DATA SHEET

DOC. No: L	L1530QUHR1-301 LMS-15-145)1
•	Round LED Lamp in with Water Clear Lens
Dice Material:	AlGalnP
Confirmed by Customer:	
Date:	

Model No.	LL1530QUHR1-301
Doc. No.	LMS-15-145
Revision:	01

Absolute Maximum Ratings at Ta = 25°C

Items	Symbol	Absolute maximum Rating	Unit
Forward Current	l _F	50	mA
Peak Forward Current*	I _{FP}	200	mA
Reverse Voltage	V_R	5	V
Power Dissipation	P_{D}	130	mW
Operation Temperature	T_{opr}	-40 ~ +95	°C
Storage Temperature	T_{stg}	-40 ~ +100	°C
Lead Soldering Temperature	T_{sol}	Max.260°C for 5 sec Max. (3mm from the base of the epoxy bulb)	

^{*}pulse width <=0.1msec duty <=1/10

0.7MAX NIMOLI NI

NOTES:1. ALL DIMENSIONS ARE IN mm TOLERANCE IS. ± 0.25 mm UNLESS OTHERWISE NOTED.

- 2. AN EPOXY MENISCUS MAY EXTEND ABOUT 1.5mm DOWN THE LEADS.
- 3. BURR AROUND BOTTOM OF EPOXY MAY BE 0.5 mm MAX.

Typical Electrical & Optical Characteristics (Ta = 25°C)

Symbol	Condition	Min.	Тур.	Max.	Unit
V _F	I _F = 20mA	1.7	2.1	2.6	V
I _R	$V_R = 5V$			10	μΑ
λ_{D}	$I_F = 20mA$		624		nm
I _V	$I_F = 20mA$		4000		mcd
20½H-H	$I_F = 20mA$		30		deg
20½V-V	I _F = 20mA				deg
	V_F I_R λ_D I_V $20\frac{1}{2}H-H$	$\begin{array}{ccc} V_F & I_F = 20 \text{mA} \\ I_R & V_R = 5 V \\ \lambda_D & I_F = 20 \text{mA} \\ I_V & I_F = 20 \text{mA} \\ 20 \frac{1}{2} \text{H-H} & I_F = 20 \text{mA} \end{array}$	V_F $I_F = 20 \text{mA}$ 1.7 I_R $V_R = 5 V$ I_V $I_F = 20 \text{mA}$ I_V $I_F = 20 \text{mA}$ I_V $I_F = 20 \text{mA}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Important Notes:

- 1) All ranks will be included per delivery, rank ratio will be determined by LEDMAN.
- 2) Tolerance of measurement of luminous intensity is $\pm 15\%$.
- 3) Tolerance of measurement of dominant wavelength is ±1nm.
- 4) Tolerance of measurement of Vf is ± 0.05 V.
- 5) Packaging methods are available for selection, please refer to PACKAGING STANDARD.
- 6) Please refer to LED LAMP RELIABILITY TEST STANDARD for reliability test conditions.

Model No.	LL1530QUHR1-301
Doc. No.	LMS-15-145
Revision:	01

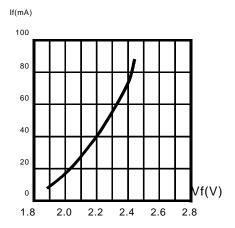


Fig.1 FORWARD CURRENT VS. FORWARD VOLTAGE.

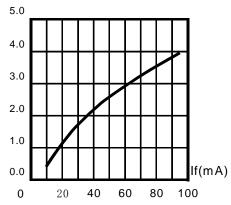


Fig.3 RELATIVE LUMINOUS IN TENSITY VS. FORWARD CURRENT.

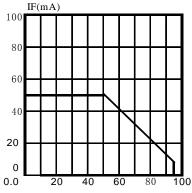


FIG.5 MAXIMUM FORWARD DC CURRENT VS AMBIENT TEMPERATURE(Tjmax=105℃)

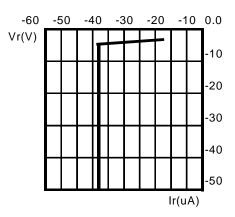
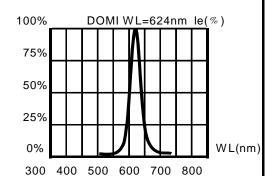



Fig.2 REVERSE CURRENT VS. REVERSE VOLTAGE.

INTENSITY VS. WAVELENGTH.

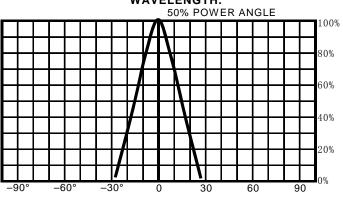


Fig.6 FAR FIELD PATTERN