 kΩ to V_L, C_L = 60 pF and \overline{CS} is tied low.

FIGURE 2-13: Input Bias, Offset Currents vs. Common-mode Input Voltage, with T_A = +85 $^{\circ}$ C.

FIGURE 2-14: Quiescent Current vs. Supply Voltage.

FIGURE 2-15: Open-Loop Gain, Phase vs. Frequency.

FIGURE 2-16: Input Bias, Offset Currents vs. Common-mode Input Voltage, with T_A = +125°C.

FIGURE 2-17: Output Voltage Headroom vs. Output Current Magnitude.

FIGURE 2-18: Gain Bandwidth Product, Phase Margin vs. Temperature.

Note: Unless otherwise indicated, T_A = +25°C, V_{DD} = +2.0V to +5.5V, V_{SS} = GND, V_{CM} = $V_{DD}/2$, $V_{OUT} \approx V_{DD}/2$, $V_L = V_{DD}/2$, R_L = 10 k Ω to V_L , C_L = 60 pF and \overline{CS} is tied low.

FIGURE 2-20: Input Noise Voltage Density vs. Frequency.

FIGURE 2-21: Output Short Circuit Current vs. Supply Voltage.

FIGURE 2-22: Slew Rate vs. Temperature.

FIGURE 2-23: Input Noise Voltage Density vs. Common-mode Input Voltage, with f = 1 kHz.

FIGURE 2-24: Channel-to-Channel Separation vs. Frequency (MCP6272 and MCP6274).

Note: Unless otherwise indicated, $T_A = +25^{\circ}$ C, $V_{DD} = +2.0V$ to $+5.5V$, $V_{SS} = GND$, $V_{CM} = V_{DD}/2$, $V_{OUT} \approx V_{DD}/2$, $V_L = V_{DD}/2$, R_L = 10 k Ω to V_L , C_L = 60 pF and \overline{CS} is tied low.

FIGURE 2-25: Quiescent Current vs. Chip Select (CS) Voltage, with V_{DD} = 2.0V (MCP6273 *and MCP6275 only).*

FIGURE 2-26: Large Signal Non-inverting Pulse Response.

FIGURE 2-27: Small Signal Non-inverting Pulse Response.

700 $V_{DD} = 5.5V$ **600 Hysteresis** Quiescent Current
(µA/amplifier) **Quiescent Current 500 (µA/amplifier) CS swept Low-to-High 400 High-to-Low** š **300 CS swept Op Amp turns 200 On/Off 100 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Chip Select Voltage (V)**

FIGURE 2-28: Quiescent Current vs. Chip Select (CS) Voltage, with V_{DD} = 5.5V (MCP6273 and MCP6275 only).

FIGURE 2-29: Large Signal Inverting Pulse Response.

Response.

FIGURE 2-30: Small Signal Inverting Pulse

Note: Unless otherwise indicated, T_A = +25°C, V_{DD} = +2.0V to +5.5V, V_{SS} = GND, V_{CM} = $V_{DD}/2$, $V_{OUT} \approx V_{DD}/2$, $V_L = V_{DD}/2$, R_L = 10 k Ω to V_L , C_L = 60 pF and \overline{CS} is tied low.

FIGURE 2-31: Chip Select (CS) to Amplifier Output Response Time, with VDD = 2.0V (MCP6273 and MCP6275 only).

FIGURE 2-32: Input Current vs. Input Voltage.

FIGURE 2-33: Chip Select (CS) to Amplifier Output Response Time, with VDD = 5,5V (MCP6273 and MCP6275 only).

FIGURE 2-34: The MCP6271/1R/2/3/4/5 Show no Phase Reversal.

3.0 PIN DESCRIPTIONS

Descriptions of the pins are listed in [Table 3-1](#page-12-0) (single op amps) and [Table 3-2](#page-12-1) (dual and quad op amps).

