XLamp[®] CMU1003 LED

PRODUCT DESCRIPTION

The XLamp[®] CMU LED family delivers • industry-leading performance in commonlyavailable package and LES sizes. The CMU family delivers up to 10% higher LPW . than the previous generation CMT family . while retaining mechanical and optical . compatibility with CMT. XLamp CMU LEDs • are optimized for premium indoor lighting . applications, including track, spot and • 115° viewing angle, uniform downlight, as well as outdoor lighting.

FEATURES

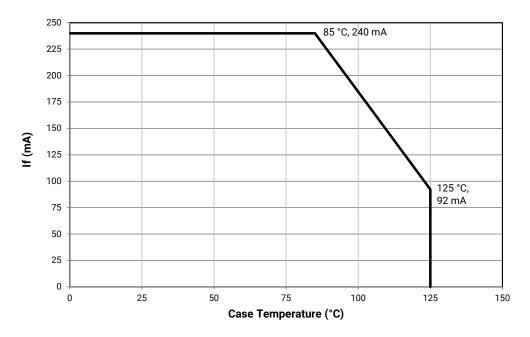
- 9.8-mm optical source
- Available in 70-, 80- and 90- and 95-minimum CRI options
- EasyWhite® 2-, 3- and 5-step binning
- Premium Color 2- and 3-step binning
- Forward voltage option: 36-V class
- 85 °C binning and characterization
- Maximum drive current: 240 mA
- chromaticity profile
- Top-side solder connections
- **RoHS and REACH compliant**
- UL[®] recognized component (E349212)

TABLE OF CONTENTS

Characteristics 2
Operating Limits2
Flux Characteristics, EasyWhite® Order
Codes and Bins 3
Flux Characteristics, Premium Color Order
Codes and Bins 4
Relative Spectral Power Distribution,
EasyWhite® LEDs5
Relative Spectral Power Distribution,
Premium Color LEDs 6
Electrical Characteristics
Relative Luminous Flux9
Typical Spatial Distribution9
Performance Groups - Chromaticity 10
Premium Color Performance Groups -
Chromaticity 11
EasyWhite [®] Bins Plotted on the 1931 CIE
Color Space 12
Premium Color Bins Plotted on the 1931
CIE Color Space 13
Bin and Order Code Formats15
Mechanical Dimensions16
Thermal Design 17
Notes 18
Packaging19

Cree LED / 4001 E. Hwy. 54, Suite 2000 / Durham, NC 27709 USA / +1.919.313.5330 / www.cree-led.com

CHARACTERISTICS


Characteristics	Unit	Minimum	Typical	Maximum
Viewing angle (FWHM)	degrees		115	
ESD withstand voltage (JEDEC JS-001-2012)	V		Class 3A	
DC forward current	mA			240*
Reverse current	mA			0.1
Forward voltage (@ 90 mA, 85 °C)	V		33.6	37.5
Forward voltage (@ 90 mA, 25 °C)	V		34.3	38.2

* Refer to the Operating Limits section.

OPERATING LIMITS

The maximum current rating of the CMU1003 LED depends on the case temperature (Tc) when the LED has reached thermal equilibrium under steady-state operation. The graph shown below assumes that the system design employs good thermal management (thermal interface material and heat sink) and may vary when poor thermal management is employed. Either solder pad shown in the Mechanical Dimensions section on page 16 can be used as the Tc measurement point.

Another important factor in good thermal management is the temperature of the Light Emitting Surface (LES). Cree LED recommends a maximum LES temperature of 140 °C to ensure optimal LED lifetime. Please refer to the Thermal Design section on page 17 for more information on LES temperature measurement.

FLUX CHARACTERISTICS, EASYWHITE® ORDER CODES AND BINS (I_F = 90 mA, T_J = 85 °C)

The following table provides order codes for XLamp CMU1003 LEDs. For a complete description of the order code nomenclature, please see the Bin and Order Code Formats section (page 15).

	CRI					2-Step	3-Step		5-Step	
Nominal CCT	Min.	Тур	Minimum Luminous Flux (Im)	Typical Luminous Flux (Im)	Group	Order Code	Group	Order Code	Group	Order Code
(500 K	70	73	541	597					65E	CMU1003-0000- 000N0B0A65E
6500 K	80	82	494	555			65G	CMU1003-0000- 000N0H0A65G		
	70	73	539	594					57E	CMU1003-0000- 000N0B0A57E
5700 K	80	82	492	553			57G	CMU1003-0000- 000N0H0A57G		
	90	92	441	501			57G	CMU1003-0000- 000N0U0A57G		
	70	73	536	590					50E	CMU1003-0000- 000N0B0A50E
5000 K	80	82	489	550			50G	CMU1003-0000- 000N0H0A50G		
	90	92	437	496			50G	CMU1003-0000- 000N0U0A50G		
	70	73	529	589					40E	CMU1003-0000- 000N0B0A40E
4000 K	80	82	482	546	40H	CMU1003-0000- 000N0H0A40H	40G	CMU1003-0000- 000N0H0A40G		
	90	92	417	473	40H	CMU1003-0000- 000N0U0A40H	40G	CMU1003-0000- 000N0U0A40G		
3500 K	80	82	477	536	35H	CMU1003-0000- 000N0H0A35H	35G	CMU1003-0000- 000N0H0A35G		
3300 K	90	92	417	468	35H	CMU1003-0000- 000N0U0A35H	35G	CMU1003-0000- 000N0U0A35G		
	70	73	516	568					30E	CMU1003-0000- 000N0B0A30E
3000 K	80	82	470	533	30H	CMU1003-0000- 000N0H0A30H	30G	CMU1003-0000- 000N0H0A30G		
	90	92	408	453	30H	CMU1003-0000- 000N0U0A30H	30G	CMU1003-0000- 000N0U0A30G		
2700 K	80	82	451	512	27H	CMU1003-0000- 000N0H0A27H	27G	CMU1003-0000- 000N0H0A27G		
2700 K	90	92	393	433	27H	CMU1003-0000- 000N0U0A27H	27G	CMU1003-0000- 000N0U0A27G		
2200 K	80	82	398	447			22G	CMU1003-0000- 000N0H0A22G		

Notes

- Cree LED maintains a tolerance of ±7% on flux and power measurements, ±0.005 on chromaticity (CCx, CCy) measurements and a tolerance of ±2 on CRI measurements. See the Measurements section (page 18).
- For 80 CRI minimum LEDs, CRI R9 minimum is 0 with a ±2 tolerance. For 90 CRI minimum LEDs, CRI R9 typical is 60.

FLUX CHARACTERISTICS, PREMIUM COLOR ORDER CODES AND BINS (I_F = 90 mA, T_J = 85 °C)

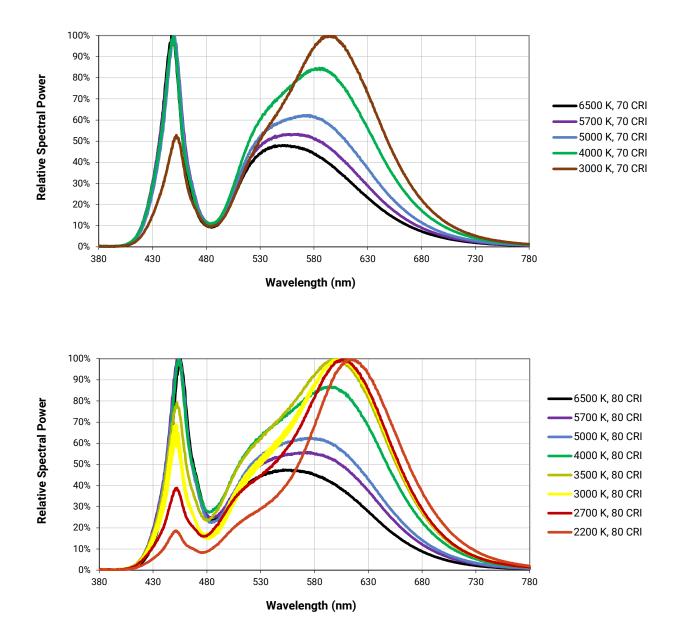
Fidelity

Nominal	С	RI	Minimum	Typical		2-Step		
ССТ	Min. Typ		Luminous Luminous Flux (Im) Flux (Im)		Group	Order Code		
4000 K	95	98	373	435	40H	CMU1003-0000-000N0Z0A40H		
3500 K	95	98	371	417	35H	CMU1003-0000-000N0Z0A35H		
3000 K	95	98	360	409	30H	CMU1003-0000-000N0Z0A30H		
2700 K	95	98	344	383	27H	CMU1003-0000-000N0Z0A27H		