TABLE 3-1: PIN FUNCTION TABLE FOR SINGLE OP AMPS

TABLE 3-2: PIN FUNCTION TABLE FOR DUAL AND QUAD OP AMPS

3.1 Analog Outputs

The output pins are low impedance voltage sources.

3.2 Analog Inputs

The non-inverting and inverting inputs are high impedance CMOS inputs with low bias currents.

3.3 MCP6275's V_{OUTA}/V_{INB}+ Pin

For the MCP6275 only, the output of op amp A is connected directly to the non-inverting input of op amp B; this is the $V_{\text{OUTA}}/V_{\text{INB}}+$ pin. This connection makes it possible to provide a \overline{CS} pin for duals in 8-pin packages.

3.4 Chip Select Digital Input

This is a CMOS, Schmitt triggered input that places the part into a low power mode of operation.

3.5 Power Supply Pins

The positive power supply (V_{DD}) is 2.0V to 6.0V higher than the negative power supply (V_{SS}) . For normal operation, the other pins are at voltages between V_{SS} and V_{DD} .

Typically, these parts are used in a single (positive) supply configuration. In this case, V_{SS} is connected to ground and V_{DD} is connected to the supply. V_{DD} will need bypass capacitors.

4.0 APPLICATION INFORMATION

The MCP6271/1R/2/3/4/5 family of op amps is manufactured using Microchip's state of the art CMOS process, specifically designed for low cost, low power and general purpose applications. The low supply voltage, low quiescent current and wide bandwidth make the MCP6271/1R/2/3/4/5 ideal for battery powered applications.

4.1 Rail-to-Rail Inputs

4.1.1 PHASE REVERSAL

The input devices are designed to not exhibit phase inversion when the input pins exceed the supply voltages. [Figure 2-34](#page-11-0) shows an input voltage exceeding both supplies with no phase inversion.

4.1.2 INPUT VOLTAGE AND CURRENT LIMITS

The ESD protection on the inputs can be depicted as shown in [Figure 4-1.](#page-13-1) This structure was chosen to protect the input transistors, and to minimize input bias current (I_B) . The input ESD diodes clamp the inputs when they try to go more than one diode drop below V_{SS} . They also clamp any voltages that go too far above V_{DD} ; their breakdown voltage is high enough to allow normal operation, and low enough to bypass quick ESD events within the specified limits.

FIGURE 4-1: Simplified Analog Input ESD Structures.

In order to prevent damage and/or improper operation of these amplifiers, the circuit must limit the currents (and voltages) at the input pins (see [Absolute Maxi](#page-2-6)[mum Ratings †](#page-2-6) at the beginning of **[Section 1.0 "Elec](#page-2-7)[trical Characteristics"](#page-2-7)**). [Figure 4-2](#page-13-2) shows the recommended approach to protecting these inputs. The internal ESD diodes prevent the input pins $(V_{IN}+$ and V_{IN}) from going too far below ground, and the resistors R_1 and R_2 limit the possible current drawn out of the input pins. Diodes D_1 and D_2 prevent the input pins (V_{IN} + and V_{IN}) from going too far above V_{DD} , and

dump any currents onto V_{DD} . When implemented as shown, resistors R_1 and R_2 also limit the current through D_1 and D_2 .

FIGURE 4-2: Protecting the Analog Inputs.

It is also possible to connect the diodes to the left of the resistor R_1 and R_2 . In this case, the currents through the diodes D_1 and D_2 need to be limited by some other mechanism. The resistors then serve as in-rush current limiters; the DC current into the input pins $(V_{IN} +$ and V_{IN} –) should be very small.

A significant amount of current can flow out of the inputs (through the ESD diodes) when the Commonmode voltage (V_{CM}) is below ground (V_{SS}); see [Figure 2-32.](#page-11-1) Applications that are high impedance may need to limit the usable voltage range.