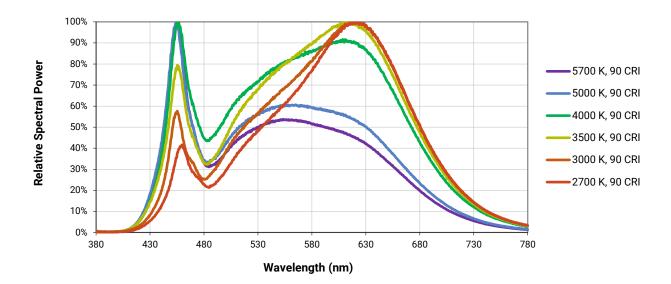
Specialty

Nominal	CRI		Minimum	Typical		2-Step		3-S	tep	
ССТ	Min.	Тур	Luminous Flux (Im)		Group	Order Code	Group	Order Code	Group	Order Code
3100 K	90	92	390	446			31Q	CMU1003-0000- 000N0U0A31Q		
	90	92	400	457			30Q	CMU1003-0000- 000N0U0A30Q		
3000 K	90	92	384	439					30U	CMU1003-0000- 000N0U0A30U
	95	98	349	377	L7C	CMU1003-0000- 000N0Z0AL7C				

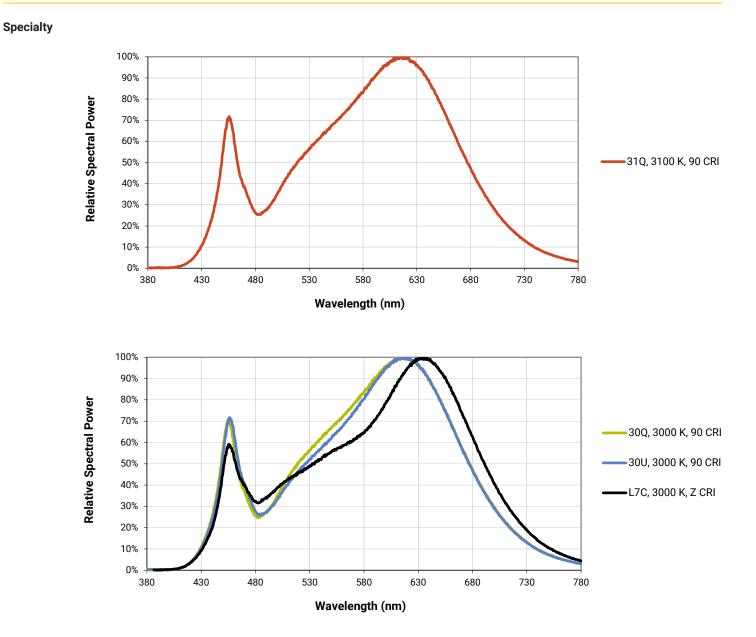
Notes


For 80 CRI minimum LEDs, CRI R9 minimum is 0 with a ±2 tolerance. For 90 CRI minimum LEDs, CRI R9 typical is 60.

[•] Cree LED maintains a tolerance of ±7% on flux and power measurements, ±0.005 on chromaticity (CCx, CCy) measurements and a tolerance of ±2 on CRI measurements. See the Measurements section (page 18).


RELATIVE SPECTRAL POWER DISTRIBUTION, EASYWHITE® LEDS

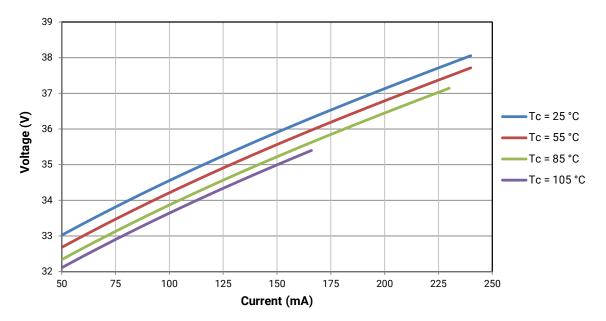
The following graphs are the result of a series of pulsed measurements at 90 mA and T₁ = 85 °C.


RELATIVE SPECTRAL POWER DISTRIBUTION, PREMIUM COLOR LEDS

The following graphs are the result of a series of pulsed measurements at 90 mA and T₁ = 85 °C.

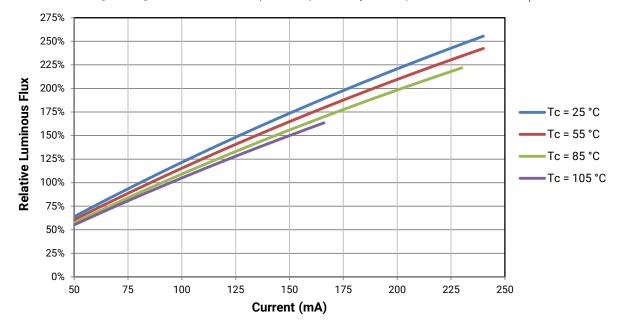
100% 90% 80% **Relative Spectral Power** 70% 4000 K, Z CRI 60% 3500 K, Z CRI 50% 3000 K, Z CRI 40% 2700 K, Z CRI 30% 20% 10% 0% 380 430 480 530 580 630 680 730 780 Wavelength (nm)

Fidelity

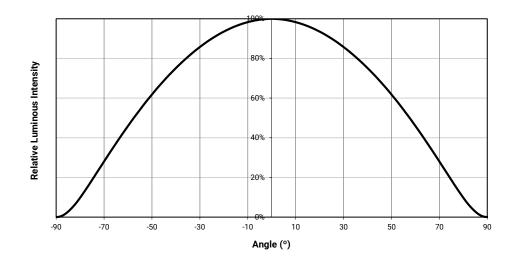

RELATIVE SPECTRAL POWER DISTRIBUTION, PREMIUM COLOR LEDS - CONTINUED

ELECTRICAL CHARACTERISTICS

The following graph is the result of a series of steady-state measurements.



RELATIVE LUMINOUS FLUX


The relative luminous flux values provided below are the ratio of:

- · Measurements of CMU1003 at steady-state operation at the given conditions, divided by
- Flux measured during binning, which is a pulsed measurement at 90 mA at T_{J} = 85 °C.

For example, at steady-state operation of Tc = 25 °C, $I_F = 175$ mA, the relative luminous flux ratio is 200% in the chart below. A CMU1003 LED that measures 550 Im during binning will deliver 1100 Im (550 * 2.0) at steady-state operation of Tc = 25 °C, $I_F = 175$ mA.

TYPICAL SPATIAL DISTRIBUTION

PERFORMANCE GROUPS - CHROMATICITY (T_J = 85 °C)

XLamp CMU1003 LEDs are tested for chromaticity and placed into one of the regions defined by the following bounding coordinates.

EasyW	EasyWhite Color Temperatures – 2-Step							
Code	сст	x	у					
		0.3777	0.3739					
40H	4000 K	0.3797	0.3816					
40日	4000 K	0.3861	0.3855					
		0.3838	0.3777					
		0.4022	0.3858					
35H	3500 K	0.4053	0.3942					
301		0.4125	0.3977					
		0.4091	0.3891					
		0.4287	0.3975					
30H	3000 K	0.4328	0.4064					
301	3000 K	0.4390	0.4086					
		0.4347	0.3996					
		0.4524	0.4048					
27H	2700 K	0.4574	0.4140					
2/П	2700 K	0.4633	0.4154					
		0.4581	0.4062					