4.1.3 NORMAL OPERATIONS

The input stage of the MCP6271/1R/2/3/4/5 op amps uses two differential CMOS input stages in parallel. One operates at low Common-mode input voltage (V_{CM} and the other at high V_{CM} . With this topology, the input operates with V_{CM} up to 0.3V past either supply rail (see [Figure 2-7](#page-7-0) and [Figure 2-10](#page-7-1)). The input offset voltage (V_{OS}) is measured at $V_{CM} = V_{SS} - 0.3V$ and V_{DD} + 0.3V to ensure proper operation.

The transition between the two input stage occurs when $V_{CM} \approx V_{DD} - 1.1V$ (see [Figure 2-3](#page-6-0) and [Figure 2-](#page-6-1) [6\)](#page-6-1). For the best distortion and gain linearity, with noninverting gains, avoid this region of operation.

4.2 Rail-to-Rail Output

The output voltage range of the MCP6271/1R/2/3/4/5 op amps is V_{DD} – 15 mV (minimum) and V_{SS} + 15 mV (maximum) when $R_L = 10 k\Omega$ is connected to $V_{DD}/2$ and V_{DD} = 5.5V. Refer to [Figure 2-17](#page-8-0) for more information.

4.3 Capacitive Loads

Driving large capacitive loads can cause stability problems for voltage feedback op amps. As the load capacitance increases, the feedback loop's phase margin decreases and the closed-loop bandwidth is reduced. This produces gain peaking in the frequency response, with overshoot and ringing in the step response. A unity gain buffer $(G = +1)$ is the most sensitive to capacitive loads, though all gains show the same general behavior.

When driving large capacitive loads with these op amps (e.g., > 100 pF when $G = +1$), a small series resistor at the output (R_{ISO} in [Figure 4-3](#page-14-0)) improves the feedback loop's phase margin (stability) by making the output load resistive at higher frequencies. The bandwidth will be generally lower than the bandwidth with no capacitive load.

FIGURE 4-3: Output Resistor, R_{ISO} stabilizes large capacitive loads.

[Figure 4-4](#page-14-1) gives recommended R_{ISO} values for different capacitive loads and gains. The x-axis is the normalized load capacitance (C_L/G_N) , where G_N is the circuit's noise gain. For non-inverting gains, G_N and the Signal Gain are equal. For inverting gains, G_N is 1+|Signal Gain| (e.g., -1 V/V gives G_N = +2 V/V).

FIGURE 4-4: Recommended RISO Values for Capacitive Loads.

After selecting R_{ISO} for your circuit, double check the resulting frequency response peaking and step response overshoot. Modify $R_{\rm ISO}$'s value until the response is reasonable. Bench evaluation and simulations with the MCP6271/1R/2/3/4/5 SPICE macro model are helpful.

4.4 MCP6273/5 Chip Select

The MCP6273 and MCP6275 are single and dual op amps with Chip Select (\overline{CS}) , respectively. When \overline{CS} is pulled high, the supply current drops to 0.7 µA (typical) and flows through the \overline{CS} pin to V_{SS} . When this happens, the amplifier output is put into a high impedance state. By pulling \overline{CS} low, the amplifier is enabled. The $\overline{\text{CS}}$ pin has an internal 5 M Ω (typical) pulldown resistor connected to V_{SS} , so it will go low if the CS pin is left floating. [Figure 1-1](#page-3-0) shows the output voltage and supply current response to a $\overline{\text{CS}}$ pulse.

4.5 Cascaded Dual Op Amps (MCP6275)

The MCP6275 is a dual op amp with Chip Select (\overline{CS}) . The Chip Select input is available on what would be the non-inverting input of a standard dual op amp (pin 5). This pin is available because the output of op amp A connects to the non-inverting input of op amp B, as shown in [Figure 4-5](#page-14-2). The Chip Select input, which can be connected to a microcontroller I/O line, puts the device in low power mode. Refer to **Section 4.4 "MCP6273/5 Chip Select (CS)"**.