	EasyWhite Color Temperatures – 3-Step Ellipse								
Bin Code	сст	Center	Point	Major Axis	Minor Axis	Rotation Angle			
Bin Code	661	x	у	а	b	(°)			
65G	6500 K	0.3123	0.3282	0.00666	0.00330	61.0			
57G	5700 K	0.3287	0.3417	0.00738	0.00360	72.0			
50G	5000 K	0.3447	0.3553	0.00840	0.00312	65.0			
40G	4000 K	0.3818	0.3797	0.00939	0.00402	53.7			
35G	3500 K	0.4073	0.3917	0.00927	0.00414	54.0			
31Q	3100 K	0.4236	0.3888	0.00848	0.00455	50.3			
30G	3000 K	0.4338	0.4030	0.00834	0.00408	53.2			
30Q	3000 K	0.4305	0.3935	0.00834	0.00408	53.2			
30U	3000 K	0.4274	0.3837	0.00834	0.00408	53.2			
27G	2700 K	0.4577	0.4099	0.00834	0.00420	48.5			
22G	2200 K	0.5066	0.4158	0.00980	0.00480	45.5			

EasyWhite Color Temperatures – 5-Step Ellipse								
Bin Code	сст	Center Point		Major Axis	Minor Axis	Rotation Angle		
		x	у	а	b	(°)		
65E	6500 K	0.3123	0.3282	0.01110	0.00550	61.0		
57E	5700 K	0.3287	0.3417	0.01230	0.00600	72.0		
50E	5000 K	0.3447	0.3553	0.01400	0.00520	65.0		
40E	4000 K	0.3818	0.3797	0.01565	0.00670	53.7		
30E	3000 K	0.4338	0.4030	0.01390	0.00680	53.2		

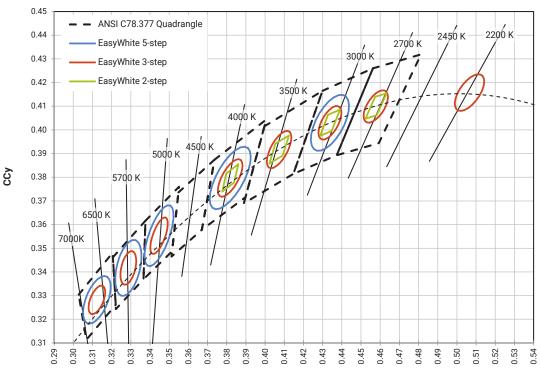
PERFORMANCE GROUPS - CHROMATICITY (T_J = 85 °C) - CONTINUED

PREMIUM COLOR PERFORMANCE GROUPS - CHROMATICITY (T_J = 85 °C)

XLamp CMU1003 LEDs are tested for chromaticity and placed into one of the regions defined by the following bounding coordinates.

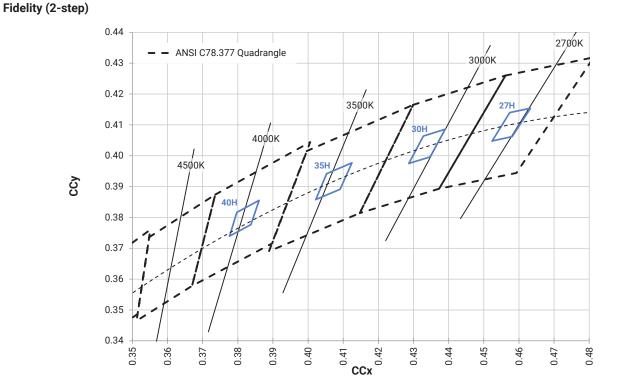
Fidelity

EasyV	EasyWhite Color Temperatures – 2-Step						
Code	сст	x	у				
		0.3777	0.3739				
40H	4000 K	0.3797	0.3816				
40⊓	4000 K	0.3861	0.3855				
		0.3838	0.3777				
		0.4022	0.3858				
35H	3500 K	0.4053	0.3942				
300		0.4125	0.3977				
		0.4091	0.3891				
		0.4287	0.3975				
30H	3000 K	0.4328	0.4064				
300	3000 K	0.4390	0.4086				
		0.4347	0.3996				
		0.4524	0.4048				
27H	2700 K	0.4574	0.4140				
2/П	2700 K	0.4633	0.4154				
		0.4581	0.4062				