FIGURE 4-5: Cascaded Gain Amplifier.

The output of op amp A is loaded by the input impedance of op amp B, which is typically 10^{13} Ω | 6 pF, as specified in the DC specification table (Refer to **[Section 4.3 "Capacitive Loads"](#page-14-3)** for further details regarding capacitive loads).

The Common-mode input range of these op amps is specified in the data sheet as V_{SS} – 300 mV and V_{DD} + 300 mV. However, since the output of op amp A is limited to V_{OL} and V_{OH} (20 mV from the rails with a 10 k Ω load), the non-inverting input range of op amp B is limited to the Common-mode input range of V_{SS} + 20 mV and V_{DD} – 20 mV.

4.6 Unused Amplifiers

An unused op amp in a quad package (MCP6274) should be configured as shown in [Figure 4-6.](#page-15-1) These circuits prevent the output from toggling and causing crosstalk. In Circuit A, R_1 and R_2 produce a voltage within its output voltage range (V_{OH} , V_{OH}). The op amp buffers this voltage, which can be used elsewhere in the circuit. Circuit B uses the minimum number of components and operates as a comparator.

4.7 Supply Bypass

With this family of operational amplifiers, the power supply pin $(V_{DD}$ for single supply) should have a local bypass capacitor (i.e., $0.01 \mu F$ to $0.1 \mu F$) within 2 mm for good, high frequency performance. It also needs a bulk capacitor (i.e., 1μ F or larger) within 100 mm to provide large, slow currents. This bulk capacitor can be shared with nearby analog parts.

4.8 PCB Surface Leakage

In applications where low input bias current is critical, Printed Circuit Board (PCB) surface leakage effects need to be considered. Surface leakage is caused by humidity, dust or other contamination on the board. Under low humidity conditions, a typical resistance between nearby traces is 10¹² Ω . A 5V difference would cause 5 pA of current to flow. This is greater than the MCP6271/1R/2/3/4/5 family's bias current at 25°C (1 pA, typical).

The easiest way to reduce surface leakage is to use a guard ring around sensitive pins (or traces). The guard ring is biased at the same voltage as the sensitive pin. An example of this type of layout is illustrated in [Figure 4-7.](#page-15-2)

FIGURE 4-7: Example Guard Ring Layout for Inverting Gain.

- 1. For Inverting Gain and Transimpedance Amplifiers (convert current to voltage, such as photo detectors):
	- a) Connect the guard ring to the non-inverting input pin $(V_{IN}+)$. This biases the guard ring to the same reference voltage as the op amp (e.g., $V_{DD}/2$ or ground).
	- b) Connect the inverting pin $(V_{1N}-)$ to the input with a wire that does not touch the PCB surface.
- 2. Non-inverting Gain and Unity Gain Buffer:
	- a) Connect the non-inverting pin $(V_{IN}+)$ to the input with a wire that does not touch the PCB surface.
	- b) Connect the guard ring to the inverting input pin $(V_{IN}-)$. This biases the guard ring to the Common-mode input voltage.

4.9 Application Circuits

4.9.1 ACTIVE FULL-WAVE RECTIFIER

The MCP6271/1R/2/3/4/5 family of amplifiers can be used in applications such as an Active Full-Wave Rectifier or an Absolute Value circuit, as shown in [Figure 4-8.](#page-16-0) The amplifier and feedback loops in this active voltage rectifier circuit eliminate the diode drop problem that exists in a passive voltage rectifier. This circuit behaves as a follower (the output follows the input) as long as the input signal is more positive than the reference voltage. If the input signal is more negative than the reference voltage, however, the circuit behaves as an inverting amplifier. Therefore, the output voltage will always be above the reference voltage, regardless of the input signal.

FIGURE 4-8: Active Full-wave Rectifier.

The design equations give a gain of ± 1 from V_{IN} to V_{OUT} , and produce rail-to-rail outputs.

4.9.2 LOSSY NON-INVERTING INTEGRATOR

The non-inverting integrator shown in [Figure 4-9](#page-16-1) is easy to build. It saves one op amp over the typical Miller integrator plus inverting amplifier configuration. The phase accuracy of this integrator depends on the matching of the input and feedback resistor-capacitor time constants. R_F makes this a lossy integrator (it has finite gain at DC) and stable by itself.

FIGURE 4-9: Non-Inverting Integrator.

4.9.3 CASCADED OP AMP APPLICATIONS

The MCP6275 provides the flexibility of Low power mode for dual op amps in an 8-pin package. The MCP6275 eliminates the added cost and space in a battery powered application by using two single op amps with Chip Select (CS) lines or a 10-pin device with one CS line for both op amps. Since the two op amps are internally cascaded, this device cannot be used in circuits that require active or passive elements between the two op amps. However, there are several applications where this op amp configuration with a $\overline{\text{CS}}$ line becomes suitable. The circuits below show possible applications for this device.

4.9.3.1 Load Isolation

With the cascaded op amp configuration, op amp B can be used to isolate the load from op amp A. In applications where op amp A is driving capacitive or low resistive loads in the feedback loop (such as an integrator or filter circuit) the op amp may not have sufficient source current to drive the load. In this case, op amp B can be used as a buffer.

FIGURE 4-10: Isolating the Load with a Buffer.

4.9.3.2 Cascaded Gain

[Figure 4-11](#page-17-0) shows a cascaded gain circuit configuration with Chip Select. Op amps A and B are configured in a non-inverting amplifier configuration. In this configuration, it is important to note that the input offset voltage of op amp A is amplified by the gain of op amp A and B, as shown below:

Therefore, it is recommended that you set most of the gain with op amp A and use op amp B with relatively small gain (e.g., a unity gain buffer).

FIGURE 4-11: Cascaded Gain Circuit Configuration.

4.9.3.3 Difference Amplifier

[Figure 4-12](#page-17-1) shows op amp A configured as a difference amplifier with Chip Select. In this configuration, it is recommended that well matched resistors (e.g., 0.1%) be used to increase the Common-mode Rejection Ratio (CMRR). Op amp B can be used to provide additional gain and isolate the load from the difference amplifier.

FIGURE 4-12: Difference Amplifier Circuit.

4.9.3.4 Inverting Integrator with Active Compensation and Chip Select

[Figure 4-13](#page-18-0) uses an active compensator (op amp B) to compensate for the non-ideal op amp characteristics introduced at higher frequencies. This circuit uses op amp B as a unity gain buffer to isolate the integration capacitor C_1 from op amp A and drives the capacitor with a low impedance source. Since both op amps are matched very well, they provide a high quality integrator.

FIGURE 4-13: Integrator Circuit with Active Compensation.

4.9.3.5 Second Order MFB with an Extra Pole-Zero Pair

[Figure 4-14](#page-18-1) is a second order multiple feedback lowpass filter with Chip Select. Use the FilterLab® software from Microchip Technology Inc. to determine the R and C values for op amp A's second order filter. Op amp B can be used to add a pole-zero pair using C_3 , R_6 and R_7 .

FIGURE 4-14: Second Order Multiple Feedback Low-Pass Filter with an Extra Pole-Zero Pair.

4.9.3.6 Second Order Sallen-Key with an Extra Pole-Zero Pair

[Figure 4-15](#page-18-2) is a second order Sallen-Key low-pass filter with Chip Select. Use the Filterlab[®] software from Microchip to determine the R and C values for op amp A's second order filter. Op amp B can be used to add a pole-zero pair using C_3 , R_5 and R_6 .

FIGURE 4-15: Second Order Sallen-Key Low-Pass Filter with an Extra Pole-Zero Pair and Chip Select.