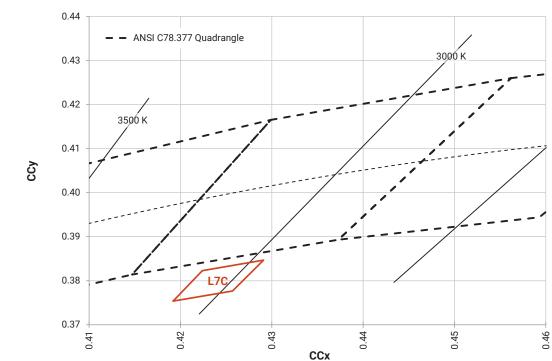

PREMIUM COLOR PERFORMANCE GROUPS - CHROMATICITY (T_J = 85 °C) - CONTINUED

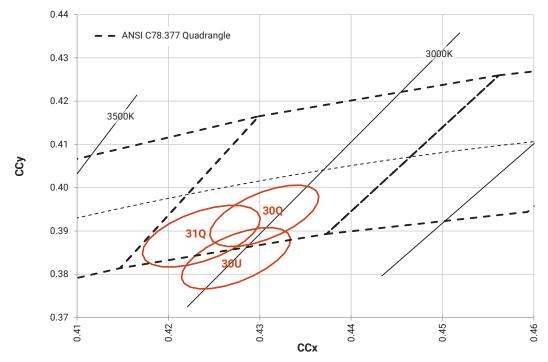
Specialty

EasyWhite Color Temperatures – 2-Step							
Code	у						
		0.4192	0.3754				
L7C	3000 K	0.4224	0.3823				
L/C		0.4291	0.3847				
		0.4257	0.3777				


	EasyWhite Color Temperatures – 3-Step Ellipse								
Bin Code CCT	COT	Center Point		Major Axis	Minor Axis	Rotation Angle			
	661	x	у	а	b	(°)			
31Q	3100 K	0.4236	0.3888	0.00848	0.00455	50.3			
30Q	3000 K	0.4305	0.3935	0.00834	0.00408	53.2			
30U	3000 K	0.4274	0.3837	0.00834	0.00408	53.2			

EASYWHITE® BINS PLOTTED ON THE 1931 CIE COLOR SPACE (T_j = 85 °C)

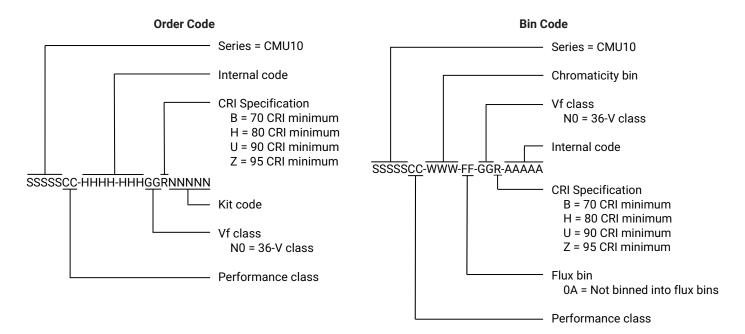

CCx



PREMIUM COLOR BINS PLOTTED ON THE 1931 CIE COLOR SPACE (T_J = 85 °C) - CONTINUED

Speciality (3-step)

2020-2023 Cree LED. The information in this document is subject to change without notice. Cree[®], XLamp[®], EasyWhite[®], the Cree logo and the Cree LED logo are registered trademarks of UL LLC.

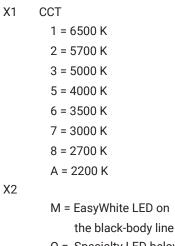


Speciality (2-step)

BIN AND ORDER CODE FORMATS

Bin codes and order codes are configured as follows:

MECHANICAL DIMENSIONS


Dimensions are in mm.

Tolerances unless otherwise specified: \pm .13 x° \pm 1°

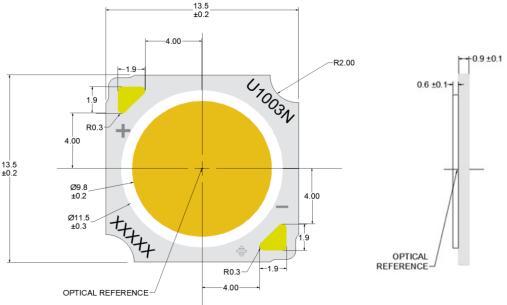
Meaning of LED marking

U1003N = 36-V CMU1003

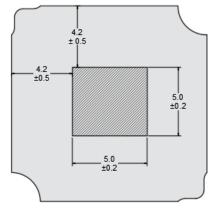
X1 X2 X3 X4 X5

Q = Specialty LED below the black-body lineU = Specialty LED below

the black-body line Flux bin


X4

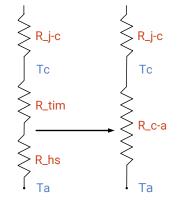
Х3


0A = Not binned into flux bins

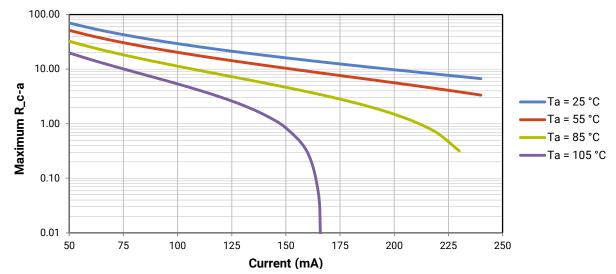
X5 CRI

- B = 70 CRI min
- H = 80 CRI min
- U = 90 CRI min
- Z = 95 CRI min

To assist in identifying the LED, CMU1003 LEDs provide a 2D barcode, positioned on the back of the LED, as shown in the following diagram. For a complete description of the bar code format, please refer to the XLamp CM Family LEDs soldering and handling document.


Tc measurement point: either the anode or cathode solder pad

THERMAL DESIGN


The CMU family of LED arrays can include over a hundred different LED die inside one package, and thus over a hundred different junction temperatures (T_j). Cree LED has intentionally removed junction-temperature-based operating limits and replaced the commonplace maximum T_j calculations with maximum ratings based on forward current (I_F) and case temperature (Tc). No additional calculations are required to ensure the CMU LED is being operated within its designed limits. LES temperature measurement provides additional verification of good thermal design. Please refer to page 2 for the Operating Limit specification.

There is no need to calculate for T_J inside the package, as the thermal management design process, specifically from solder point (T_{sp}) to ambient (T_a), remains identical to any other LED component. For more information on thermal management of XLamp LEDs, please refer to the Thermal Management application note. For CMU soldering recommendations and more information on thermal interface materials (TIM), LES temperature measurement, and connection methods, please refer to the XLamp CM Family LEDs soldering and handling document.

To keep the CMU1003 LED at or below the maximum rated Tc, the case to ambient temperature thermal resistance (R_c-a) must be at or below the maximum R_c-a value shown on the following graph, depending on the operating environment. The y-axis in the graph is a base 10 logarithmic scale.

As the figure at right shows, the R_c-a value is the sum of the thermal resistance of the TIM (R_tim) plus the thermal resistance of the heat sink (R_hs).

NOTES

Measurements

The luminous flux, radiant power, chromaticity, forward voltage and CRI measurements in this document are binning specifications only and solely represent product measurements as of the date of shipment. These measurements will change over time based on a number of factors that are not within Cree LED's control and are not intended or provided as operational specifications for the products. Calculated values are provided for informational purposes only and are not intended or provided as specifications.

Pre-Release Qualification Testing

Please read the LED Reliability Overview for details of the qualification process Cree LED applies to ensure long-term reliability for XLamp LEDs and details of Cree LED's pre-release qualification testing for XLamp LEDs. Cree LED did not perform Room Temperature Operating Life (RTOL) testing on the CMU1003 LED.

Lumen Maintenance

Cree LED now uses standardized IES LM-80-08 and TM-21-11 methods for collecting long-term data and extrapolating LED lumen maintenance. For information on the specific LM-80 data sets available for this LED, refer to the public LM-80 results document.

Please read the Long-Term Lumen Maintenance application note for more details on Cree LED's lumen maintenance testing and forecasting. Please read the Thermal Management application note for details on how thermal design, ambient temperature, and drive current affect the LED junction temperature.

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree LED representative or from the Product Ecology section of the Cree LED website.

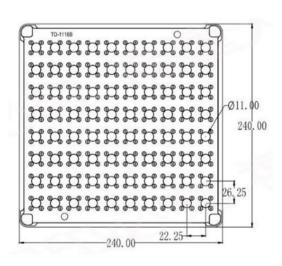
REACH Compliance

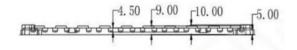
REACH substances of very high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact a Cree LED representative to insure you get the most up-to-date REACH SVHC Declaration. REACH banned substance information (REACH Article 67) is also available upon request.

UL® Recognized Component

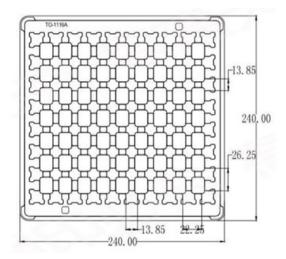
This product meets the requirements to be considered a UL Recognized Component with Level 4 enclosure consideration. The LED package or a portion thereof has been investigated as a fire and electrical enclosure per ANSI/UL 8750.

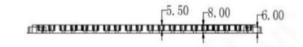
Vision Advisory

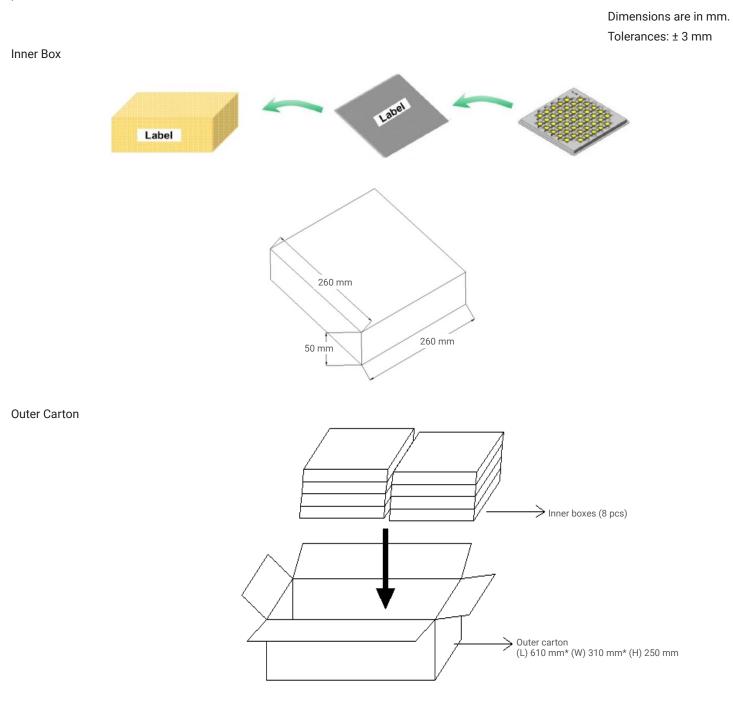

WARNING: Do not look at an exposed lamp in operation. Eye injury can result. For more information about LEDs and eye safety, please refer to the LED Eye Safety application note.


PACKAGING

CMU1003 LEDs are packaged in trays of 80. Five trays are sealed in an anti-static bag and placed inside an inner box, for a total of 400 LEDs per box. Each box contains LEDs from the same performance bin. Eight boxes are placed inside a carton, for a total of 3,200 LEDs per carton.


Dimensions are in mm. Tolerances: ± 0.5 mm


Load Tray


Upper Tray

PACKAGING - CONTINUED

CMU1003 LEDs are packaged in trays of 80. Five trays are sealed in an anti-static bag and placed inside an inner box, for a total of 400 LEDs per box. Each box contains LEDs from the same performance bin. Eight boxes are placed inside a carton, for a total of 3,200 LEDs per carton.