4.9.3.7 Capacitorless Second Order Low-Pass filter with Chip Select

The low-pass filter shown in [Figure 4-16](#page-18-3) does not require external capacitors and uses only three external resistors; the op amp's GBWP sets the corner frequency. R_1 and R_2 are used to set the circuit gain. R_3 is used to set the Q. To avoid gain peaking in the frequency response, Q needs to be low (lower values need to be selected for R_3). Note that the amplifier bandwidth varies greatly over temperature and process. This configuration, however, provides a low cost solution for applications with high bandwidth requirements.

FIGURE 4-16: Capacitorless Second Order Low-Pass Filter with Chip Select.

MCP6271/1R/2/3/4/5

NOTES:

5.0 DESIGN TOOLS

Microchip provides the basic design tools needed for the MCP6271/1R/2/3/4/5 family of op amps.

5.1 SPICE Macro Model

The latest SPICE macro model for the MCP6271/1R/2/ 3/4/5 op amps is available on the Microchip web site at www.microchip.com. This model is intended to be an initial design tool that works well in the op amp's linear region of operation over the temperature range. See the model file for information on its capabilities.

Bench testing is a very important part of any design and cannot be replaced with simulations. Also, simulation results using this macro model need to be validated by comparing them to the data sheet specifications and characteristic curves.

5.2 FilterLab® Software

Microchip's FilterLab[®] software is an innovative software tool that simplifies analog active filter (using op amps) design. Available at no cost from the Microchip web site at www.microchip.com/filterlab, the FilterLab design tool provides full schematic diagrams of the filter circuit with component values. It also outputs the filter circuit in SPICE format, which can be used with the macro model to simulate actual filter performance.

5.3 Mindi™ Circuit Designer & Simulator

Microchip's Mindi™ Circuit Designer & Simulator aids in the design of various circuits useful for active filter, amplifier and power-management applications. It is a free online circuit designer & simulator available from the Microchip web site at www.microchip.com/mindi. This interactive circuit designer & simulator enables designers to quickly generate circuit diagrams, simulate circuits. Circuits developed using the Mindi Circuit Designer & Simulator can be downloaded to a personal computer or workstation.

5.4 MAPS (Microchip Advanced Part Selector)

MAPS is a software tool that helps semiconductor professionals efficiently identify Microchip devices that fit a particular design requirement. Available at no cost from the Microchip web site at www.microchip.com/ maps, the MAPS is an overall selection tool for Microchip's product portfolio that includes Analog, Memory, MCUs and DSCs. Using this tool you can define a filter to sort features for a parametric search of devices and export side-by-side technical comparison reports. Helpful links are also provided for Data sheets, Purchase, and Sampling of Microchip parts.

5.5 Analog Demonstration and Evaluation Boards

Microchip offers a broad spectrum of Analog Demonstration and Evaluation Boards that are designed to help you achieve faster time to market. For a complete listing of these boards and their corresponding user's guides and technical information, visit the Microchip web site at www.microchip.com/ analogtools.

Two of our boards that are especially useful are:

- **P/N SOIC8EV:** *8-Pin SOIC/MSOP/TSSOP/DIP Evaluation Board*
- **P/N SOIC14EV:** *14-Pin SOIC/TSSOP/DIP Evaluation Board*

5.6 Application Notes

The following Microchip Application Notes are available on the Microchip web site at www.microchip. com/ appnotes and are recommended as supplemental reference resources.

ADN003: *"Select the Right Operational Amplifier for your Filtering Circuits,"* DS21821

AN722: *"Operational Amplifier Topologies and DC Specifications,"* DS00722

AN723: *"Operational Amplifier AC Specifications and Applications",* DS00723

AN884: *"Driving Capacitive Loads With Op Amps,"* DS00884

AN990: *"Analog Sensor Conditioning Circuits – An Overview,"* DS00990

These application notes and others are listed in the design guide:

"Signal Chain Design Guide," DS21825

```
 2019 Microchip Technology Inc. DS20001810G-page 21
```
MCP6271/1R/2/3/4/5

NOTES:

6.0 PACKAGING INFORMATION

6.1 Package Marking Information

5-Lead SOT-23 (**MCP6271 and MCP6271R**)

Note: Applies to 5-Lead SOT-23

Example:

8-Lead MSOP **Example:**

XXXXXXXX XXXXXNNN YYWW

<u>n m m d</u>

Package Marking Information (Continued)

 $E/2$

(DATUM D) (DATUM A-B) E

5-Lead Plastic Small Outline Transistor (OT) [SOT23]

NOTE 1 \rightarrow 1 1 2

 \mathbf{I}

TOP VIEW

 \overline{B} \rightarrow NX b

e

Microchip Technology Drawing C04-091-OT Rev E Sheet 1 of 2

 $\boxed{\bigoplus$ 0.20 $\boxed{ \bigcirc }$ C A-B D

 0.15 C D

E1

 $E_{1/2}$

 $\overline{2X}$

 $\boxed{\triangle}$

5-Lead Plastic Small Outline Transistor (OT) [SOT23]

For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging **Note:**

Notes:

protrusions shall not exceed 0.25mm per side. 1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or

2. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-091-OT Rev E Sheet 2 of 2

5-Lead Plastic Small Outline Transistor (OT) [SOT23]

For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging **Note:**

RECOMMENDED LAND PATTERN

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2091B [OT]

6-Lead Plastic Small Outline Transistor (CH, CHY) [SOT-23]

For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging **Note:**

Microchip Technology Drawing C04-028C (CH) Sheet 1 of 2

6-Lead Plastic Small Outline Transistor (CH, CHY) [SOT-23]

For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging **Note:**

Notes:

protrusions shall not exceed 0.25mm per side. 1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or

2. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-028C (CH) Sheet 2 of 2

6-Lead Plastic Small Outline Transistor (CH, CHY) [SOT-23]

For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging **Note:**

RECOMMENDED LAND PATTERN

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2028B (CH)

8-Lead Plastic Micro Small Outline Package (MS) [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-111C Sheet 1 of 2

8-Lead Plastic Micro Small Outline Package (MS) [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL C

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.

3. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-111C Sheet 2 of 2

8-Lead Plastic Micro Small Outline Package (MS) [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Notes:

1. Dimensioning and tolerancing per ASME Y14 5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2111A

8-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]

For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging **Note:**

Microchip Technology Drawing No. C04-018-P Rev E Sheet 1 of 2

8-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]

For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging **Note:**

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- BSC: Basic Dimension. Theoretically exact value shown without tolerances. 4. Dimensioning and tolerancing per ASME Y14.5M
- 5. Lead design above seating plane may vary, based on assembly vendor.

Microchip Technology Drawing No. C04-018-P Rev E Sheet 2 of 2

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm (.150 In.) Body [SOIC]

Microchip Technology Drawing No. C04-057-SN Rev E Sheet 1 of 2

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm (.150 In.) Body [SOIC]

For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging **Note:**

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic

- protrusions shall not exceed 0.15mm per side. 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or
- 4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-057-SN Rev E Sheet 2 of 2

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm Body [SOIC]

For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging **Note:**

RECOMMENDED LAND PATTERN

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2057-SN Rev E

14-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located with the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-005B

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Microchip Technology Drawing No. C04-065-SL Rev D Sheet 1 of 2

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging **Note:**

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic

- or protrusion, which shall not exceed 0.25 mm per side. 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash
- 4. Dimensioning and tolerancing per ASME Y14.5M
	- BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-065-SL Rev D Sheet 2 of 2

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging **Note:**

RECOMMENDED LAND PATTERN

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2065-SL Rev D

14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-087C Sheet 1 of 2

14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing No. C04-087C Sheet 2 of 2

14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2087A

MCP6271/1R/2/3/4/5

NOTES:

APPENDIX A: REVISION HISTORY

Revision G (December 2019)

The following is the list of modifications:

1. Updated **[Section 6.0 "Packaging Informa](#page-22-0)[tion"](#page-22-0)**.

Revision F (March 2008)

The following is the list of modifications:

- 1. Increased maximum operating V_{DD} .
- 2. Updated **Section 5.0 "Design Tools"**
- 3. Various cleanups thoughout document.
- 4. Updated package outline drawings in **Section 6.0 "Packaging Information"**

Revision E (December 2006)

The following is the list of modifications:

- 1. Updated specifications (**Section 1.0 "Electrical Characteristics"**):
	- a) Clarified Absolute Maximum Analog Input Voltage and Current specifications.
	- b) Clarified V_{CMR} , V_{OL} , V_{OH} , and PM specifications.
	- c) Corrected the typical E_{ni} .
- 2. Added plots on Common Mode Input Range behavior vs. temperature and supply voltage (**Section 2.0 "Typical Performance Curves"**).
- 3. Added applications writeup on unused op amps and corrected description of floating CS pin behavior (**Section 4.0 "Application Information"**).
- 4. Updated package information (**Section 6.0 "Packaging Information"**):
	- a) Corrected package markings.
	- b) Added disclaimer to package outline drawings.

Revision D (December 2004)

The following is the list of modifications:

- 1. Added SOT-23-5 packages for the MCP6271 and MCP6271R single op amps.
- 2. Added SOT-23-6 packages for the MCP6273 single op amp.
- 3. Added **Section 3.0 "Pin Descriptions"**.
- 4. Corrected application circuits (**Section 4.9 "Application Circuits"**).
- 5. Added SOT-23-5 and SOT-23-6 packages and corrected package marking information (**Section 6.0 "Packaging Information"**).
- 6. Added Appendix A: Revision History.

Revision C (June 2004)

• Undocumented Changes

Revision B (October 2003)

• Undocumented Changes

Revision A (June 2003)

• Original data sheet release.

MCP6271/1R/2/3/4/5

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

MCP6271/1R/2/3/4/5

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE**.** Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2019, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-5343-7

[For information regarding Microchip's Quality Management Systems,](www.microchip.com/quality) [please visit](www.microchip.com/quality) www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: [http://www.microchip.com/](http://support.microchip.com) support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000 **China - Chengdu**

Tel: 86-28-8665-5511 **China - Chongqing** Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138 **China - Zhuhai**

Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

Tel: 91-11-4160-8631

Tel: 91-20-4121-0141

Tel: 81-6-6152-7160

Korea - Daegu

Korea - Seoul

Tel: 60-3-7651-7906

Tel: 60-4-227-8870

Tel: 65-6334-8870

Taiwan - Hsin Chu

Taiwan - Kaohsiung

Tel: 886-2-2508-8600

Thailand - Bangkok

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

Tel: 47-7288-4388

Tel: 48-22-3325737

Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

India - New Delhi India - Pune

Japan - Osaka

Japan - Tokyo Tel: 81-3-6880- 3770

Tel: 82-53-744-4301

Tel: 82-2-554-7200

Malaysia - Kuala Lumpur

Malaysia - Penang

Philippines - Manila Tel: 63-2-634-9065

Singapore

Tel: 886-3-577-8366

Tel: 886-7-213-7830

Taiwan - Taipei

Tel: 66-2-694-1351

Tel: 49-7131-72400 **Germany - Karlsruhe** Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

EUROPE Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 **Denmark - Copenhagen** Tel: 45-4450-2828 Fax: 45-4485-2829 **Finland - Espoo** Tel: 358-9-4520-820 **France - Paris** Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 **Germany - Garching** Tel: 49-8931-9700 **Germany - Haan** Tel: 49-2129-3766400 **Germany - Heilbronn**

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399

Fax: 31-416-690340 **Norway - Trondheim**

Poland - Warsaw

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid