28/40/44/48-Pin, Low-Power, High-Performance .
Microcontroller with XLP Technology c\ MICROCHIP

Introduction

The PIC18-Q43 microcontroller family is available in 28/40/44/48-pin devices for real-time control applications.
This family features a 12-bit Analog-to-Digital Converter with Computation (ADCC) automating Capacitive
Voltage Divider (CVD) techniques for advanced capacitive touch sensing, averaging, filtering, oversampling

and threshold comparison. This family showcases a new 16-bit Pulse-Width Modulator (PWM) module

which provides dual independent outputs on the same time base. Additional features include vectored
interrupt controller with fixed latency for handling interrupts, system bus arbiter, Direct Memory Access

(DMA) capabilities, Universal Asynchronous Receiver-Transmitter (UART) with support for asynchronous, Digital
Multiplex (DMX), Digital Addressable Lighting Interface (DALI) and Local Interconnect Network (LIN) protocols,
Serial Peripheral Interface (SPI), 12C, memory features like Memory Access Partition (MAP) to support users in
data protection and bootloader applications, and Device Information Area (DIA), which stores factory calibration
values to help improve temperature sensor accuracy.

PIC18-Q43 Family Types

Table 1. Devices Included in This Data Sheet

(bytes)

h Protocol Support

Program Memory Flash
Data SRAM
(bytes)
Data EEPROM
Memory Access Partition/
Device Information Area
1/0 Pins/
Peripheral Pin Select
8-Bit Timer with HLT/
16-Bit Timers
16-Bit Dual PWM/
Complementary Waveform
Generator
B Signal Measurement Timer
Numerically Controlled
Oscillator
Configurable Logic Cell
12-Bit ADCC (channels)
8-Bit DAC
Comparator/
Zero-Cross Detect
High/Low-Voltage Detect
B UART wit|
SN WY Direct Memory Access (DMA)
BRI Windowed Watchdog Timer
16-Bit CRC with Scanner
Vectored Interrupts
Temperature Indicator

EIEIEY Peripheral Module Disable

PIC18F26Q43 64K 4096 1024 Y/Y 25/Y 3/4 3/3 3 3 8 24 1 21 1 211 4/ Y Y Y
PIC18F46Q43 64K 4096 1024 Y/Y 36/Y 3/4 3/3 3 3 8 35 1 2/1 1 2/1 4/1 Y Y Y
PIC18F56Q43 64K 4096 1024 Y/Y 44/Y 3/4 3/3 3 3 8 43 1 21 1 211 4/1 Y Y Y

Table 2. Devices not Included in This Data Sheet

1/0 Pins/

Peripheral Pin Select
8-Bit DAC

Oscillator

=
<
[~4
)
©
3
I
a

Program Memory Flash
Data EEPROM
Memory Access Partition/
Device Information Area
8-Bit Timer with HLT/
16-Bit Timers
16-Bit Dual PWM/
Complementary Waveform
Generator
Signal Measurement Timer
Numerically Controlled
Configurable Logic Cell
12-Bit ADCC (channels)
Comparator/
Zero-Cross Detect
High/Low-Voltage Detect

UART with Protocol Support

PIC18F25Q43 32K 2048 1024 Y/Y 25/Y 3/4 3/3 3 1 3 8 24 1 21 1 21 4/1
PIC18F27Q43 128K 8192 1024 Y/Y 25/Y 3/4 3/3 3 1 3 8 24 1 21 1 21 4/1
PIC18F45Q43 32K 2048 1024 Y/Y 36/Y 3/4 3/3 3 1 3 8 35 1 21 1 21 4/1
PIC18F47Q43 128K 8192 1024 Y/Y 36/Y 3/4 3/3 3 1 3 8 35 1 21 1 21 4/1
PIC18F55Q43 32K 2048 1024 Y/Y 44/Y 3/4 3/3 3 1 3 8 43 1 2/1 1 2/1 41
PIC18F57Q43 128K 8192 1024 Y/Y 44/Y 3/4 3/3 3 1 3 8 43 1 21 1 21 4/1

Features

C Compiler Optimized RISC Architecture
Operating Speed:

- DC-64 MHz clock input

- 62.5 ns minimum instruction cycle
Six Direct Memory Access (DMA) Controllers:

SN N IR WM Direct Memory Access (DMA)

EIEIEIEIEIRY Windowed Watchdog Timer

16-Bit CRC with Scanner

< < < < < <

Vectored Interrupts

< < < < =< =<

< < < < < < EELGEETRV IR EEL]

Temperature Indicator

< < < < < <

- Data transfers to SFR/GPR spaces from either Program Flash Memory, Data EEPROM or SFR/GPR spaces

- User programmable source and destination sizes
- Hardware and software triggered data transfers
Vectored Interrupt Capability:
Selectable high/low priority

Fixed interrupt latency of three instruction cycles

Programmable vector table base address

Backward compatible with previous interrupt capabilities

127-Level Deep Hardware Stack

Low-Current Power-on Reset (POR)

Configurable Power-up Timer (PWRT)

Brown-out Reset (BOR)

Low-Power BOR (LPBOR) Option

Windowed Watchdog Timer (WWDT):
- Watchdog Reset on too long or too short interval between watchdog clear events
- Variable prescaler selection
- Variable window size selection

Memory

Up to 128 KB of Program Flash Memory
Up to 8 KB of Data SRAM Memory
1024 Bytes Data EEPROM

Memory Access Partition: The Program Flash Memory can be partitioned into:
- Application Block

@ MICROCHIP

- Boot Block
- Storage Area Flash (SAF) Block
+ Programmable Code Protection and Write Protection

+ Device Information Area (DIA) Stores:
- Temperature indicator factory calibrated data
- Fixed Voltage Reference measurement data
- Microchip unique identifier
* Device Characteristics Information (DCl) Area Stores:
- Program/erase row sizes
- Pin count details
- EEPROM size
+ Direct, Indirect and Relative Addressing modes

Operating Characteristics
+ Operating Voltage Range:
- 1.8Vto 5.5V

+ Temperature Range:
- Industrial: -40°C to 85°C

- Extended: -40°C to 125°C

Power-Saving Functionality

+ Doze: CPU and Peripherals Running at Different Cycle Rates (typically CPU is lower)
+ Idle: CPU Halted While Peripherals Operate

+ Sleep: Lowest Power Consumption

« Peripheral Module Disable (PMD):

- Ability to selectively disable hardware module to minimize active power consumption of unused
peripherals

* Low-Power Mode Features:
- Sleep: <800 nA typical @ 1.8V
- Operating Current:
* 48 pA @ 32 kHz, 3V, typical

Digital Peripherals
* Three 16-Bit Pulse-Width Modulators (PWM):
- Dual outputs for each PWM module
- Integrated 16-bit timer/counter
- Double-buffered user registers for duty cycles
- Right/Left/Center/Variable aligned modes of operation
- Multiple clock and Reset signal selections
* Four 16-Bit Timers (TMR0/1/3/5)
* Three 8-Bit Timers (TMR2/4/6) with Hardware Limit Timer (HLT)
+ Eight Configurable Logic Cell (CLC):
- Integrated combinational and sequential logic
+ Three Complementary Waveform Generators (CWG):

@ MICROCHIP

- Rising and falling edge dead-band control
- Full-bridge, half-bridge, one-channel drive
- Multiple signal sources
- Programmable dead band
- Fault-shutdown input
+ Three Capture/Compare/PWM (CCP) modules:
- 16-bit resolution for Capture/Compare modes
- 10-bit resolution for PWM mode
* Three Numerically Controlled Oscillators (NCO):
- Generates true linear frequency control and increased frequency resolution
- Input clock up to 64 MHz
+ Signal Measurement Timer (SMT):
- 24-bit timer/counter with prescaler
- Several modes of operation like Time-of-Flight, Period and Duty Cycle measurement etc.
+ Data Signal Modulator (DSM):
- Multiplex two carrier clocks, with glitch prevention feature
- Multiple sources for each carrier
+ Programmable CRC with Memory Scan:
- Reliable data/program memory monitoring for Fail-Safe operation (e.g., Class B)
- Calculate 16-bit CRC over any portion of Program Flash Memory
+ Five UART modules:
- One module (UART1) supports LIN host and client, DMX mode, DALI gear and device protocols
- Asynchronous UART, RS-232, RS-485 compatible
- Automatic and user timed BREAK period generation
- Automatic checksums
- Programmable 1, 1.5, and 2 Stop bits
- Wake-up on BREAK reception
- DMA compatible
+ Two SPI modules:
- Configurable length bytes
- Arbitrary length data packets
- Transmit-without-receive and receive-without-transmit option
- Transfer byte counter
- Separate transmit and receive buffers with 2-byte FIFO and DMA capabilities
+ One I2C module, SMBus, PMBus™ Compatible:

- Supports Standard-mode (100 kHz), Fast-mode (400 kHz) and Fast-mode plus (1 MHz) modes of
operation

- 7-bit and 10-bit addressing modes with address masking modes

- Dedicated address, transmit and receive buffers and DMA capabilities
- Bus collision detection with arbitration

- Bus time-out detection and handling

- 12C, SMBus 2.0 and SMBus 3.0, and 1.8V input level selections

@ MICROCHIP

- Separate Transmit and Receive Buffers with 2-byte FIFO and DMA capabilities
- Multi-Host mode, including self-addressing
+ Device I/0O Port Features:
- 251/0 pins (PIC18F25/26/27Q43)
- 36 1/0 pins (PIC18F45/46/47Q43)
- 441/0 pins (PIC18F55/56/57Q43)
- Individually programmable I/0O direction, open-drain, slew rate and weak pull-up control
- Interrupt-on-change on most pins
- Three programmable external interrupt pins

+ Peripheral Pin Select (PPS):
- Enables pin mapping of digital I1/0

Analog Peripherals
+ Analog-to-Digital Converter with Computation (ADCC):
Up to 140 ksps

- Up to 43 external channels

- Automated math functions on input signals:
+ Averaging, filter calculations, oversampling and threshold comparison
- Operates in Sleep
- Five internal analog channels
- Hardware Capacitive Voltage Divider (CVD) Support:
+ Adjustable sample-and-hold capacitor array
* Guard ring digital output drive

+ Automates touch sampling and reduces software size and CPU usage when touch or proximity
sensing is required

+ 8-Bit Digital-to-Analog Converter (DAC):

- Buffered output available on two /0 pins

- Internal connections to Analog-to-Digital (ADC) and Comparators
+ Two Comparators (CMP):

- Four external inputs

- Configurable output polarity

- External output via Peripheral Pin Select
+ Zero-Cross Detect (ZCD):

- Detect when AC signal on pin crosses ground

+ Voltage Reference:
- Fixed Voltage Reference with 1.024V, 2.048V and 4.096V output levels

- Internal connections to ADC, Comparator and DAC

Clocking Structure
* High-Precision Internal Oscillator Block (HFINTOSC):
- Selectable frequencies up to 64 MHz
- +1% at calibration
- Active Clock Tuning of HFINTOSC for better accuracy

@ MICROCHIP

* 31 kHz Low-Power Internal Oscillator (LFINTOSC)
+ External 32 kHz Crystal Oscillator (SOSC)

+ External High-Frequency Oscillator Block:
- Three crystal/resonator modes

- Digital Clock Input mode

- 4x PLL with external sources
+ Fail-Safe Clock Monitor:

- Allows for operational recovery if external clock stops
+ Oscillator Start-up Timer (OST):

- Ensures stability of crystal oscillator sources

Programming/Debug Features

+ In-Circuit Serial Programming™ (ICSP™) via Two Pins

+ In-Circuit Debug (ICD) with Three Breakpoints via Two Pins
+ Debug Integrated On-Chip

@ MICROCHIP

Q43 Block Diagram

Pots _ _ _ _ _ _ _ _ _ _ _ _ ____________ -
! |
: PORTA [| PORTB || PORTC || PORTD || PORTE |[PORTF [
o L L - | — 1|
PPS Module
Memory Peripherals
n———— — — | - e |
|| Data Memory |
1| (Ram) Data Bus | cLc UART :
|
| ! :
: EEPROM : CLKREF SPI |
I | |
rogram i Il Timers I’c
: Flash Memory Instruction Bus | |
gy —— | |
i | SMT] HLVD :
System Arbiter | m |
| 3}
(0]
Program, Debug and I cep £ FVR |
Supervisory Modules I g :
- r — | I B B — 1 | (=
D > Single-Supply In-Circuit | | | I Q |
MCLR | Programming Debugger | | DMA | | PWM £ ADCC |
[| [[| |
| Power-up Brown-out || | | | |
| Timer Reset | | CRC | | cwe DAC |
| ' ' CPU with Scanner | | !
I Oscillator Fail-Safe | | | | |
| |start-up Timer| | Clock Monitor| | | I | NCO CmP I
| b T | | Interrupt | | :
| ower-on emperaiure | | Controller | |
| Reset Indicator || | | | DSM ZCDb |
[I TT T T T T T T T T T T T T T - - _
| wwbpT PMD ' .
[I Oscillator and Clock _ _ _
[——————— 1 | |
SOSCI »| sosc HFINTOSC |!
sosco—b: with :
N OSC].—H Active Clock |
Precision Band Gap Reference Tuni
p 0sc2 N EXTOSC uning |
| |
I| EXTOSC + |
LFINTOSC
| 4xPLL |
== 1

@ MICROCHIP

Table of Contents

INEFOAUCTION. ¢ttt ettt s a et R et b et b et bt s b et s b et e b et er e e en e e nennenens 1
PICT8-QA3 FAMUIY TYPES ittt ste ettt ettt st s bt e bt b e st b et e bt e b et e b et e bt st e st s b ene sk e st et en e et e st ebentebentebentebentebenaenes 1
FEATUIES ...ttt h bbb bbb R R h e R bbb et ens 2
T PACKAEES. .ottt b e bt b et h a4k 4 b Ao h et h et bt h e bbb eae b e s b ene et et et e st te st ebenes 10
2. PIN DIAGIAMS. ...ttt ettt b b e e et R e bbbt bR Rt R e R b e R e ne e ne e seene s 11
3. Pin AllOCAtION TADIES.....iiiiiiiiiciicreee ettt ettt bbbt st et n et nes 15
4. Guidelines for Getting Started with PICT18-Q43 MiCrOCONTIOIEIS.....ceiiiuirieeiieerieerictrieeriee ettt 20
5. Register and Bit Naming CONVENTIONS......cccvctviririrerienieniertertetetetet et st ressessestesbessessessessessensensessessessssessessessenes 25
B. REGISTEI LEZENG. ettt ettt ettt ettt ettt ettt b et be et e st st e st s b e st s b e st be st s b et ek e st et en s et entebentebe st ebe st eb et et e nbenen 27
T PICTB CPUieieeeeet ettt b bbb b e b e bttt e bt b e e b e bbb s b s r e nenenee 28
8. DEVICE CONTIGUIATION...uiiiteiitetrte ettt sttt sttt ettt st et s b et s b et et e e et e s ebensesensesensesessenessesessanens 46
9. MEMOTY OFZaANIZAtION...ccuiiiiiiitiitirieetee ettt b e b bbb e e et et e e bt e b e s bt s b e s b e sb e s b e b e b enennens 61
10. NVM - Nonvolatile Memory MOGUIE........cociriririiieieietetetetet sttt st st s st sbesbe st e st e st et et et e e e e ssessessessasbeee 92
11. VIC - Vectored Interrupt CONroller MOQUIE.........c.civueirieirererteeee ettt 118
12. OSC - Oscillator Module (With Fail-Safe ClOCK MONITO).....uiivieiiieriieieteec ettt esrre et e st eesareessreeesrresesanes 196
13. CRC - Cyclic Redundancy Check Module with MEmOry SCANNET.........cccveirieirieiriereneesee e 222
T, RESEES..cititt ettt bRt h b bbb a e bR e e e et et b e b e bR R reeres 239
15. WWDT - Windowed WatChAOg TiMEIcouiiriririninieniesieniesierierte ettt ettt st st ssesbesbesbesbesbessesaessensensensensensene 253
T6. DMA - DIr€Ct MEMIOIY ACCESS...ccutiuiriiriiriiriiitistestesteste et ste sttt et et e bt se s bt s bt s b e sbesbesbesbessese st ebe b et enee st eseesesnessessessens 263
17. POWEI-SAVING IMOES.....ccutiiririiriirtinieniesieste sttt et ettt ettt st sbesbesaessessesbessessessensensessentesseseesaesaesessessessessessensans 300
18. PMD - Peripheral Module DiSabIe...........coeiriiiniiiieieieeie ettt sttt sttt 309
TO. 170 POIES.ieiieiteteteecte ettt ettt st b bbb b a e e et ettt b e bbbt b b r e n e r e 319
20. 1OC - INtEITUPE-ON-CRANEE.....ciiieirieirieeeieieieteterte ettt sttt sttt sttt s te st e st s be st s be st st et sbe s eb e aesesesesenersesesenessenas 335
271. PPS - Peripheral Pin SEleCt MOQUIE........c..cciiirieieeeereeeesietst ettt st sae e 341
22. CLC - CoNfigUrable LOGIC Cell...c.iveeieieieieieieieieneeiteertetetetet et st e st s st ese e se e sassesassesessesassesessesessesessensesensnsen 353
23. CLKREF - Reference Clock OULPUL MOQUIE........couiiriiirieieieieieseteteie ettt sttt ettt st 373
24, TMRO - TIMEIO MOAUIE....c.eeiieiieertee ettt et ettt st st b e b e b e s b e b esens 378
25. TMRT - Timer1 Module With Gate CONTIOL......cuviiiriiirieirieirteeie sttt ettt ettt b e sb e st eb e e b saenens 386
26. TMR2 - TIMEI2 MOAUIE....ceiiieeeieet ettt ettt ettt st s b st b et b e b e e be e s b e e sbeneebenees 403

@ MICROCHIP

27. SMT - Signal MEasUIrEMENT TIMEI....cciiiririeiirieieietetetet ettt st ste st st st sbesbesbestessesseseste st essenaesaenessessessassessessenes 425
28. CCP - Capture/Compare/PWIM MOGUIE........ccoueirieirieirteieietstetet ettt sttt ettt st sttt e ebe e ebens 450
29. Capture, Compare, and PWM Timers SIECTION......ccuviriririrererentestestetetetet et e s st st st sbesbessesaesaensensennens 463
30. PWM - Pulse-Width Modulator With COMPATe.........covueeerririeeireettree ettt ene 466
31. CWG - Complementary Waveform Generator MOAUIE...........coeiveirieeneenietrteere ettt 493
32. NCO - Numerically Controlled Oscillator MOQUIE.......c..ooevirieriiieeeeetee ettt 521
33. DSM - Data Signal Modulator MOGUIE.......cc.cerieireieieterie ettt sttt et st b e 531
34. UART - Universal Asynchronous Receiver Transmitter with Protocol SUPPOrt.......cocveverenenienienienierieeneeene, 542
35. SPI - Serial Peripheral INterface MOAUIE.......cccoiirieirieireee ettt sttt sbene 592
36. 12C - Inter-Integrated CIirCUIL MOGUIE..........c.ccvireeeeeeeeeete ettt ettt st ae bt sasae b s st s 626
37. HLVD - High/LOW-VOItagE DELECL.....cevteuirietirietirieiisieiestetsietste e ste e stesesbee st saebe s esessesessesassesessesessesesaesessesassenesseneesan 712
38. FVR - FiXed VOItage RETEIENCE.....ii ittt ettt ettt b st s b ettt st et sbe e ebens 720
39. Temperature INAICAtOr MOAUIE......cc.coiriiriiieiecee ettt sttt sttt ettt s sbesbesbesbesbesbesbessesensensens 724
40. ADCC - Analog-to-Digital Converter with Computation MOAUIE..........ccvueciriirinnenneeeeeeeree e 729
41. DAC - Digital-to-Analog Converter Module - 8-Bit.......ccccvciririririenenenienienieseenieseestesese e se e ssesse e ssessessessesaenes 775
42. CMP - COMPArator MOAUIE........ccouviiiiuiiirieictirte ettt ettt st 780
43. ZCD - Zero-Cross DeteCtion MOGUIE.........ccviririrreieeet ettt sttt ettt e et be bbb senes 791
A4, INSTFUCTION SEE SUMIMIAIY. ettt sa et s bt bt st e s bt st s bt e b e sss e beeseesbeesesbeeasesanesbeennessnensens 799
45, ICSP™ - IN-CircUit Serial Programiming™.......ccceeeieiriririririsisisiieseesesssesssssssssssssssssssssssssssesesesesesesssesessssssssssssssssses 875
AB. REGISTE SUIMMIAIY ...iitiiitieeeieetesteete st et st et sete st e tesseesesbeessesaee bt essesh e e s s e satessesaee st ensesseensesseenseeasesbesasesseensesneensesanens 878
A7, EleCtrical SPECITICATIONS.eovetirietirieierie ettt ettt ettt st et b et b et b bbb et et e be st ebe b ebe b ebe st ebesaenes 892
48. DC and AC Characteristics Graphs and Tables.......cc.ceveireireineneereereereereee e 918
49, Packaging INfOrMAtiON......ccovueirieirieiieeretse ettt ettt ettt et st e be st s b et st e e st et ebenessenaesensesensenessenas 937
50. APPENIX A REVISION HISTOINY..uiuiitiieieietirietiriet ettt sttt b e be bbb ae bbbt st e st sbe st st e e nbeneenes 964
Y I Talg ool aTTo I g o T 0 4 =14 o] o PO O RO 965

@ MICROCHIP

1. Packages

Table 1-1. Packages
Device 28-pin = 28-pin 28-pin 28-pin 40-pin 40-pin 44-pin 48-pin 48-pin
SPDIP SOIC SSOP VQFN 4x4x1 PDIP QFN 5x5x0.9 = TQFP = TQFP 7x7x1 VQFN 6x6x0.9

PIC18F25Q43) . . .

PIC18F26Q43

PIC18F27Q43 ° . . .

PIC18F45Q43 . . .

PIC18F46Q43 ° . °

PIC18F47Q43 . . .

PIC18F55Q43 . °
PIC18F56Q43 . °
PIC18F57Q43 . .

@ MICROCHIP

2. Pin Diagrams

Figure 2-1.
28-Pin SPDIP
28-Pin SSOP
28-Pin SOIC
MCLR/VeP/RE3[]1 N~ 28 |RB7/ICSPDAT
rA0[]2 27 JRB6/ICSPCLK
RA1[]3 26/ IRB5
rRA2[4 25 |RB4
RA3[]5 24 |RB3
RA4[6 23[IrRB2
RA5[|7 22[1rB1
vss[]8 21 1RBO
rA7[]9 20 Jvop
RA6L|10 19 vss
rRcol 11 18 1RC7
rci12 171RC6
rc2l]13 16 JRC5
rc3]14 15 IRC4
Figure 2-2.
28-Pin VQFN
a
S5
.
oOn®m
=29
Z2FTOE8BI
roeererrxr x
28 27 26 25 24 23 22
°
RA2|1 RB3
RA3|2 RB2
RA4]3 RB1
RA5]4 RBO
Vssls VoD
RA7l6 Vss
RA6]7 RC7
10 11 12 13 14

8 9

QN M L0 ©
OOOOSOO
roowrwowomrx

Note: It is recommended that the exposed bottom pad be connected to Vss; however, it must not
be the only Vss connection to the device.

Figure 2-3.
40-Pin PDIP

@ MICROCHIP

Figure 2-4.
40-Pin QFN

Note: It is recommended that the exposed bottom pad be connected to Vss; however, it must not

RC7
RD4
RD5
RD6
RD7
Vss
VbD
RBO
RB1
RB2

1
12
I3
l4
Is
ls
17
Is

MCLR/\VPr/RE3[]

RAO[]
RA1[]
RA2[]
RA3[]
rRA4[]
RAS5[]
REO[]
RE1[]
RE2[]
VDDI:
Vss[
RA7[]
RA6[
rRcol]
rc1]
Rc2[]
rRc3[]
RDO[|
rRD1[]

40
39
38|
37
36
35
34
33
32
31
30
29
28|
27
26
25
24
23
22
21

IRB5
1rRB4
[1RB3
1rRB2
'1rRB1
1rBO
:lVDD
]Vss
TrRD7
'1IrRD6
'1IrRD5
'1IRD4
[RrRC7
'1rRCs
'1rRCs
[1rCa
' 1rRD3
IrRD2

be the only Vss connection to the device.

Figure 2-5.
44-Pin TQFP

@ MICROCHIP

ICSPCLK/RB6
ICSPDAT/RB7
VprP/MCLR/RE3

15

[y
o

30|
29|
28|
27|
26|
25|
24
23]
22|
21

| IRB7/ICSPDAT
[IRB6/ICSPCLK

RCO
RA6
RA7
Vss

VoD

RE2
RE1
REO
RA5
RA4

2 [TIrRce

& [IIIrcs

S L IRrc4

& [MIIrD3

& [ITIrD2

% [MTIrD1

8 [IT—1RrDO

¢ I Irc3

[T Irc2

] RC1

¥ [T Inc

°
rRc7[IT]1 33[1TINC
RD4[IT] 2 32[1TJRrco
RD5[1T] 3 311 1RA6
RD6[1T] 4 30[1T 1RA7
RD7[1T] 5 29[1T 1Vss
vss[Il] 6 28[11_1Vop
voo 1T 7 27[1L1RE2
RBOIL|s 26[1_1RE1
RB1[IT 9 25[1_1REO
RB2[IT] 10 24[1T 1RA5
RB3[IT] 11 23[T1RA4

12 13 14 15 16 17 18 19 20 21 22
COFBBENIIILR
rrorercerew x X
T E|x
HE
55
O 0O a
===
Figure 2-6.
48-Pin VQFN
88382382830 ey
roeorrorerxoe oo
.48 47 46 45 44 43 42 41
RC7 L RFO
RD4)2 RC1
RD5]3 RCO
RD6 J4 RA6
RD7|5 RA7
Vss|e Vss
Vop |7 VDD
RBOJ8 RE2
RB1]9 RE1
RB2J10 REO
RB3J11 RAS
RF4]12 RAM
13 14 15 16 17 18 19 20

ICSPCLK/RB6
ICSPDAT/RB7
Vpp/MCLR/RE3

Note: Itis recommended that the exposed bottom pad be connected to Vss; however, it must not
be the only Vss connection to the device.

Figure 2-7.
48-Pin TQFP

@ MICROCHIP

AT

e

£ [T
20d[TT]
€08]
0au [T}
Tad[IT]
2ad [T}
£ad [T}
vOu [T}
0¥}

904 [T

14

36 [ITT_JRFO
35 [1 _JRC1
34[11RCO
33[TT_1RA6
32[TJRA7
3111 JVss
30[1T vop
29[1T 1RE2
28[1 RE1
27[1 IREO
26[1 _1RAS5
25[1 _1RA4

[T Jevy
[T Jev
[T Jtvd

[T Jov
[T €3RI TOW/HAA

[T]/94/1vadsol
[TT_1994/10dS2I
[T Jsad
vy
[Ty
[T J94d
[T]S4y

13 14 15 16 17 18 19 20 21 22 23 24

@ 48 47 46 45 44 43 42 41 40 39 38 37

RC7[IT] 1
RD4[IT] 2
RD5[1T] 3
RD6[IL]4
RD7[1T] s
vss[_II|6
voo[_1T] 7
RBO[IT]s
RB1[IT]9
RB2[IT] 10
RB3[IT] 11
RF4[IT] 12

@ MICROCHIP

dIHJ0d2IW @

gl

3.

Pin Allocation Tables

Table 3-1. 28-Pin Allocation Table

Reference

RAO

RA2

RA3

RA4
RA5

RA6

RBO

RB1

RB2

RB3

RB4

RB5

RB6

RB7

RCO

21

22

23

24

25

26

27

28

28-
Pin
VQFN
27

28

20

21

22

24

25

ANAO

ANA1

ANA2

ANA3

ANA4
ANA5

ANAG

ANA7

ANBO

ANB1

ANB2

ANB3

ANB4
ADACT()
ANB5

ANB6

ANB7

ANCO

DAC10UT1
VREF- (DAC)
VREF- (ADC)
VREer+ (DAC)
VREer+ (ADC)

DAC10UT2

16-bit PWM/
Comparator ZCD Timers/SMT ccp CWG CLC SPI 12C UART DSM (o] Interrupt Basic

C1INO-
C2INO-
C1IN1-
C2IN1-

C1INO+

C2INO+

CTINT+

C2IN1T+
CTIN3-
C2IN3-

C1IN2-
C2IN2-

ZCDIN

TockI(M

75G(1)

T16(M

TeIN(T)

T1cKIM
T3cKIM
T3G(
SMTTWIN()

ccp3

PWM3ERS(

cLcino
cLCINA(™)
cLantM
cLaNsm

w1
cwag2()

cwag3h)

cLan2tm
CLCING()
cLanzm
cLcN7()

ss2(M
ss1(M

spi2(M

sck2(

—@4

-4

cTss(M
Rx5(1)

cTs3(M

rRx3(1)

cTs4
Rx4(1)

cts2(M

rx2(1)

MDCARL(1)

MDCARH(")
MDSRC(1)

I0CAQ

I0CA1

I0CA2

I0CA3

10CA4
I0CA5

I0CA6

I0CA7

I0CBO

10CB1

10CB2

10CB3

10CB4

10CB5

10CB6

10CB7

10CCo

INTO(D
INT1(1)

INT2(1)

CLKOUT
0sC2
osc1
CLKIN

ICSPCLK

ICSPDAT

SOSCO

dIHJ0d2IW @

9l

....continued

16-bit PWM/
Reference Comparator ZCD Timers/SMT ccp CWG CLC SPI UART DSM 10C Interrupt

SOSCIN
RC1 12 9 ANC1 — — — smT1sIG(M ccp2() — — — — — — 10CC1 — SOSCl
0 PWMINO(T)
RC2 13 10 ANC2 — — — T5CKI 1™ — — — — — — 10CC2 — —
RC3 14 11 ANC3 — — — T2IN(M PWM1ERS() — — sck1M scL134) — — 10CC3 — —
RC4 15 12 ANC4 — — — — — — — spinM spaBGA4) — — 10CC4 — —
RC5 16 13 ANC5 — - — T4IN(PWM2ERS(") — — — — — — 10CC5 — —
RC6 17 14 ANC6 — — — — PWMIN1(T) — — — — cts1(M — 10CC6 — —
RC7 18 15 ANC7 — — — — — — — — — Rx1(M — 10CC7 — —
RE3 1 26 — — — — — — — — — — — — IOCE3 — Vpp/MCLR
Vss 19 16 — — — — — — — — — — — — — — Vss
Vpp®) 20 17 — — — — — — — — — — — — — — Vpp®
Vss 8 5 = = = = = = = = = = = = = = Vss
DTR1
RTS1
CWG1A
X1
CWG1B
PWM11 DTR2
CWG1C = CLC10UT
PWM12 RTS2
CWG1D CLC20UT SS1
PWM21 ™2
CWG2A CLC30UT = SCK1
PWM22 DTR3
o ADGRDA c1out PWM31 CWG2B ~ CLC4OUT = SDO1 SDA1 J
out - - ADGRDB - Cc20UT - TMRO CWG2C ~ CLC50UT S52 SCL1 DSM1 - - -
PWM32 ™3
CWG2D = CLC60UT = SCK2
CcP1 DTR4
CWG3A CLC7OUT = SDO2
ccp2 RTS4
CWG3B = CLC8OUT
CCP3 TX4
CWG3C
DTR5
CWG3D
RTS5
X5
Notes:
1. This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to the peripheral input selection table for details on which PORT pins may be used

for this signal.
2. All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in the peripheral output selection table.
3. This is a bidirectional signal. For normal module operation, the firmware will map this signal to the same pin in both the PPS input and PPS output registers.

4. These pins are configured for 12C logic levels; The SCLx/SDAX signals may be assigned to any of these pins. PPS assignments to the other pins will operate, but input logic levels will be standard TTL/ST as selected by the INLVL
register, instead of the 12C specific or SMBus input buffer thresholds.

5. A 0.1 uF bypass capacitor to Vss is required on the Vpp pin.

®

Table 3-2. 40/44/48-Pin Allocation Table

40- | 40- | 44- ; .
2| Pin | Pin| Pin . 16-bit PWM/) .
170 A/D Reference | Comparator | ZCD | Timers/SMT ccP cwaG CLC PI 1<C UART DSM 10C | Interrupt Basic
PDIP | QFN| TQFP
RAO 17 19

dIHJ0d2IW @

R)1 ANAO - C1INO- - B B B cLcino™M B B B B OCAD B B
C2INO- cLcina™
RAT 3 18 20 22 ANAT _ CTINT- _ _ _ _ sy _ _ _ _ IOCAT _
C2IN1- cLcinsM
DAC10UT1
C1INO+
RA2 4 19 21 23 ANA2 Vggp- (DAC) C2ANG+ — — — — — — — — — I0CA2 — —
VREF- (ADC)
VRefrt (DAC)
RA3 5 20 22 24 ANA3 C1INT+ _ _ _ _ _ _ _ — MDCARL(M |0CA3 _ _
VREF+ (ADC)
RAA 6 21 23 25 ANA4 — — — TOCKI(™M — — — ss20 — crss() MDCARH(D locA4 —
RA5 7 2 24 26 ANAS — _ — — — — — ss1(M — rRx5(1) MDSRC(!) |0CA5 — —
RA6 14 29 31 33 ANAG6 — - — — — — — — — cTs3M — I0CA6 cLkouT
0sC2
RA7 13 28 30 32 ANA7 — — — — — — — — — rx3(M — I0CA7 osct
CLKIN
RBO 33 8 8 3 ANBO — C2IN1+ ZCDIN — — cwg1 — — — — locBo INTO() —_
RBI 34 9 9 9 ANB1 — CHINS- — — — (@Y cri) — —4 — — ilocg1 INTID
C2IN3-
RB2 35 10 10 10 ANB2 — — — — — awas®M . spph) @ — - locg2 INT2) —
RB3 36 11 11 11 ANB3 — cHiNe- — — — — — sck2M — — — |0CB3 — —
C2IN2-
ANB4
RB4 37 12 14 16 pact®) — — 1560 — - - — — crsaM — locB4 — -
RB5 38 13 15 17 ANB5 — — — T1G() ccp3(M — — — — Rx4(M) — I0CB5 — —
cLainzM
RB6 39 14 16 18 ANB6 — — — - - — cLone™ — crs2m - locB6 — ICSPCLK
cLainz™
RB7 40 15 17 19 ANB7 DACIOUT2 - - Te N pwm3ERS(D — e = — RrRx2® — lIoCcB7 — ICSPDAT
T1ckiM
T3ckIM
RCO 15 30 32 34 ANCO — — 360 — — — — — — — 10CCO — S0SCO
SMTIWIN(
RC1 16 31 35 35 ANC1 — — — smT1sIG) ccp2(M) — — — — — — 10CC1 — SSOOSSCCIll\l

Ll

dIHJ0d2IW @

D B continued
40- | 40- | 44- :
; ; ; 16-bit PWM/
iyo@ | Pin | Pin | Pin A/D | Reference | Comparator| zCD | Timers/SMT ccp CWG | CLC sPI 2c | uART| DsM | 10C | Interrupt| Basic
PDIP | QFN| TQFP

RC2 17 32 36 40 ANC2 T5CKIM PMINOT 10CC2

- - - ccp1M - - - - - - - -
RC3 18 33 37 41 ANC3 — — — T2IN(PWM1ERS(M) — — sck1(M sc1BG4d — = 10CC3 — —
RC4 23 38 42 46 ANC4 — — — — — — — spi1M spaBG4) — — 10CC4 — —
RC5 24 39 43 47 ANC5 — — — T4IN(PWM2ERS(") — — — — — — 10CC5 — —
RC6 25 40 44 48 ANC6 — — — — PWMIN1(T) — — — — s — 10CC6 — —
RC7 26 1 1 1 ANC7 — — — — — — — — — Rx1(1) — 10CC7 — —
RDO 19 34 38 42 ANDO — — — — — — — — — — — — — —
RD1 20 35 39 43 AND1 = = = = = = = = = = = = = =
RD2 21 36 40 44 AND2 — — — — — — — — — — — — — —
RD3 22 37 41 45 AND3 — = = = = — = = = = = — = =
RD4 27 2 2 2 AND4 — — — — — — — — — — — — — —
RD5 28 3 3 3 AND5 — = = — = — — — = = = — = —
RD6 29 4 4 4 ANDG6 — — — — — — — — — — — — — —
RD7 30 5 5 5 AND7 = = = = = = = = = = = = = =
REO 8 23 25 27 ANEO — — — — — — — — — — — — — —
RE1 9 24 26 28 ANE1 — = = = = — = = = = = — = =
RE2 10 25 27 29 ANE2 — — — — — — — — — — — — — —
RE3 1 16 18 20 = — = = — = — — — = = = IOCE3 = Vpp/MCLR
RFO — — — 36 ANFO — — — — — — — — — — — — —
RF1T — — — 37 ANF1 = = = = = = = = = = = = =
RFR2 — - — 38 ANF2 — — — — — — — — — — — —
R3 — = — 39 ANF3 — = = = = — = = = = = =
RF4A — — — 12 ANF4 — — — — — — — — — — — —
RF5 — - — 13 ANF5 — = = — = — — — = = = =
RF6 — — — 14 ANF6 — — — — — — — — — — — —
RF7 — - — 15 ANF7 = = = = = = = = = = = =
Vss 12,31 6,27 6,29 6,31 — — — — — — — — — — — — — — Vss
Vpp® 11,32 7,26 7,28 7,30 = = = = = = = = = = = = = = Vpp®

8l

dIHJ0d2IW @

6l

16-bit PWM/
Reference | Comparator | ZCD | Timers/SMT ccP CWG CLC SPI

PWM11
PWM12
PWM21

PWM22
ADGRDA c1out

out® — — TMRO PWM31

ADGRDB c20uUT
PWM32

CCP1
CCpP2
CCP3

Notes:

1.

CWGTA
CWG1B
CWG1C
CWG1D
CWG2A
CWG2B
CWG2C
CWG2D
CWG3A
CWG3B
CWG3C
CWG3D

cLcrout
cLczout
CLC30UT
CLc40UT
CLC50UT
CLCeOUT
CLC70UT
CLC8OUT

SS1
SCK1
SDO1

SS2
SCK2
SDO2

SDA1
SCL1

DTR1
RTS1
1
DTR2
RTS2
™2
DTR3
RTS3
>3
DTR4
RTS4
TX4
DTR5
RTS5
>S5

DSM1 - — -

This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to the peripheral input selection table for details

on which PORT pins may be used for this signal.

All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in the peripheral output selection table.

This is a bidirectional signal. For normal module operation, the firmware will map this signal to the same pin in both the PPS input and PPS output registers.

These pins are configured for I2C logic levels; The SCLx/SDAX signals may be assigned to any of these pins. PPS assignments to the other pins will operate, but input logic levels will be standard TTL/ST

as selected by the INLVL register, instead of the I12C specific or SMBus input buffer thresholds.
A 0.1 uF bypass capacitor to Vss is required on all Vpp pins.

4. Guidelines for Getting Started with PIC18-Q43 Microcontrollers

4.1 Basic Connection Requirements

Getting started with the PIC18-Q43 family of 8-bit microcontrollers requires attention to a minimal
set of device pin connections before proceeding with development.

The following pins must always be connected:

« All Vpp and Vss pins (see the Power Supply Pins section)
* MOCLR pin (see the Master Clear (MCLR) Pin section)

These pins must also be connected if they are being used in the end application:

+ ICSPCLK/ICSPDAT pins used for In-Circuit Serial Programming” (ICSP™) and debugging purposes
(see the In-Circuit Serial Programming (ICSP) Pins section)

+ 0OSCl and OSCO pins when an external oscillator source is used (see the External Oscillator Pins
section)

Additionally, the following pins may be required:
* Vrert/VRrer- pins are used when external voltage reference for analog modules is implemented

The minimum mandatory connections are shown in the figure below.

Figure 4-1. Recommended Minimum Connections

VDD H:H
R1 s
R2 s ¥

MCLR

PIC®MCU

Key:

C1: 0.1 uF, 20V ceramic (recommended)
R1: 10 kQ (recommended)

R2: 100Q to 470Q (recommended)

C2: 0.1 uF, 20V ceramic (required)

4.2 Power Supply Pins

4.2.1 Decoupling Capacitors
The use of decoupling capacitors on every pair of power supply pins (Vpp and Vss) is required.

Consider the following criteria when using decoupling capacitors:

+ Value and type of capacitor: A 0.1 yF (100 nF), 10-20V capacitor is recommended. The capacitor
needs to be a low-ESR device, with a resonance frequency in the range of 200 MHz and higher.
Ceramic capacitors are recommended.

+ Placement on the printed circuit board: The decoupling capacitors need to be placed as close to
the pins as possible. It is recommended to place the capacitors on the same side of the board as
the device. If space is constricted, the capacitor can be placed on another layer on the PCB using

20

@ MICROCHIP

a via; however, ensure that the trace length from the pin to the capacitor is no greater than 0.25
inch (6 mm).

+ Handling high-frequency noise: If the board is experiencing high-frequency noise (upward of tens
of MHz), add a second ceramic type capacitor in parallel to the above described decoupling
capacitor. The value of the second capacitor can be in the range of 0.01 pF to 0.001 pF. Place
this second capacitor next to each primary decoupling capacitor. In high-speed circuit designs,
consider implementing a decade pair of capacitances as close to the power and ground pins as
possible (e.g., 0.1 yF in parallel with 0.001 pF).

+ Maximizing performance: On the board layout from the power supply circuit, run the power and
return traces to the decoupling capacitors first and then to the device pins. This ensures that the
decoupling capacitors are first in the power chain. Equally important is to keep the trace length
between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.

4.2.2 Tank Capacitors

On boards with power traces running longer than six inches in length, it is suggested to use a

tank capacitor for integrated circuits, including microcontrollers, to supply a local power source.

The value of the tank capacitor will be determined based on the trace resistance that connects the
power supply source to the device and the maximum current drawn by the device in the application.
In other words, select the tank capacitor that meets the acceptable voltage sag at the device. Typical
values range from 4.7 pF to 47 pF.

4.3 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions: Device Reset and Device Programming

and Debugging. If programming and debugging are not required in the end application, a direct
connection to Vpp may be all that is required. The addition of other components, to help increase
the application’s resistance to spurious Resets from voltage sags, may be beneficial. A typical
configuration is shown in Figure 4-1. Other circuit designs may be implemented, depending on the
application’s requirements.

During programming and debugging, the resistance and capacitance that can be added to the
pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently,
specific voltage levels (Vi and V) and fast signal transitions must not be adversely affected.
Therefore, specific values of R1 and C1 will need to be adjusted based on the application and PCB
requirements. For example, it is recommended that the capacitor, C1, be isolated from the MCLR
pin during programming and debugging operations by using a jumper (Figure 4-2). The jumper is
replaced for normal run-time operations.

Any components associated with the MCLR pin need to be placed within 0.25 inch (6 mm) of the pin.

Figure 4-2. Example of MCLR Pin Connections

\bb "
R1
R2
MCLR
PIC® MCU
JP
% C1

21

@ MICROCHIP

Notes:

1. R1<10kQ is recommended. A suggested starting value is 10 kQ. Ensure that the MCLR pin V|
and V|_specifications are met.

2. R2<470Q will limit any current flowing into MCLR from the extended capacitor, C1, in the
event of MCLR pin breakdown, due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS).
Ensure that the MCLR pin V|4 and V,_ specifications are met.

4.4 In-Circuit Serial Programming” (ICSP™) Pins

The ICSPCLK and ICSPDAT pins are used for ICSP and debugging purposes. It is recommended
to keep the trace length between the ICSP connector and the ICSP pins on the device as short
as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is
recommended, with the value in the range of a few tens of ohms, not to exceed 100Q.

Pull-up resistors, series diodes and capacitors on the ICSPCLK and ICSPDAT pins are not
recommended as they can interfere with the programmer/debugger communications to the device.
If such discrete components are an application requirement, they need to be removed from the
circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and
timing requirements information in the respective device Flash programming specification for
information on capacitive loading limits as well as pin input voltage high (V,4) and input low (V)
requirements.

For device emulation, ensure that the “Communication Channel Select” pins (i.e., ICSPCLK/ICSPDAT)
programmed into the device match the physical connections for the ICSP to the Microchip
debugger/emulator tool.

4.5 External Oscillator Pins

Many microcontrollers have options for at least two oscillators: A high-frequency primary oscillator
and a low-frequency secondary oscillator.

The oscillator circuit needs to be placed on the same side of the board as the device. Place the
oscillator circuit close to the respective oscillator pins with no more than 0.5 inch (12 mm) between
the circuit components and the pins. The load capacitors have to be placed next to the oscillator
itself, on the same side of the board.

Use a grounded copper pour around the oscillator circuit to isolate it from surrounding circuits. The
grounded copper pour needs to be routed directly to the MCU ground. Do not run any signal traces
or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the
other side of the board where the crystal is placed.

Layout suggestions are shown in the following figure. In-line packages may be handled with a
single-sided layout that completely encompasses the oscillator pins. With fine-pitch packages, it is
not always possible to completely surround the pins and components. A suitable solution is to

tie the broken guard sections to a mirrored ground layer. In all cases, the guard trace(s) must be
returned to ground.

22

@ MICROCHIP

Figure 4-3. Suggested Placement of the Oscillator Circuit

Rev. 30-000059A
41612017

Single-Sided and In-Line Layouts:

Copper Pour Primary Oscillator
(tied to ground) Crystal

DEVICE PINS

Prima
Oscilla{gr

C1

Secondag Oscillator|
(SOSC)

Crystal

SOSC: C2

Fine-Pitch (Dual-Sided) Layouts:

Top Layer Copper Pour
(tied to ground)

Bottom Layer

Copper Pour g
(tied to ground)

0OSCO

C2

Oscillator
Crystal

GND

C1

OscCl

DEVICE PINS

In planning the application’s routing and I/0 assignments, ensure that adjacent PORT pins and other
signals in close proximity to the oscillator are benign (i.e., free of high frequencies, short rise and fall
times, and other similar noise).

For additional information and design guidance on oscillator circuits, refer to these Microchip
application notes, available at the corporate website (www.microchip.com):

« ANB826, “Crystal Oscillator Basics and Crystal Selection for rfPIC™ and PICmicro” Devices”
« ANB849, “Basic PICmicro” Oscillator Design”

« AN943, “Practical PICmicro” Oscillator Analysis and Design”

+ AN949, “Making Your Oscillator Work”

23

@ MICROCHIP

https://www.microchip.com

4.6 Unused 1/Os

Unused I/0 pins need to be configured as outputs and driven to a Logic Low state. Alternatively,
connect a 1 kQ to 10 kQ resistor to Vss on unused pins to drive the output to logic low.

@ MICROCHIP

24

5. Register and Bit Naming Conventions

5.1 Register Names
When there are multiple instances of the same peripheral in a device, the Peripheral Control
registers will be depicted as the concatenation of a peripheral identifier, peripheral instance, and
control identifier. The Control registers section will show just one instance of all the register names
with an ‘X’ in the place of the peripheral instance number. This naming convention may also be
applied to peripherals when there is only one instance of that peripheral in the device to maintain
compatibility with other devices in the family that contain more than one.

5.2 Bit Names

There are two variants for bit names:

+ Short name: Bit function abbreviation
* Long name: Peripheral abbreviation + short name

5.2.1 Short Bit Names

Short bit names are an abbreviation for the bit function. For example, some peripherals are enabled
with the EN bit. The bit names shown in the registers are the short name variant.

Short bit names are useful when accessing bits in C programs. The general format for accessing bits
by the short name is RegisterNamebits.ShortName. For example, the enable bit, ON, in the ADCONO
register can be set in C programs with the instruction ADCONObits.ON = 1.

Short names are not useful in assembly programs because the same name may be used by different
peripherals in different bit positions. When it occurs, during the include file generation, the short

bit name instances are appended with an underscore plus the name of the register where the bit
resides, to avoid naming contentions.

5.2.2 Long Bit Names
Long bit names are constructed by adding a peripheral abbreviation prefix to the short name. The
prefix is unique to the peripheral, thereby making every long bit name unique. The long bit name for
the ADC enable bit is the ADC prefix, AD, appended with the enable bit short name, ON, resulting in
the unique bit name ADON.

Long bit names are useful in both C and assembly programs. For example, in C the ADCONO
enable bit can be set with the ADON = 1 instruction. In assembly, this bit can be set with the BSF
ADCONO, ADON instruction.

5.2.3 Bit Fields
Bit fields are two or more adjacent bits in the same register. Bit fields adhere only to the short bit
naming convention. For example, the three Least Significant bits of the ADCON2 register contain the
ADC Operating Mode Selection bit. The short name for this field is MD and the long name is ADMD.
Bit field access is only possible in C programs. The following example demonstrates a C program
instruction for setting the ADC to operate in Accumulate mode:

ADCON2bits.MD = 0b001;

Individual bits in a bit field can also be accessed with long and short bit names. Each bit is

the field name appended with the number of the bit position within the field. For example, the

Most Significant MODE bit has the short bit name MD2 and the long bit name is ADMD2. The
following two examples demonstrate assembly program sequences for setting the ADC to operate in
Accumulate mode:

MOVLW ~ (1<<MD2 | 1<<MD1)
ANDWEF ADCON2, F

25

@ MICROCHIP

MOVLW 1<<MDO
IORWF ADCON2,F

BCF ADCON2, ADMD2
BCF ADCON2, ADMD1
BSF ADCONZ2, ADMDO

5.3 Register and Bit Naming Exceptions

5.3.1 Status, Interrupt and Mirror Bits

Status, Interrupt enables, Interrupt flags and Mirror bits are contained in registers that span more
than one peripheral. In these cases, the bit name shown is unique so there is no prefix or short

name variant.

@ MICROCHIP

6. Register Legend

Table 6-1. Register Legend

R Readable bit

W Writable bit

HS Hardware settable bit
HC Hardware clearable bit

S Set only bit

C Clear only bit

u Unimplemented bit, read as ‘0’
1’ Bit value is set

‘0 Bit value is cleared

X Bit value is unknown

u Bit value is unchanged

q Bit value depends on condition
m Bit value is predefined

@ MICROCHIP

7. PIC18 CPU

This family of devices contains a PIC18 8-bit CPU core based on the modified Harvard architecture.
The PIC18 CPU supports:

+ System arbitration which decides memory access allocation depending on user priorities
« Vectored interrupt capability with automatic two-level deep context saving

« 127-level deep hardware stack with overflow and underflow Reset capabilities

+ Support Direct, Indirect, and Relative Addressing modes

+ 8x8 hardware multiplier

Figure 7-1. Family Block Diagram

9 PCLATU|PCLATH

[PCU[PCH[PCL
Program Counter

Data Latch

Data Memory

N Address Latch
128-Level Stack i
Address Latch Data Address
STKPTR I
Program Memory
Data Latch FSR1 Bank
FSR2
inc/dec
Table Latch logic
i g
=1
Q
' Instruction Address @
Instruction Bus Latch Decode @
D'Zi‘&”;?fn" ! State Machine PRODH | PRODL
Control Signals
Control 8x8 Multiply
BITOP

7.1 System Arbitration
The system arbiter resolves memory access between the system level selections (i.e., Main, Interrupt
Service Routine) and peripheral selection (e.g., DMA and Scanner) based on user-assigned priorities.
A block diagram of the system arbiter can be found below. Each of the system level and peripheral
selections has its own priority selection registers. Memory access priority is resolved using the
number written to the corresponding Priority registers, '0' being the highest priority selection and
the maximum value being the lowest priority. All system level and peripheral level selections default

28

@ MICROCHIP

to the lowest priority configuration. If the same value is in two or more Priority registers, priority is
given to the higher-listed selection according to the following table.

Important: When the PRLOCKED bit is set, the Non Volatile Memory (NVM)
module has a fixed priority of '0' that cannot be changed. If an interrupt is desired
when an NVM read/write operation is in progress, then the ISR priority level must
be set to '0'. The NVM module priority is ignored when PRLOCKED bit is cleared.

Table 7-1. Default Priorities
System Level ISR 7
MAIN
Peripheral DMA1
DMA2
DMA3
DMA4
DMAS5
DMA6
SCANNER

NN NN N NN

Figure 7-2. System Arbiter Block Diagram

Memory Program Flash
CPU Access Scanner I?/Iemo Data EEPROM

NVMCON v

AA A A AA A A

Y \AA 4 \ 4 \ 4
Priority = System Arbiter
AAA A4 Yivvy vivvy A\ 4
SFR/GRP
DMA 1 DMA2 | DMA N SRAM Data

Legend
——— Program Flash Memory Data
» Data EEPROM Data

» SFR/GPR Data

7.1.1 Priority Lock

The system arbiter grants memory access to the peripheral selections (DMAX, Scanner) as long as
the PRLOCKED bit is set. Priority selections are locked by setting the PRLOCKED bit. Setting and
clearing this bit requires a special sequence as an extra precaution against inadvertent changes. The
following code examples demonstrate the Priority Lock and Priority Unlock sequences.

@ MICROCHIP

29

7.2

7.2.1

7.2.2

7.2.3

7.24

7.3

@ MICROCHIP

Example 7-1. Priority Lock Sequence

INTCONObits.GIE 0; // Disable Interrupts;

PRLOCK = 0x55;

PRLOCK = 0xAA;

PRLOCKbits.PRLOCKED = 1; // Grant memory access to peripherals;
INTCONObits.GIE = 1; // Enable Interrupts;

Example 7-2. Priority Unlock Sequence

INTCONObits.GIE 0; // Disable Interrupts;

PRLOCK = 0x55;

PRLOCK = 0xAA;

PRLOCKbits.PRLOCKED = 0; // Allow changing priority settings;
INTCONObits.GIE = 1; // Enable Interrupts;

Memory Access Scheme

The user can assign priorities to both system level and peripheral selections based on which the
system arbiter grants memory access. Consider the following priority scenarios between ISR, MAIN
and peripherals.

ISR Priority > Main Priority > Peripheral Priority

When the peripheral priority (e.g., DMA, Scanner) is lower than ISR and MAIN priority, and the
peripheral requires:

1. Access to the Program Flash Memory, then the peripheral waits for an instruction cycle in which
the CPU does not need to access the PFM (such as a branch instruction) and uses that cycle to do
its own Program Flash Memory access, unless a PFM Read/Write operation is in progress.

2. Access to the SFR/GPR, then the peripheral waits for an instruction cycle in which the CPU does
not need to access the SFR/GPR (such as MOVLW, CALL, NOP) and uses that cycle to do its own
SFR/GPR access.

3. Access to the Data EEPROM, then the peripheral has access to Data EEPROM unless a Data
EEPROM Read/Write operation is being performed.

This results in the lowest throughput for the peripheral to access the memory and does so without
any impact on execution times.

Peripheral Priority > ISR Priority > Main Priority

When the peripheral priority (DMA, Scanner) is higher than ISR and MAIN priority, the CPU operation
is stalled when the peripheral requests memory. The CPU is held in its current state until the
peripheral completes its operation. This results in the highest throughput for the peripheral to
access the memory but has the cost of stalling other execution while it occurs.

ISR Priority > Peripheral Priority > Main Priority

In this case, interrupt routines and peripheral operation (DMAX, Scanner) will stall the Main loop.
Interrupt will preempt peripheral operation, which results in lowest interrupt latency.

Peripheral 1 Priority > ISR Priority > Main Priority > Peripheral 2 Priority

In this case, the Peripheral 1 will stall the execution of the CPU. However, Peripheral 2 can access the
memory in cycles unused by Peripheral 1, ISR and the Main Routine.

8x8 Hardware Multiplier

This device includes an 8x8 hardware multiplier as part of the ALU within the CPU. The multiplier
performs an unsigned operation and yields a 16-bit result that is stored in the product register,
PROD. The multiplier's operation does not affect any flags in the STATUS register.

30

7.3.1

7.3.2

Making multiplication a hardware operation allows it to be completed in a single instruction

cycle. This has the advantages of higher computational throughput and reduced code size for
multiplication algorithms and allows the device to be used in many applications previously reserved
for digital signal processors. A comparison of various hardware and software multiply operations,
along with the savings in memory and execution time, is shown in Table 7-2.

Table 7-2. Performance Comparison for Various Multiply Operations

Routine Multiply Method Memory Y
(Max) | @64MHz | @40 MHz | @ 10 MHz | @ 4 MHz
(Words)
69

Without hardware multiply 4.3 ps 6.9 us 27.6 us 69 ps

8x8 unsigned

Hardware multiply 1 1 62.5 ns 100 ns 400 ns 1 ps
) Without hardware multiply 33 91 5.7 us 9.1 s 36.4 ps 91 ps
8x8 signed :
Hardware multiply 6 6 375 ns 600 ns 2.4 ps 6 us
) Without hardware multiply 21 242 15.1 ps 24.2 ys 96.8 ps 242 ps
16x16 unsigned .
Hardware multiply 28 28 1.8 ps 2.8 us 11.2 ps 28 ps
) Without hardware multiply 52 254 15.9 ps 25.4 s 102.6 ps 254 ps
16x16 signed
Hardware multiply 35 40 2.5pus 4.0 ps 16.0 ps 40 ps

Operation

Example 7-3 shows the instruction sequence for an 8x8 unsigned multiplication. Only one
instruction is required when one of the arguments is already loaded in the WREG register. Example
7-4 shows the sequence to do an 8x8 signed multiplication. To account for the sign bits of the
arguments, each argument’s Most Significant bit (MSb) is tested and the appropriate subtractions
are done.

Example 7-3. 8x8 Unsigned Multiply Routine

MOVF ARGl, W ;

MULWE ARG2 ; ARGl * ARG2 -> PRODH:PRODL

Example 7-4. 8x8 Signed Multiply Routine

MOVF ARGl, W

MULWF ARG2 ; ARGl * ARG2 -> PRODH:PRODL
BTFSC ARG2, SB ; Test Sign Bit

SUBWE PRODH, F ; PRODH = PRODH - ARGLl

MOVF ARG2, W

BTFSC ARG1l, SB ; Test Sign Bit

SUBWE PRODH, F ; PRODH = PRODH - ARG2

16x16 Unsigned Multiplication Algorithm

Example 7-6 shows the sequence to do a 16x16 unsigned multiplication. Example 7-5 shows the
algorithm that is used. The 32-bit result is stored in four registers.

Example 7-5. 16x16 Unsigned Multiply Algorithm

RES3:RESO = ARG1H:ARG1L » ARG2H: ARG2L = (ARGlH e ARG2H o 216) + (ARG1H
e ARG2L o 28) + (ARG1L e ARG2H o 28) + (ARGIL . ARGZL)

@ MICROCHIP

31

Example 7-6. 16x16 Unsigned Multiply Routine

MOVF ARGIL, W

MULWE ARG2L ; ARG1L * ARG2L — PRODH:PRODL
MOVFEF PRODH, RES1 ;

MOVFEFF PRODL, RESO 7

MOVEF ARGIH, W
MULWF ARG2H
MOVEF PRODH, RES3
MOVFEF PRODL, RES2

ARG1H * ARG2H — PRODH:PRODL

MOVF ARG1L, W

MULWF ARG2H ; ARG1L * ARG2H — PRODH:PRODL
MOVF PRODL, W g

ADDWF RES1, F ; Add cross products

MOVF PRODH, W g

ADDWFC RES2, F g

CLRF WREG ;

ADDWFC RES3, F

MOVF ARG1H, W g

MULWF ARG2L ; ARG1H * ARG2L - PRODH:PRODL
MOVF PRODL, W 2

ADDWF RES1, F ; Add cross products

MOVF PRODH, W g

ADDWFC RES2, F 2

CLRF WREG ;

ADDWFC RES3, F

7.3.3 16x16 Signed Multiplication Algorithm

Example 7-8 shows the sequence to do a 16x16 signed multiply. Example 7-7 shows the algorithm
used. The 32-bit result is stored in four registers. To account for the sign bits of the arguments, the
MSb for each argument pair is tested and the appropriate subtractions are done.

Example 7-7. 16x16 Signed Multiply Algorithm

RES3:RESO = ARG1H:ARG1L » ARG2H: ARG2L = (ARGIH e ARG2H o 216) + (ARGlH
e ARG2L o 28) + (ARG1L e ARG2H o 28) + (ARGIL . ARGZL) + (— 1e ARG2H < 7 >
e ARG1H:ARG1L o 216) + (— 1 ARG1H <7 > ¢ ARG2H:ARG2L » 216)

Example 7-8. 16x16 Signed Multiply Routine

MOVF ARGIL, W
MULW ARG2L ; ARG1L * ARG2L - PRODH:PRODL
MOVEF PRODH, RES1 ;

MOVFEF PRODL, RESO 2

MOVEF ARGIH, W

MULWE ARG2H ; ARG1H * ARG2H - PRODH:PRODL
MOVEF PRODH, RES3 ;

MOVFF PRODL, RES2 ;

MOVF ARG1L, W

MULWF ARG2H ; ARG1L * ARG2H - PRODH:PRODL
MOVF PRODL, W g

ADDWF RES1, F ; Add cross products

MOVF PRODH, W g

ADDWFC RES2, F g

CLRF WREG ;

ADDWFC RES3, F

MOVF ARG1H, W 2
MULWF ARG2L ; ARG1H * ARG2L - PRODH:PRODL

@ MICROCHIP

32

7.4

74.1

7.4.2

MOVF PRODL, W

ADDWF RES1, F Add cross products

MOVEF PRODH, W
ADDWFC RES2, F
CLRF WREG

ADDWFC RES3, F

BTFSS ARG2H, 7 ARG2H:ARG2L neg?

BRA SIGN_ARG1 ; no, check ARG1
MOVEF ARG1L, W ;
SUBWF RES2 ;
MOVE ARG1H, W ;

SUBWEFB RES3

’

SIGN ARGL:
BTFSS ARG1H, 7 ; ARG1H:ARG1L neg?
BRA CONT_CODE ; no, done
MOVEF ARG2L, W ;
SUBWF RES2 ;
MOVE ARG2H, W ;

SUBWEFB RES3

CONT CODE:

PIC18 Instruction Cycle

Instruction Flow/Pipelining

An “Instruction Cycle” consists of four cycles of the oscillator clock. The instruction fetch and execute
are pipelined in such a manner that a fetch takes one instruction cycle, while the decode and
execute take another instruction cycle. However, due to the pipelining, each instruction effectively
executes in one cycle. If an instruction causes the Program Counter (PC) to change (e.g., GOTO), then
two cycles are required to complete the instruction (Figure 7-3).

A fetch cycle begins with the Program Counter (PC) incrementing followed by the execution cycle.

In the execution cycle, the fetched instruction is latched onto the Instruction Register (IR). This
instruction is then decoded and executed during the next few oscillator clock cycles. Data memory is
read (operand read) and written (destination write) during the execution cycle as well.

Figure 7-3. Instruction Pipeline Flow

’ Tcvo Tevl Tev2 Tevs Tcva ’ Tevs ’
1. MOVLW 55h | Fetch 1 Execute 1
2. MOVWF PORTB Fetch 2 Execute 2
3. BRA Sub_1 Fetch 3 Execute 3
4. BSF PORTA, BITS (Forced NOP) Fetch 4 Flush (NOP)
5. Instruction @ address Sub_1 Fetch Sub_1 |Execute Sub_1

Note: There are some instructions that take multiple cycles to execute. Refer to the “Instruction
Set Summary” chapter for details.

Instructions in Program Memory

The program memory is addressed in bytes. Instructions are stored as either two bytes, four bytes,
or six bytes in program memory. The Least Significant Byte of an instruction word is always stored in
a program memory location with an even address (LSb = 0). To maintain alignment with instruction
boundaries, the PC increments in steps of two and the LSb will always read ‘0". See the “Program

@ MICROCHIP

33

743

Counter” section in the “Memory Organization” chapter for more details. The instructions in the
Program Memory figure below shows how instruction words are stored in the program memory.

The cALL and GOTO instructions have the absolute program memory address embedded into the
instruction. Since instructions are always stored on word boundaries, the data contained in the
instruction is a word address. The word address is written to the corresponding bits of the Program
Counter register, which accesses the desired byte address in program memory. Instruction #2 in
the example shows how the instruction GOTO 0006h is encoded in the program memory. Program
branch instructions, which encode a relative address offset, operate in the same manner. The offset
value stored in a branch instruction represents the number of single-word instructions by which the
PC will be offset.

Figure 7-4. Instructions in Program Memory

Word Address

LSB=1 LSB=0
Program Memory 000000h
Byte Locations 000002h
000004h
000006h
Instruction 1: MOVLW 055h OFh 55h 000008h
Instruction 2: GOTO 0006h EFh 03h 00000Ah
FOh 00h 00000Ch
Instruction 3: MOVFF 123h, 456h C1th 23h 00000Eh
F4h 56h 000010h
Instruction 4: MOVEFL 123h, 456h 00h 60h 000012h
F4h 8Ch 000014h
F4h 56h 000016h
000018h
00001Ah

Multi-Word Instructions

The standard PIC18 instruction set has six two-word instructions: CALL, MOVFF, GOTO, LFSR, MOVSF
and Movss and two three-word instructions: MOVEFL and MOVSFL. In all cases, the second and the
third word of the instruction always has 1111 as its four Most Significant bits; the other 12 bits are
literal data, usually a data memory address.

The use of 1111 in the four MSbs of an instruction specifies a special form of NOP. If the instruction
is executed in proper sequence, immediately after the first word, the data in the second word is
accessed and used by the instruction sequence. If the first word is skipped for some reason and the
second word is executed by itself, a NOP is executed instead. This is necessary for cases when the
two-word instruction is preceded by a conditional instruction that changes the PC.

Table 7-3 and Table 7-4 show more details of how two-word instructions work. Table 7-5 and Table
7-6 show more details of how three-word instructions work.

Important: See the “PIC18 Instruction Execution and the Extended
Instruction Set” section for information on two-word instructions in the
extended instruction set.

Table 7-3. Two-Word Instructions (Case 1)

0110 0110 0000 0000 TSTFSZ REG1 ; 1s RAM location 07?
1100 0001 0101 0011 MOVFF REG1,REG2 ; No, skip this word

@ MICROCHIP

34

........... continued

1111 0100 0101 0110 ; Execute this word as NOP
0010 0100 0000 0000 ADDWF REG3 ; continue code

Table 7-4. Two-Word Instructions (Case 2)

0110 0110 0000 0000 TSTFSZ REG1 ; is RAM location 07?

1100 0001 0101 0011 MOVFF REG1,REG2 ; Yes, execute this word
1111 0100 0101 0110 ; 2nd word of instruction
0010 0100 0000 0000 ADDWEF REG3 ; continue code

Table 7-5. Three-Word Instructions (Case 1)

0110 0110 0000 0000 TSTFSZ REG1 ; is RAM location 07

0000 0000 0110 0000 MOVFFL REG1,REG2 ; Yes, skip this word

1111 0100 1000 1100 ; Execute this word as NOP
1111 0100 0101 0110 ; Execute this word as NOP
0010 0100 0000 0000 ADDWEF REG3 ; continue code

Table 7-6. Three-Word Instructions (Case 2)

0110 0110 0000 0000 TSTFSZ REG1 ; is RAM location 07?

0000 0000 0110 0000 MOVFFL REG1,REG2 ; No, execute this word
1111 0100 1000 1100 ; 2nd word of instruction
1111 0100 0101 0110 ; 3rd word of instruction
0010 0100 0000 0000 ADDWF REG3 ; continue code

7.5 STATUS Register

The STATUS register contains the arithmetic status of the ALU. As with any other SFR, it can be the
operand for any instruction. If the STATUS register is the destination for an instruction that affects
the Z, DC, C, OV or N bits, the results of the instruction are not written; instead, the STATUS register
is updated according to the instruction performed. Therefore, the result of an instruction with the
STATUS register as its destination may be different than intended. As an example, CLRF STATUS will
set the Z bit and leave the remaining Status bits unchanged ('000u uluu’).

It is recommended that only BCF, BSF, SWAPF, MOVEFF and MOVWE instructions are used to alter the
STATUS register, because these instructions do not affect the Z, C, DC, OV or N bits in the STATUS
register. For other instructions that do not affect Status bits, see the instruction set summaries.

Important: The C and DC bits operate as the Borrow and Digit Borrow bits,
respectively, in subtraction.

7.6 Call Shadow Register

When CcALL instruction is used, the WREG, BSR and STATUS are automatically saved in hardware and
can be accessed using the WREG_CSHAD, BSR_CSHAD and STATUS_CSHAD registers.

35

@ MICROCHIP

Important: The contents of these registers need to be handled correctly to avoid
erroneous code execution.

7.7 Register Definitions: System Arbiter

@ MICROCHIP

36

7.7.1 ISRPR

Name: ISRPR
Address: OxOBF

Interrupt Service Routine Priority Register

Bit 7 6 5 4 3 2 1 0
| | | | | | PR[2:0] |
Access R/W R/W R/W
Reset 1 1 1

Bits 2:0 - PR[2:0] Interrupt Service Routine Priority Selection

111 System Arbiter Priority Level: 7 (Lowest Priority)
110 System Arbiter Priority Level: 6
101 System Arbiter Priority Level: 5
100 System Arbiter Priority Level: 4
011 System Arbiter Priority Level: 3
010 System Arbiter Priority Level: 2
001 System Arbiter Priority Level: 1
000 System Arbiter Priority Level: 0 (Highest Priority)

@ MICROCHIP

7.7.2 MAINPR

Name: MAINPR
Address: O0xOBE

Main Routine Priority Register

Bit 7 6 5 4 3 2 1 0
| | | | | PR[2:0] |
Access R/W R/W R/W
Reset 1 1 1

Bits 2:0 - PR[2:0] Main Routine Priority Selection

111 System Arbiter Priority Level: 7 (Lowest Priority)
110 System Arbiter Priority Level: 6
101 System Arbiter Priority Level: 5
100 System Arbiter Priority Level: 4
011 System Arbiter Priority Level: 3
010 System Arbiter Priority Level: 2
001 System Arbiter Priority Level: 1
000 System Arbiter Priority Level: 0 (Highest Priority)

@ MICROCHIP

7.7.3 DMAXxPR

Name: DMAXPR
Address: 0x0B6,0x0B7,0x0B8,0x0B9,0x0BA,0x0BB

DMAX Priority Register

Bit 7 6 5 4 3 2 1 0
| | | | | PR[2:0] |
Access R/W R/W R/W
Reset 1 1 1

Bits 2:0 - PR[2:0] DMAX Priority Selection

111 System Arbiter Priority Level: 7 (Lowest Priority)
110 System Arbiter Priority Level: 6
101 System Arbiter Priority Level: 5
100 System Arbiter Priority Level: 4
011 System Arbiter Priority Level: 3
010 System Arbiter Priority Level: 2
001 System Arbiter Priority Level: 1
000 System Arbiter Priority Level: 0 (Highest Priority)

@ MICROCHIP

7.7.4 SCANPR

Name: SCANPR
Address: 0x0B5

Scanner Priority Register

Bit 7 6 5 4 3 2 1 0
| | | | | PR[2:0] |
Access R/W R/W R/W
Reset 1 1 1

Bits 2:0 - PR[2:0] Scanner Priority Selection

111 System Arbiter Priority Level: 7 (Lowest Priority)
110 System Arbiter Priority Level: 6
101 System Arbiter Priority Level: 5
100 System Arbiter Priority Level: 4
011 System Arbiter Priority Level: 3
010 System Arbiter Priority Level: 2
001 System Arbiter Priority Level: 1
000 System Arbiter Priority Level: 0 (Highest Priority)

@ MICROCHIP

7.7.5 PRLOCK

Name: PRLOCK
Address: 0x0B4

Priority Lock Register

Bit 7 6 5 4 3 2 1 0
| | | | | | PRLOCKED |
Access R/W
Reset 0

Bit 0 - PRLOCKED PR Register Lock

1 Priority registers are locked and cannot be written; Peripherals have access to the memory
0 Priority registers can be modified by write operations; Peripherals do not have access to the memory
Important:

1. The PRLOCKED bit can only be set or cleared after the unlock sequence.

2. If the Configuration Bit PRTWAY = 1, the PRLOCKED bit cannot be cleared after
it has been set. A device Reset will clear the bit and allow one more set.

@ MICROCHIP

41

7.7.6 PROD

Name: PROD
Address: 0x4F3

Timer Register
Product Register Pair

Bit 15 14 13 12 11 10 9 8
| PROD[15:8]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| PRODI7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset X X X X X X X X

Bits 15:0 - PROD[15:0] PROD Most Significant

Notes: The individual bytes in this multibyte register can be accessed with the following register

names:

+ PRODH: Accesses the high byte PROD[15:8]
+ PRODL: Accesses the low byte PRODI[7:0]

@ MICROCHIP

7.7.7 STATUS

Name: STATUS
Address: 0x4D8

STATUS Register

Bit 7 6 5 4 3 2 1 0
| | T | PD | N | ov | Z | bDC | C |
Access R R R/W R/W R/W R/W R/W
Reset 1 1 0 0 0 0 0

Bit 6 - TO Time-Out
Reset States: POR/BOR =1
All Other Resets = q

Value Description
1 Set at power-up or by execution of the CLRWDT or SLEEP instruction
0 A WDT time-out occurred

Bit 5 - PD Power-Down
Reset States: POR/BOR =1
All Other Resets = q

VEINS Description
1 Set at power-up or by execution of the CLRWDT instruction
0 Cleared by execution of the SLEEP instruction

Bit 4 - N Negative
Used for signed arithmetic (two's complement); indicates if the result is negative (ALU MSb = 1).
Reset States: POR/BOR =0
All Other Resets =u

Value Description
1 The result is negative
0 The result is positive

Bit 3 - OV Overflow
Used for signed arithmetic (two's complement); indicates an overflow of the 7-bit magnitude, which
causes the sign bit (bit 7) to change state.
Reset States: POR/BOR =0
All Other Resets = u

Value Description
1 Overflow occurred for current signed arithmetic operation
0 No overflow occurred

Bit2-2Z Zero

Reset States: POR/BOR =0
All Other Resets = u
Value Description
1 The result of an arithmetic or logic operation is zero
0 The result of an arithmetic or logic operation is not zero

Bit 1 - DC Digit Carry / Borrow
ADDWF, ADDLW, SUBLW, SUBWF instructions("
Reset States: POR/BOR =0
All Other Resets = u

@ MICROCHIP

43

Value Description

1 A carry-out from the 4th low-order bit of the result occurred
0 No carry-out from the 4th low-order bit of the result

Bit0- C Carry/Borrow
ADDWF, ADDLW, SUBLW, SUBWF instructions(!-2)
Reset States: POR/BOR =0
All Other Resets =u

Value Description

1 A carry-out from the Most Significant bit of the result occurred
0 No carry-out from the Most Significant bit of the result occurred

Notes:

1. For Borrow, the polarity is reversed. A subtraction is executed by adding the two's complement
of the second operand.

2. For Rotate (RRCF, RLCF) instructions, this bit is loaded with either the high or low-order bit of the
Source register.

@ MICROCHIP

44

7.8 Register Summary - System Arbiter Control

[hdgdress| — Name [Bitpos| 7| 6 |5 | 4 | 3 | 2 | 1 | o |
7:0

0xB4 PRLOCK
0xB5 SCANPR 7:0
0xB6 DMA1PR 7:0
0xB7 DMA2PR 7:0
0xB8 DMA3PR 7:0
0xB9 DMA4PR 7:0
OxBA DMASPR 7:0
0xBB DMAGPR 7:0
0xBC
.. Reserved
0xBD
O0xBE MAINPR 7:0
OxBF ISRPR 7:0
0xCO
e Reserved
0x0372
0x0373 STATUS_CSHAD 7:0
0x0374 WREG_CSHAD 7:0
0x0375 BSR_CSHAD 7:0
0x0376 Reserved
0x0377 STATUS_SHAD 7:0
0x0378 WREG_SHAD 7:0
0x0379 BSR_SHAD 7:0
7:0
0x037A PCLAT_SHAD 15:8
7:0
0x037C FSRO_SHAD
15:8
7:0
0x037E FSR1_SHAD 15:8
7:0
0x0380 FSR2_SHAD
15:8
0x0382 PROD_SHAD 70
- 15:8
0x0384
.. Reserved
0x04D7
0x04D8 STATUS 7:0
0x04D9
.. Reserved
0x04F2
7:0
0x04F3 PROD
15:8

@ MICROCHIP

PR[2:0]
PR[2:0]
PR[2:0]
PR[2:0]
PR[2:0]
PR[2:0]
PR[2:0]
PR[2:0]
PR[2:0
TO PD N ov z DC
WREG[7:0]
BSR[5:0]
TO PD N ov z DC
WREG[7:0]
BSR[5:0]
PCLATH[7:0]
PCLATU[4:0]
FSRL[7:0]
FSRH[5:0]
FSRL[7:0]
FSRH[5:0]
FSRL[7:0]
FSRH[5:0]
PROD[7:0]
PROD[15:8]
TO PD N ov z DC
PRODI[7:0]
PROD[15:8]

PRLOCKED

45

8.2

8.3

8.4

8.5

Device Configuration

Configuration Settings

The Configuration settings allow the user to set up the device with several choices of oscillators,
Resets and memory protection options. These are implemented at 0x300000 - 0x300009.

Important: The DEBUG Configuration bit is managed automatically by device
development tools including debuggers and programmers. For normal device
operation, this bit needs to be maintained as a ‘1".

Code Protection

Code protection allows the device to be protected from unauthorized access. Internal access to the
program memory is unaffected by any code protection setting. A single code-protect bit controls the
access for both program memory and data EEPROM memory.

The entire program memory and Data EEPROM space is protected from external reads and writes
by the CP bit. When CP = 0, external reads and writes are inhibited and a read will return all ‘0’s.
The CPU can continue to read the memory, regardless of the protection bit settings. Self-writing the
program memory is dependent upon the write protection setting.

User ID

32 words in the memory space (0x200000 - 0x20003F) are designated as ID locations where the
user can store checksum or other code identification numbers. These locations are readable and
writable during normal execution. See the “User ID, Device ID, Configuration Settings Access,
DIA and DCI” section in the "NVM - Nonvolatile Memory Module" chapter for more information
on accessing these memory locations. For more information on checksum calculation, see the
“PIC18FXXQ43 Family Programming Specification” (DS40002079).

Device ID and Revision ID

The 16-bit device ID word is located at 0x3FFFFE and the 16-bit revision ID is located at Ox3FFFFC.
These locations are read-only and cannot be erased or modified.

Development tools, such as device programmers and debuggers, may be used to read the Device ID,
Revision ID and Configuration bits. Refer to the “NVM - Nonvolatile Memory Module” chapter for
more information on accessing these locations.

Register Definitions: Configuration Settings

@ MICROCHIP

46

8.5.1 CONFIG1

Name: CONFIG1
Address: 0x300000

Configuration Byte 1

Bit 7 6 5 4 3 2 1 0
| | RSTOSC[2:0] | | FEXTOSC[2:0] |
Access R/W RIW R/W R/W R/W R/W
Reset 1 1 1 1 1 1

Bits 6:4 - RSTOSC[2:0] Power-Up Default Value for COSC
This value is the Reset default value for COSC and selects the oscillator first used by user software.
Refer to COSC operation.

Value Description

111
110
101
100
011
010
001
000

EXTOSC operating per FEXTOSC bits

HFINTOSC with HFFRQ = 4 MHz and CDIV = 4:1. Resets COSC/NOSCtob'110"'.
LFINTOSC

SOSC

Reserved

EXTOSC with 4x PLL, with EXTOSC operating per FEXTOSC bits

Reserved

HFINTOSC with HFFRQ = 64 MHz and CDIV = 1:1. Resets COSC/NOSCtob'110"'.

Bits 2:0 - FEXTOSC[2:0] External Oscillator Mode Selection

111
110
101
100
011
010
001
000

ECH (external clock) above 8 MHz

ECM (external clock) for 500 kHz to 8 MHz

ECL (external clock) below 500 kHz

Oscillator not enabled

Reserved (do not use)

HS (crystal oscillator) above 4 MHz

XT (crystal oscillator) above 500 kHz, below 4 MHz
LP (crystal oscillator) optimized for 32.768 kHz

@ MICROCHIP

47

8.5.2 CONFIG2

Name: CONFIG2
Address: 0x300001

Configuration Byte 2

Bit 7 6 5 4 3 2 1 0
| | | FCMEN | | CSWEN | PRTWAY | CLKOUTEN |
Access R/W R/W R/W R/W
Reset 1 1 1 1

Bit 5 - FCMEN Fail-Safe Clock Monitor Enable

1 Fail-Safe Clock Monitor enabled
0 Fail-Safe Clock Monitor disabled

Bit 3 - CSWEN Clock Switch Enable

Value Description
1 Writing to NOSC and NDIV is allowed
0 The NOSC and NDIV bits cannot be changed by user software

Bit 1 - PRIWAY PRLOCKED One-Way Set Enable

VEINS Description
1 The PRLOCKED bit can be cleared and set only once; Priority registers remain locked after one clear/set cycle
0 The PRLOCKED bit can be set and cleared repeatedly (subject to the unlock sequence)

Bit 0 - CLKOUTEN Clock Out Enable
If FEXTOSC = HS, XT, LP, then this bit is ignored.

Otherwise:
Value Description
1 CLKOUT function is disabled; I/0 function on OSC2
0 CLKOUT function is enabled; Fosc/4 clock appears at OSC2

@ MICROCHIP

48

8.5.3 CONFIG3

Name: CONFIG3
Address: 0x300002

Configuration Byte 3

Bit 7 6 5 4 3 2 1 0

| BOREN[1:0] | TPBOREN | IVTTWAY | MVECEN | PWRTS[1:0] | MCLRE |
Access R/W R/W RIW R/W R/W R/W R/W R/W
Reset 0 1 1 1 1 1 1 1

Bits 7:6 - BOREN[1:0] Brown-out Reset Enable
When enabled, Brown-out Reset Voltage (Vgor) is set by the BORV bit.

11 Brown-out Reset enabled, the SBOREN bit is ignored

10 Brown-out Reset enabled while running, disabled in Sleep; SBOREN is ignored
01 Brown-out Reset enabled according to SBOREN

00 Brown-out Reset disabled

Bit 5 - LPBOREN Low-Power BOR Enable

Value Description

1 Low-Power Brown-out Reset is disabled
0 Low-Power Brown-out Reset is enabled

Bit 4 - IVTIWAY IVTLOCK One-Way Set Enable

VEINS Description
1 The IVTLOCK bit can be cleared and set only once; IVT registers remain locked after one clear/set cycle
0 The IVTLOCK bit can be set and cleared repeatedly (subject to the unlock sequence)

Bit 3 - MVECEN Multivector Enable

Value Description
1 Multivector is enabled; vector table used for interrupts
0 Legacy interrupt behavior

Bits 2:1 - PWRTS[1:0] Power-up Timer Selection

Value Description

11 PWRT is disabled

10 PWRT is set at 64 ms
01 PWRT is set at 16 ms
00 PWRT is set at 1 ms

Bit 0 - MCLRE Master Clear (MCLR) Enable

VEINS Condition Description

X If LVP =1 RE3 pin function is MCLR

1 If LVP =0 MCLR pin is MCLR

0 If LVP =0 MCLR pin function is a port-defined function

@ MICROCHIP

49

8.5.4 CONFIG4

Name: CONFIG4
Address: 0x300003

Configuration Byte 4

Bit 7 6 5 4 3 2 1 0
| XINST | | LV | STVREN | PPSTWAY | 7Z(D | BORV[1:0] |
Access R/W RIW R/W R/W R/W R/W R/W
Reset 1 1 1 1 1 1 1

Bit 7 - XINST Extended Instruction Set Enable

1 Extended Instruction Set and Indexed Addressing mode disabled (Legacy mode)
0 Extended Instruction Set and Indexed Addressing mode enabled

Bit 5 - LVP Low-Voltage Programming Enable
The LVP bit cannot be written (to zero) while operating from the LVP programming interface. The
purpose of this rule is to prevent the user from dropping out of LVP mode while programming from
LVP mode or accidentally eliminating LVP mode from the Configuration state.

Value Description
1 Low-Voltage Programming enabled. MCLR/Vpp pin function is MCLR. The MCLRE Configuration bit is ignored.
0 HV on MCLR/Vpp must be used for programming

Bit 4 - STVREN Stack Overflow/Underflow Reset Enable

VEINS Description
1 Stack Overflow or Underflow will cause a Reset
0 Stack Overflow or Underflow will not cause a Reset

Bit 3 - PPSTWAY PPSLOCKED One-Way Set Enable

1 The PPSLOCKED bit can only be set once after an unlocking sequence is executed; once PPSLOCK is set, all
future changes to PPS registers are prevented
0 The PPSLOCKED bit can be set and cleared as needed (unlocking sequence is required)

Bit 2 - ZCD ZCD Disable

VEINS Description
1 ZCD disabled, ZCD can be enabled by setting the ZCDSEN bit of ZCDCON
0 ZCD always enabled, PMDx[ZCDMD] bit is ignored

Bits 1:0 - BORV[1:0] Brown-out Reset Voltage Selection

11 Brown-out Reset Voltage (VgoR) set to 1.90V
10 Brown-out Reset Voltage (VgoR) set to 2.45V
01 Brown-out Reset Voltage (VgoR) set to 2.7V

00 Brown-out Reset Voltage (VgoR) set to 2.85V

@ MICROCHIP

50

8.5.5 CONFIG5

Name: CONFIG5
Address: 0x300004

Configuration Byte 5

Bit 7 6 5 4 3 2 1 0
| | WDTE[1:0] WDTCPS[4:0] |
Access R/W RIW R/W RIW R/W R/W R/W
Reset 1 1 1 1 1 1 1

Bits 6:5 - WDTE[1:0] WDT Operating Mode

Value Description

11 WDT enabled regardless of Sleep; the SEN bit in WDTCONQO is ignored

10 WDT enabled while Sleep = 0, suspended when Sleep = 1; the SEN bit in WDTCONO is ignored
01 WDT enabled/disabled by the SEN bit in WDTCONO

00 WDT disabled, the SEN bit in WDTCONO is ignored

Bits 4:0 - WDTCPS[4:0] WDT Period Select

WDTCONO[WDTPS] at POR
WDTCPS - _ Typical Time-Out | Software Control of WDTPS?
Value Divider Ratio =
(Fin = 31 kHz)

11111 01011 1:65536 216 2s Yes
11110t0 10011 11110to 10011 1:32 25 1ms No
10010 10010 1:8388608 223 2565 No
10001 10001 1:4194304 222 128s No
10000 10000 1:2097152 221 64s No
01111 01111 1:1048576 220 32s No
01110 01110 1:524288 219 165 No
01101 01101 1:262144 218 8s No
01100 01100 1:131072 2V 4s No
01011 01011 1:65536 216 2s No
01010 01010 1:32768 215 1s No
01001 01001 1:16384 214 512 ms No
01000 01000 1:8192 213 256 ms No
00111 00111 1:4096 212 128 ms No
00110 00110 1:2048 211 64 ms No
00101 00101 1:1024 210 32ms No
00100 00100 1:512 2° 16 ms No
00011 00011 1:256 28 8ms No
00010 00010 1:128 27 4 ms No
00001 00001 1:64 26 2ms No
00000 00000 1:32 25 1ms No

@ MICROCHIP

8.5.6 CONFIG6

Name: CONFIG6
Address: 0x300005

Configuration Byte 6

Bit 7 6 5 4 3 2 1 0
| | | WDTCCS[2:0] | WDTCWS[2:0] |
Access R/W R/W R/W R/W R/W R/W
Reset 1 1 1 1 1 1

Bits 5:3 - WDTCCS[2:0] WDT Input Clock Selector

Value Condition Description

x WDTE = 00 These bits have no effect

111 WDTE # 00 Software control

110 to WDTE # 00 Reserved

011

010 WDTE # 00 WDT reference clock is the SOSC

001 WDTE # 00 WDT reference clock is the 31.25 kHz MFINTOSC
000 WDTE # 00 WDT reference clock is the 31.0 kHz LFINTOSC

Bits 2:0 - WDTCWS[2:0] WDT Window Select(!

WDTCON1[WINDOW] at POR

WDTCWS - - _ Software Control of
Value Window De!ay Percent of | Window Opepmg Percent WINDOW
Time of Time
n/a

111 111 100 Yes
110 110 n/a 100
101 101 25 75
100 100 375 62.5
011 011 50 50 No
010 010 62.5 37.5
001 001 75 25
000 000 87.5 12.5

Note:

1. For any setting other than WDTCWS = 111, user firmware has to arm the WDT by reading the WDTCONO register before
executing the CLRWDT instruction.

@ MICROCHIP

8.5.7 CONFIG7

Name: CONFIG7
Address: 0x300006

Configuration Byte 7

Bit 7 6 5 4 3 2 1 0
| | | DEBUG | SAFEN | BBEN | BBSIZE[2:0] |
Access RIW R/W R/W R/W R/W R/W
Reset 1 1 1 1 1 1

Bit 5 - DEBUG Debugger Enable

1 Background debugger disabled
0 Background debugger enabled

Bit 4 - SAFEN Storage Area Flash (SAF) Enable(")

Value Description
1 SAF is disabled
0 SAF is enabled

Bit 3- BBEN Boot Block Enable("

VEINS Description
1 Boot Block is disabled
0 Boot Block is enabled

Bits 2:0 - BBSIZE[2:0] Boot Block Size Selection(®

Table 8-1. Boot Block Size

Boot Block Size (words
BBEN BBSIZE End Address of
Boot Block PIC18Fx5Q43 PIC18Fx6Q43 PIC18Fx7Q43
XXX - ~

1
0 111 00 03FFh 512
0 110 00 07FFh 1024
0 101 00 OFFFh 2048
0 100 00 1FFFh 4096
0 011 00 3FFFh 8192
0 010 00 7FFFh - 16384
0 001 00 FFFFh - 32768
0 000 00 FFFFh -
Notes:
1. Once protection is enabled through ICSP™ or a self-write, it can only be reset through a Bulk
Erase.

2. BBSIZE[2:0] bits can only be changed when BBEN = 1. Once BBEN = 0, BBSIZE[2:0] can only be
changed through a Bulk Erase.

53

@ MICROCHIP

8.5.8 CONFIG8

Name: CONFIG8
Address: 0x300007

Configuration Byte 8

Bit 7 6 5 4 3 2 1 0
| WRTAPP | | | WRTSAF | WRTD WRTC | WRTB |
Access R/W R/W R/W R/W R/W
Reset 1 1 1 1 1

Bit 7 - WRTAPP Application Block Write Protection(V
Value Description
1 Application Block is not write-protected
0 Application Block is write-protected

Bit 3 - WRTSAF Storage Area Flash (SAF) Write Protection(1-2)

Value Description
1 SAF is not write-protected
0 SAF is write-protected

Bit 2- WRTD Data EEPROM Write Protection(

VEINS Description
1 Data EEPROM is not write-protected
0 Data EEPROM is write-protected

Bit 1 - WRTC Configuration Register Write Protection(V)

Value Description
1 Configuration registers are not write-protected
0 Configuration registers are write-protected

Bit 0 - WRTB Boot Block Write Protection(!.3)

Value Description

1 Boot Block is not write-protected
0 Boot Block is write-protected
Notes:
1. Once protection is enabled through ICSP™ or a self-write, it can only be reset through a Bulk
Erase.

Applicable only if SAFEN = 0.
Applicable only if BBEN = 0.

@ MICROCHIP

54

8.5.9 CONFIG9

Name: CONFIG9
Address: 0x300008
Configuration Byte 9

This register is reserved

Bit 7 6

Access
Reset

@ MICROCHIP

55

8.5.10 CONFIG10

Name: CONFIG10
Address: 0x300009

Configuration Byte 10

Bit 7 6 5 4 3 2 1 0
| | | | | | |
Access R/W
Reset 1

Bit 0 - CP User Program Flash Memory and Data EEPROM Code Protection("

1 User Program Flash Memory and Data EEPROM code protection are disabled
0 User Program Flash Memory and Data EEPROM code protection are enabled
Note:

1. Once this bit is enabled, it can only be reset through a Bulk Erase.

@ MICROCHIP

56

8.6

0x300000 CONFIG1

0x300001 CONFIG2
0x300002 CONFIG3
0x300003 CONFIG4
0x300004 CONFIG5
0x300005 CONFIG6
0x300006 CONFIG7
0x300007 CONFIG8
0x300008 CONFIGY

0x300009 CONFIG10

8.7

@ MICROCHIP

7.0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0

BOREN[1:0]
XINST

WRTAPP

RSTOSC[2:0]
FCMEN
LPBOREN
LvP
WDTE[1:0]

Register Summary - Configuration Settings

pddress)) Name sithos L7 L s L s L L s L2 Lo

IVTTWAY
STVREN

WDTCCS[2:0]

Register Definitions: Device ID and Revision ID

FEXTOSC[2:0]

CSWEN PRIWAY CLKOUTEN
MVECEN PWRTS[1:0] MCLRE
PPSTWAY 7D BORVI[1:0]

WDTCPS[4:0]
WDTCWS[2:0]
BBEN BBSIZE[2:0]

WRTSAF WRTD WRTC WRTB

cP

57

8.7.1 Device ID

Name: DEVICEID
Address: Ox3FFFFE

Device ID Register

Bit 15 14 13 12 11 10 9 8

| DEV[15:8] |
Access R R R R R R R R
Reset q q q q q q q q
Bit 7 6 5 4 3 2 1 0

| DEV[7:0] |
Access R R R R R R R R
Reset q q q q q q q q

Bits 15:0 - DEV[15:0] Device ID

PIC18F26Q43 7420h
PIC18F46Q43 7440h
PIC18F56Q43 7460h

@ MICROCHIP

8.7.2 Revision ID

Name: REVISIONID
Address: Ox3FFFFC

Revision ID Register

Bit 15 14 13 12 11 10 9
| 1010[3:0] | MJRREV[5:2]
Access R R R R R R
Reset 1 0 1 0 q q q
Bit 7 6 5 4 3 2 1
| MJRREV[1:0] | MNRREV[5:0]
Access R R R R R R R
Reset q q q q q q q

Bits 15:12 - 1010[3:0] Read as ‘b1010
These bits are fixed with value *b1010 for all devices in this family.

Bits 11:6 - MJRREV[5:0] Major Revision ID
These bits are used to identify a major revision (A0, BO, CO, etc.).
Revision A= "b00 0000
Revision B= ‘b00 0001

Bits 5:0 - MNRREV[5:0] Minor Revision ID
These bits are used to identify a minor revision.
Revision AO = *‘b00 0000
Revision BO = ‘b00 0000
Revision B1 = ‘b00 0001

O Tip: For example, the REVISIONID register value for revision B1 will be 0xA041.

@ MICROCHIP

8.8 Register Summary - DEVID/REVID

Chddress|—Name Loitpos] 7 | 6|5 | 4 |5 | |5

7:0 MJRREV[1:0] MNRREV[5:0]
Ox3FFFFC REVISIONID
X 15:8 1010[3:0] MJRREV[5:2]
7:0 DEV[7:0]
OX3FFFFE DEVICEID
15:8 DEV[15:8]

@ MICROCHIP

9.1

Memory Organization
There are three types of memory in PIC18 microcontroller devices:

* Program Memory

+ Data RAM

+ Data EEPROM

In Harvard architecture devices, the data and program memories use separate buses that allow for

concurrent access of the two memory spaces. The data EEPROM, for practical purposes, can be
regarded as a peripheral device, since it is addressed and accessed through a set of control registers.

Additional detailed information on the operation of the Program Flash Memory and data EEPROM
memory is provided in the “NVM - Nonvolatile Memory Module” chapter.

Program Memory Organization

PIC18 microcontrollers implement a 21-bit Program Counter, which is capable of addressing a 2
Mbyte program memory space. Accessing a location between the upper boundary of the physically
implemented memory and the 2 Mbyte address will return all ‘0's (a NOP instruction).

Refer to the following tables for device memory maps and code protection Configuration bits
associated with the various sections of PFM.

The Reset vector address is at 000000h. The PIC18-Q43 devices feature a vectored interrupt
controller with a dedicated interrupt vector table stored in the program memory. Refer to the “VIC -
Vectored Interrupt Controller Module” chapter for more details.

@ MICROCHIP

61

Figure 9-1. Program and Data Memory Map

Rev. 30.000101E]
412012017}

Address

Device

PIC18Fx5Q43 PIC18Fx6Q43 PIC18Fx7Q43

00 0000h
to
00 3FFFh

00 4000h
to
00 7FFFh

Program Flash
Memory

(16 KW)‘” Program Flash
Memory

(32 KW)“) Program Flash

00 8000h
to
00 FFFFh

01 0000h
to
01 FFFFh

02 0000h
to
1F FFFFh

Memory
(64 Kw)"

Not

Present®
Not

Present®
Not

Present®

20 0000h
to
20 003Fh

User IDs (32 Words)®

20 0040h
to
2B FFFFh

Reserved

2C 0000h
to
2C 00FFh

Device Information Area (DIA)(3'5)

2C 0100h
to
2F FFFFh

Reserved

30 0000h
to
30 0009h

Configuration Bytes®

30 000Ah
to
37 FFFFh

Reserved

38 0000h
to
38 03FFh

Data EEPROM (1024 Bytes)

38 0400h
to
3B FFFFh

Reserved

3C 0000h
to
3C 0009h

Device Configuration Information ®4®

3C 000Ah
to
3F FFFBh

Reserved

3F FFFCh
to
3F FFFDh

Revision ID (1 Word)®4®

3F FFFEh
to
3F FFFFh

Device ID (1 Word)®*9

Notes: 1.

@ MICROCHIP

ok~ oebd

Storage Area Flash is implemented as the last 128 Words of User Flash, if enabled.
The addresses do not roll over. The region is read as ‘0.

Not code-protected.

Hard-coded in silicon.

This region cannot be written by the user and it is not affected by a Bulk Erase.

62

9.1.1 Memory Access Partition
In the PIC18-Q43 devices, the program memory can be further partitioned into the following sub-

blocks:
+ Application block
+ Boot block

+ Storage Area Flash (SAF) block

Refer to the "Program Flash Memory Partition" table for more details.

9.1.1.1 Application Block
Application block is where the user’s firmware resides by default. Default settings of the
Configuration bits (BBEN = 1 and SAFEN = 1) assign all memory in the program Flash memory area
to the application block. The WRTAPP Configuration bit is used to write-protect the application block.

9.1.1.2 Boot Block
Boot block is an area in program memory that is ideal for storing bootloader code. Code placed in
this area can be executed by the CPU. The boot block can be write-protected, independent of the
main application block. The Boot Block is enabled by the BBEN Configuration bit and size is based on
the value of the BBSIZE Configuration bits. The WRTB Configuration bit is used to write-protect the
Boot Block.

9.1.1.3 Storage Area Flash

Storage Area Flash (SAF) is the area in program memory that can be used as data storage. SAF is
enabled by the SAFEN Configuration bit. If enabled, the code placed in this area cannot be executed
by the CPU. The SAF block is placed at the end of memory and spans 128 Words. The WRTSAF
Configuration bit is used to write-protect the Storage Area Flash.

Important: If write-protected locations are written to, memory is not changed
and the WRERR bit is set.

Table 9-1. Program Flash Memory Partition

Region Address BBEN =1 BBEN =1 BBEN =0 BBEN
SAFEN =1 SAFEN =0 SAFEN =1 SAFEN

00 0000h

o ©

Last Boot Block Boot Block Boot Block
Memory Address
Last Boot Block
Memory Address(!) Application Block
+1
Program Flash Application Block

Memory Last Program Application Block

Memory Address®?®
-100h Application Block
Last Program
Memory Address2

- FER® Storage Area Flash Storage Area Flash
Block Block
Last Program
Memory Address2)

63

@ MICROCHIP

Notes:

1. Last Boot Block address is based on BBSIZE bits. Refer to the “Device Configuration” chapter
for more details.

For Last Program Memory address refer the table above.
Refer to the “Device Configuration” chapter for BBEN and SAFEN bit definitions.
Storage Area Flash is implemented as the last 128 Words of user Flash memory.

9.1.2 Program Counter

The Program Counter (PC) specifies the address of the instruction to fetch for execution. The PC

is 21 bits wide and is contained in three separate 8-bit registers. The low byte, known as the PCL
register, is both readable and writable. The high byte, or PCH register, contains the PC[15:8] bits; it
is not directly readable or writable. Updates to the PCH register are performed through the PCLATH
register. The upper byte is called PCU. This register contains the PC[20:16] bits; it is also not directly
readable or writable. Updates to the PCU register are performed through the PCLATU register.

The contents of PCLATH and PCLATU are transferred to the Program Counter by any operation that
writes PCL. Similarly, the upper two bytes of the Program Counter are transferred to PCLATH and
PCLATU by an operation that reads PCL. This is useful for computed offsets to the PC (see the
Computed GOTO section).

The PC addresses bytes in the program memory. To prevent the PC from becoming misaligned with
word instructions, the Least Significant bit of PCL is fixed to a value of ‘0". The PC increments by two
to address sequential instructions in the program memory.

The CALL, RCALL, GOTO and program branch instructions write to the Program Counter directly. For
these instructions, the contents of PCLATH and PCLATU are not transferred to the Program Counter.

9.1.3 Return Address Stack
The return address stack allows any combination of up to 127 program calls and interrupts to occur.
The PCis pushed onto the stack when a CALL or RCALL instruction is executed or an interrupt is
Acknowledged. The PC value is pulled off the stack on a RETURN, RETLW or @ RETFIE instruction.
PCLATU and PCLATH are not affected by any of the RETURN or CALL instructions.

The Stack Pointer is readable and writable and the address on the top of the stack is readable and
writable through the Top-of-Stack (TOS) Special File registers. Data can also be pushed to or popped
from the stack using these registers.

A CALL type instruction causes a push onto the stack; the Stack Pointer is first incremented and
the location pointed to by the Stack Pointer is written with the contents of the PC (already pointing
to the instruction following the CALL). A RETURN type instruction causes a pop from the stack; the
contents of the location pointed to by the STKPTR are transferred to the PC and then the Stack
Pointer is decremented.

The Stack Pointer is initialized to 0x00 after all Resets.

9.1.3.1 Top-of-Stack Access
Only the top of the return address stack (TOS) is readable and writable. A set of three registers,
TOSU:TOSH:TOSL, hold the contents of the stack location pointed to by the STKPTR register (see
Figure 9-2). This allows users to implement a software stack if necessary. After a CALL, RCALL or
interrupt, the software can read the pushed value by reading the TOSU:TOSH:TOSL registers. These
values can be placed on a user defined software stack. At return time, the software can return these
values to TOSU:TOSH:TOSL and do a return.

The user must disable the Global Interrupt Enable (GIE) bits while accessing the stack to prevent
inadvertent stack corruption.

64

@ MICROCHIP

Figure 9-2. Return Address Stack and Associated Registers

Return Address Stack <20:0>

1111111
1111110
1111101
[] []
* ° STKPTR<6: 0>

Top-of-Stack Registers ° ° .

0000010
TOSU TOSH TOSL . .
[ooh | [1An | [34h || o o
0000011

——» Top-of-Stack 001A34h 0000010 -————

000D58h 0000001

0000000

9.1.3.2 Return Stack Pointer
The STKPTR register contains the Stack Pointer value. The Stack Overflow (STKOVF) Status bit and
the Stack Underflow (STKUNF) Status bit can be accessed using the PCONO register. The value of the
Stack Pointer can be zero through 127. On Reset, the Stack Pointer value will be zero. The user may
read and write the Stack Pointer value. After the PC is pushed onto the stack 128 times (without
popping any values off the stack), the STKOVF bit is set. The STKOVF bit is cleared by software or by
a POR. The action that takes place when the stack becomes full depends on the state of the Stack
Overflow Reset Enable (STVREN) Configuration bit.

If STVREN is set (default), a Reset will be generated and a Stack Overflow will be indicated by the
STKOVF bit. This includes cALL and CALLW instructions, as well as stacking the return address during
an interrupt response. The STKOVF bit will remain set and the Stack Pointer will be set to zero.

If STVREN is cleared, the STKOVF bit will be set on the 128% push, and the Stack Pointer will remain
at 127, but no Reset will occur. Any additional pushes will overwrite the 127t push, but the STKPTR
will remain unchanged.

Setting STKOVF = 1 in software will change the bit but will not generate a Reset.

The STKUNF bit is set when a stack pop returns a value of ‘0’. The STKUNF bit is cleared by software
or by POR. The action that takes place when the stack becomes full depends on the state of the
Stack Overflow Reset Enable (STVREN) Configuration bit.

If STVREN is set (default) and the stack has been popped enough times to unload the stack, the next
pop will return a value of ‘0" to the PC, it will set the STKUNF bit, and a Reset will be generated. This
condition can be generated by the RETURN, RETLW and RETFIE instructions.

If STVREN is cleared, the STKUNF bit will be set, but no Reset will occur.

Important: Returning a value of ‘0’ to the PC on an underflow has the effect of
vectoring the program to the Reset vector, where the stack conditions can be
verified and appropriate actions can be taken. This is not the same as a Reset, as
the contents of the SFRs are not affected.

9.1.3.3 PUSH and POP Instructions

Since the Top-of-Stack is readable and writable, the ability to push values onto the stack and pull
values off the stack without disturbing normal program execution is a desirable feature. The PIC18
instruction set includes two instructions, PUSH and POP, that permit the TOS to be manipulated

65

@ MICROCHIP

9.1.3.4

9.14

9.1.4.1

under software control. TOSU, TOSH and TOSL can be modified to place data or a return address on
the stack.

The puUsH instruction places the current PC value onto the stack. This increments the Stack Pointer
and loads the current PC value onto the stack.

The poP instruction discards the current TOS by decrementing the Stack Pointer. The previous value
pushed onto the stack then becomes the TOS value.

Fast Register Stack

There are three levels of fast stack registers available - one for CALL type instructions and two for
interrupts. A fast register stack is provided for the STATUS, WREG and BSR registers, to provide a
“fast return” option for interrupts. It is loaded with the current value of the corresponding register
when the processor vectors for an interrupt. All interrupt sources will push values into the stack
registers. The values in the registers are then loaded back into their associated registers if the
RETFIE, FAST instruction is used to return from the interrupt. Refer to the “Call Shadow Register”
section for interrupt call shadow registers.

The following example shows a source code example that uses the Fast Register Stack during a
subroutine call and return.

Example 9-1. Fast Register Stack Code Example

CALL SUB1, FAST ;STATUS, WREG, BSR SAVED IN FAST REGISTER STACK

SUB1:

RETURN, FAST ;RESTORE VALUES SAVED IN FAST REGISTER STACK

Look-up Tables in Program Memory

There may be programming situations that require the creation of data structures, or Look-up
Tables, in program memory. For PIC18 devices, Look-up Tables can be implemented in two ways:
+ Computed GOTO

+ Table reads

Computed GOTO

A computed GOTO is accomplished by adding an offset to the Program Counter. An example is
shown in the following code example.

A Look-up Table can be formed with an ADDWF PCL instruction and a group of RETLW nn
instructions. The W register is loaded with an offset into the table before executing a call to that
table. The first instruction of the called routine is the ADDWF PCL instruction. The next instruction
executed will be one of the RETLW nn instructions that returns the value ‘nn’ to the calling function.

The offset value (in WREG) specifies the number of bytes that the Program Counter will advance and
must be multiples of two (LSb = 0).

In this method, only one data byte may be stored in each instruction location and room on the
return address stack is required.

Example 9-2. Computed GOTO Using an Offset Value

RLNCF OFFSET, W ; W must be an even number, Max OFFSET = 127

CALL TABLE

ORG nn00h ; 00 in LSByte ensures no addition overflow
TABLE:

ADDWF PCL ; Add OFFSET to program counter

@ MICROCHIP

66

RETLW A ; Value @ OFFSET=0
RETLW B ; Value @ OFFSET=1
RETLW c ; Value @ OFFSET=2

9.1.4.2 Program Flash Memory Access
A more compact method of storing data in program memory allows two bytes of data to be stored in
each instruction location.

Look-up Table data may be stored two bytes per program word by using table reads and writes.

The Table Pointer (TBLPTR) register specifies the byte address and the Table Latch (TABLAT) register
contains the data that are read from or written to program memory. Data are transferred to or from
program memory one byte at a time.

Table read and table write operations are discussed further in the “Table Read Operations” and
“Table Write Operations” sections in the “NVM - Nonvolatile Memory Module” chapter.

9.2 Device Information Area

The Device Information Area (DIA) is a dedicated region in the program memory space. The DIA
contains the calibration data for the internal temperature indicator module, the Microchip Unique
Identifier words, and the Fixed Voltage Reference voltage readings measured in mV.

The complete DIA table is shown below, followed by a description of each region and its
functionality. The data are mapped from 2C0000h to 2C003Fh. These locations are read-only and
cannot be erased or modified. The data are programmed into the device during manufacturing.

Table 9-2. Device Information Area

MUIO
MUI1
MUI2
MUI3

2C0000h-2C0011h MUl4 Microchip Unique Identifier (9 Words)
MUI5
MUl6
MUI7
MUI8

2C0012h-2C0013h MUI9 Reserved (1 Word)
EUIO
EUIT
EUI2

2C0014h-2C0023h Es:j Optional External Unique Identifier (8 Words)
EUI5
EUI6
EUI7

0.1C x 256 (

2C0024h-2C0025h TSLR1(M Gain =
count

low range setting)

Temperature indicator ADC reading at 90°C (low range
setting)

2C0028h-2C0029h TSLR3(™M Offset (low range setting)

2C0026h-2C0027h TSLR2(M

67

@ MICROCHIP

........... continued

Address Range Name of Region Standard Device Information

2C002Ah-2C0028Bh TSHR1@ Gain = $AEX 256 (high range setting)
2C002Ch-2C002Dh TSHR2® Temperature indicator ADC reading at 90°C (high range
setting)
2C002Eh-2C002Fh TSHR3®@ Offset (high range setting)
2C0030h-2C0031h FVRA1X ADC FVR1 Output voltage for 1x setting (in mV)
2C0032h-2C0033h FVRA2X ADC FVR1 Output Voltage for 2x setting (in mV)
2C0034h-2C0035h FVRA4X ADC FVR1 Output Voltage for 4x setting (in mV)
2C0036h-2C0037h FVRC1X Comparator FVR2 output voltage for 1x setting (in mV)
2C0038h-2C0039n FVRC2X Comparator FVR2 output voltage for 2x setting (in mV)
2C003Ah-2C003Bh FVRC4X Comparator FVR2 output voltage for 4x setting (in mV)
2C003Ch-2C003Fh Unassigned (2 Words)

Notes:

1. TSLR: Address 2C0024h-2C0029h store the measurements for the low range setting of the temperature sensor at Vpp =
3V, Vreet = 2.048V from FVR1.

2. TSHR: Address 2C002Ah-2C002Fh store the measurements for the high range setting of the temperature sensor at Vpp
= 3V, Vpept+ = 2.048V from FVR1.

9.2.1 Microchip Unique Identifier (MUI)
This family of devices is individually encoded during final manufacturing with a Microchip Unique
Identifier (MUI). The MUI cannot be user-erased. This feature allows for manufacturing traceability
of Microchip Technology devices in applications where this is required. It may also be used by the
application manufacturer for a number of functions that require unverified unique identification,
such as:
« Tracking the device

* Unique serial number

The MUI is stored in read-only locations, located between 2C0000h to 2C0013h in the DIA space. The
DIA table lists the addresses of the identifier words.

Important: For applications that require verified unique identification, contact
the Microchip Technology sales office to create a Serialized Quick Turn
Programming option.

9.2.2 External Unique Identifier (EUI)
The EUI data are stored at locations 2C0014h-2C0023h in the program memory region. This region
is an optional space for placing application specific information. The data are coded per customer
requirements during manufacturing. The EUl cannot be erased by a Bulk Erase command.

Important: Data are stored in this address range on receiving a request from
the customer. The customer may contact the local sales representative or Field
Applications Engineer and provide them the unique identifier information that is
required to be stored in this region.

9.2.3 Standard Parameters for the Temperature Sensor

The purpose of the temperature indicator module is to provide a temperature-dependent voltage
that can be measured by an analog module. The DIA table contains standard parameters for the

@ MICROCHIP

68

9.24

9.3

temperature sensor for low and high range. The values are measured during test and are unique to
each device. The calibration data can be used to plot the approximate sensor output voltage, Vrsense
vs. Temperature curve. The “Temperature Indicator Module” chapter explains the operation of the
Temperature Indicator module and defines terms such as the low range and high range settings of
the sensor.

Fixed Voltage Reference Data

The DIA stores measured FVR voltages for this device in mV for different buffer settings of 1x, 2x
or 4x at program memory locations. For more information on the FVR, refer to the “FVR - Fixed
Voltage Reference” chapter.

Device Configuration Information

The Device Configuration Information (DCI) is a dedicated region in the program memory mapped
from 3C0000h to 3C0009h. The data stored in these location is read-only and cannot be erased.
Refer to the table below for the complete DCl table address and description. The DCI holds
information about the device, which is useful for programming and Bootloader applications.

The erase size is the minimum erasable unit in the PFM, expressed as rows. The total device Flash
memory capacity is (Erase size * Number of user-erasable pages).

Table 9-3. Device Configuration Information for PIC18FxxQ43 Devices

VALUE
ADDRESS NAME DESCRIPTION
PIC18F25/45/55Q43

UNITS
PIC18F26/46/56Q43 PIC18F27/47/57Q43

3C0000h-3C0001h ERSIZ Erase page size 128 128 128 Words

3C0002h-3C0003h wisiz Number of write 0 0 0 Words
latches per row

3C0004h-3C0005h URsiz Number of user- 128 256 512 Pages
erasable pages

3C0006h-3C0007h EEsiz Datd EEPROM 1024 1024 1024 Bytes

memory size
3C0008h-3C0009h PCNT Pin count 28/40(/48 28/40(1/48 28/4001/48 Pins

Note:

1. Pin count of 40 is also used for 44-pin part.

9.4 Data Memory Organization

Important: The operation of some aspects of data memory are changed when
the PIC18 extended instruction set is enabled. See the PIC18 Instruction Execution
and the Extended Instruction Set section for more information.

The data memory in PIC18 devices is implemented as static RAM. The memory space is divided
into as many as 64 banks with 256 bytes each. The Data Memory Map table below shows the data
memory organization for all devices in the device family.

The data memory contains Special Function Registers (SFRs) and General Purpose Registers (GPRs).
The SFRs are used for control and status of the controller and peripheral functions, while GPRs

are used for data storage and scratchpad operations in the user’s application. Any read of an
unimplemented location will read as ‘0'.

The value in the Bank Select Register (BSR) determines which bank is being accessed. The instruction
set and architecture allow operations across all banks. The entire data memory may be accessed

by Direct, Indirect or Indexed Addressing modes. Addressing modes are discussed later in this
subsection.

@ MICROCHIP

69

To ensure that commonly used registers (SFRs and select GPRs) can be accessed in a single cycle,
PIC18 devices implement an Access Bank. This is a virtual 256-byte memory space that provides fast
access to SFRs and the top half of GPR Bank 5 without using the Bank Select Register. The Access
Bank section provides a detailed description of the Access RAM.

. 70
@ MICROCHIP

Figure 9-3. Data Memory Map

Bank adc?rﬁ:;:S] addr{7:0] Zg:;fg
0 'b00 0000 | Ox00-OxFF
1 'b00 0001 | 0x00-OxFF
2 'b00 0010 Ox00-OxFF
3 'b00 0011 | 0x00-OxFF
4 'b00 0100 | 0x00-Ox5F Virtual Access Bank
'b00 0100 | 0x60-OxFF 0x00-0x5F
5 'b00 0101 | 0x00-Ox5F 0x60-0xFF

'b00 0101 | Ox60-OxFF
6 'b00 0110 | 0x00-OxFF
7 'b00 0111 | 0x00-OxFF
8 'b00 1000 | 0x00-OxFF
9 'b00 1001 | 0x00-OxFF
10 'b00 1010 | 0x00-OxFF
11 'b00 1011 | Ox00-OxFF
12 'b00 1100 | 0x00-OxFF
13 'b00 1101 | 0x00-OxFF
14 'b00 1110 | 0x00-OxFF
15 'b00 1111 | 0x00-OxFF
16 'b01 0000 | Ox00-OxFF
17 'b01 0001 | Ox00-OxFF
18 'b01 0010 | 0x00-OxFF
19 'b01 0011 | Ox00-OxFF
20 'b01 0100 | 0x00-OxFF
21 'b01 0101 | Ox00-OxFF
22 'b01 0110 | 0x00-OxFF
23 'b01 0111 | Ox00-OxFF
24 'b01 1000 | 0x00-OxFF
25 'b01 1001 | 0x00-OxFF
26 'b01 1010 | 0x00-OxFF
27 'b01 1011 | 0x00-OxFF
28 'b01 1100 | 0x00-OxFF
29 'b01 1101 | 0x00-OxFF
30 'b01 1110 | 0x00-OxFF
31 'b01 1111 | 0x00-OxFF
32 'bl0 0000 | 0x00-OxFF
33 'b10 0001 | Ox00-OxFF
34 'bl0 0010 | Ox00-OxFF
35 'b10 0011 | 0x00-OxFF
36 'bl10 0100 | 0x00-OxFF
37 'pb10 0101 | 0x00-OxFF
38 'bl0 0110 | 0x00-OxFF
to - -

63 'bll 1111 | 0x00-OxFF

Unimplemented

@ MICROCHIP

9.4.1 Bank Select Register

To rapidly access the RAM space in PIC18 devices, the memory is split using the banking scheme.
This divides the memory space into contiguous banks of 256 bytes each. Depending on the
instruction, each location can be addressed directly by its full address or by an 8-bit low-order
address and a bank pointer.

Most instructions in the PIC18 instruction set make use of the bank pointer known as the Bank
Select Register (BSR). This SFR holds the Most Significant bits of a location’s address; the instruction
itself includes the eight Least Significant bits. The BSR can be loaded directly by using the MOVLB
instruction.

The value of the BSR indicates the bank in data memory being accessed; the eight bits in the
instruction show the location in the bank and can be thought of as an offset from the bank’s lower
boundary. The relationship between the BSR’s value and the bank division in data memory is shown
in Figure 9-4.

When writing the firmware in assembly, the user must ensure that the proper bank is selected
before performing a data read or write. When using the C compiler to write the firmware, the BSR is
tracked and maintained by the compiler.

While any bank can be selected, only those banks that are actually implemented can be read or
written to. Writes to unimplemented banks are ignored, while reads from unimplemented banks will
return ‘0". Refer to Figure 9-3 for a list of implemented banks.

Figure 9-4. Use of the Bank Select Register (Direct Addressing)

Rev. 300001088
0212812019

BSR(M Data Memory From Opcode
! 0 0000h 00h 7 0
Bank 0
[ofofofofofo]1]0] een 2] 2] 2[2]2]2]2]1]
00h
Bank 1 N
Bank Select FFh
0200h 00h
Bank 2
FFh <
0300h
Bank 3
through J
A Bank61 <A
3E00h 00h
Bank 62
FFh
3F00h 00h
Bank 63
3FFFh FFh

Note 1: The Access RAM bit of the instruction can be used to force an override of the selected bank (BSR value) to
the registers of the Access Bank.

9.4.2 Access Bank

While the use of the BSR with an embedded 8-bit address allows users to address the entire range of
data memory, it also means that the user must ensure that the correct bank is selected. Otherwise,
data may be read from or written to the wrong location. Verifying and/or changing the BSR for each
read or write to data memory can become inefficient.

To streamline access for the most commonly used data memory locations, the data memory is
configured with a virtual Access Bank, which allows users to access a mapped block of memory

72

@ MICROCHIP

9.5

9.5.1

9.5.2

without specifying a BSR. The Access Bank consists of the first 96 bytes of memory in Bank 5
(0500n-055Fh) and the last 160 bytes of memory in Bank 4 (0460h-04FFh). The upper half is
known as the “Access RAM” and is composed of GPRs. The lower half is where the device's SFRs
are mapped. These two areas are mapped contiguously as the virtual Access Bank and can be
addressed in a linear fashion by an 8-bit address (see the Data Memory Map section).

The Access Bank is used by core PIC18 instructions that include the Access RAM bit (the ‘a’ parameter
in the instruction). When ‘@' is equal to ‘1, the instruction uses the BSR and the 8-bit address
included in the opcode for the data memory address. When ‘a’ is ‘0’, the instruction ignores the BSR
and uses the Access Bank address map.

Using this “forced” addressing allows the instruction to operate on a data address in a single cycle
without updating the BSR first. Access RAM also allows for faster and more code efficient context
saving and switching of variables.

The mapping of the Access Bank is slightly different when the extended instruction set is enabled
(XINST Configuration bit = 1). This is discussed in more detail in the Mapping the Access Bank in
Indexed Liberal Offset Mode section.

Data Addressing Modes

Important: The execution of some instructions in the core PIC18 instruction set
are changed when the PIC18 extended instruction set is enabled. See the Data
Memory and the Extended Instruction Set section for more information.

Information in the data memory space can be addressed in several ways. For most instructions,
the Addressing mode is fixed. Other instructions may use up to three modes, depending on which
operands are used and whether or not the extended instruction set is enabled.

The Addressing modes are:

* Inherent
+ Literal

+ Direct

+ Indirect

An additional Addressing mode, Indexed Literal Offset, is available when the extended instruction
set is enabled (XINST Configuration bit = 1). Its operation is discussed in greater detail in the Indexed
Addressing with Literal Offset section.

Inherent and Literal Addressing

Many PIC18 control instructions do not need any argument at all; they either perform an operation
that globally affects the device or they operate implicitly on one register. This Addressing mode is
known as Inherent Addressing. Examples include SLEEP, RESET and DAW.

Other instructions work in a similar way but require an additional explicit argument in the opcode.
This is known as Literal Addressing mode because they require some literal value as an argument.
Examples include ADDLwW and MOVLW, which, respectively, add or move a literal value to the W
register. Other examples include cALL and GOTO, which include a program memory address.

Direct Addressing
Direct Addressing specifies all or part of the source and/or destination address of the operation
within the opcode itself. The options are specified by the arguments accompanying the instruction.

In the core PIC18 instruction set, bit-oriented and byte-oriented instructions use some version of
Direct Addressing by default. All of these instructions include some 8-bit literal address as their Least

@ MICROCHIP

73

9.5.3

9.5.3.1

Significant Byte. This address specifies either a register address in one of the banks of data RAM
(see the Data Memory Organization section) or a location in the Access Bank (see the Access Bank
section) as the data source for the instruction.

The Access RAM bit ‘a’ determines how the address is interpreted. When ‘a’ is ‘1’, the contents of
the BSR (see the Bank Select Register section) are used with the address to determine the complete
12-bit address of the register. When ‘@' is ‘0’, the address is interpreted as being a register in the
Access Bank.

The destination of the operation’s results is determined by the destination bit ‘d’. When ‘d’ is ‘1’, the
results are stored back in the source register, overwriting its original contents. When ‘d' is '0’, the
results are stored in the W register. Instructions without the ‘d" argument have a destination that is
implicit in the instruction; their destination is either the target register being operated on or the W
register.

Indirect Addressing

Indirect Addressing allows the user to access a location in data memory without giving a fixed
address in the instruction. This is done by using File Select Registers (FSRs) as pointers to the
locations which are to be read or written. Since the FSRs are themselves located in RAM as Special
File Registers, they can also be directly manipulated under program control. This makes FSRs very
useful in implementing data structures, such as tables and arrays in data memory.

The registers for Indirect Addressing are also implemented with Indirect File Operands (INDFs) that
permit automatic manipulation of the pointer value with auto-incrementing, auto-decrementing
or offsetting with another value. This allows for efficient code, using loops, such as the following
example of clearing an entire RAM bank.

Example 9-3. How to Clear RAM (Bank 1) Using Indirect Addressing

LFSR FSR0O,100h ; Set FSRO to beginning of Bankl

NEXT:
CLRF POSTINCO ; Clear location in Bankl then increment FSRO
BTFSS FSROH, 1 ; Has high FSRO byte incremented to next bank?
BRA NEXT ; NO, clear next byte in Bankl

CONTINUE: ; YES, continue

FSR Registers and the INDF Operand

At the core of Indirect Addressing are three sets of registers: FSRO, FSR1 and FSR2. Each represent

a pair of 8-bit registers, FSRnH and FSRnL. Each FSR pair holds the full address of the RAM location.
The FSR value can address the entire range of the data memory in a linear fashion. The FSR register
pairs, then, serve as pointers to data memory locations.

Indirect Addressing is accomplished with a set of Indirect File Operands, INDFO through INDF2.
These can be thought of as “virtual” registers; they are mapped in the SFR space but are not
physically implemented. Reading or writing to a particular INDF register actually accesses its
corresponding FSR register pair. A read from INDF1, for example, reads the data at the address
indicated by FSRT1H:FSR1L. Instructions that use the INDF registers as operands actually use the
contents of their corresponding FSR as a pointer to the instruction’s target. The INDF operand is just
a convenient way of using the pointer.

Because Indirect Addressing uses a full address, the FSR value can target any location in any bank
regardless of the BSR value. However, the Access RAM bit must be cleared to zero to ensure that the
INDF register in Access space is the object of the operation instead of a register in one of the other
banks. The assembler default value for the Access RAM bit is zero when targeting any of the indirect
operands.

@ MICROCHIP

74

9.5.3.2 FSR Registers and POSTINC, POSTDEC, PREINC and PLUSW
In addition to the INDF operand, each FSR register pair also has four additional indirect operands.
Like INDF, these are “virtual” registers that cannot be directly read or written. Accessing these
registers actually accesses the location to which the associated FSR register pair points and also
performs a specific action on the FSR value. They are:

+ POSTDEC: Accesses the location to which the FSR points, then automatically decrements the FSR
by 1 afterwards

+ POSTINC: Accesses the location to which the FSR points, then automatically increments the FSR
by 1 afterwards

* PREINC: Automatically increments the FSR by one, then uses the location to which the FSR points
in the operation

+ PLUSW: Adds the signed value of the W register (range of -127 to 128) to that of the FSR and uses
the location to which the result points in the operation.

In this context, accessing an INDF register uses the value in the associated FSR register without
changing it. Similarly, accessing a PLUSW register gives the FSR value an offset in the W register;
however, neither W nor the FSR is actually changed in the operation. Accessing the other virtual
registers changes the value of the FSR register.

Figure 9-5. Indirect Addressing

Rev. 30-000100A
471812017

Data Memory
0000h 00h
Using an instruction with one of the ADDWE, INDF1, 0 Bank 0
indirect addressing registers as the 0100h g(';r?
operand.... Bank 1
FFh
0200h 00h
...uses the 14-bit address stored in FSR1H:FSRIL Bank 2 FFh <
the FSR pair associated with that ’ 0300h
register.... 7 0 7 0
Bank 3
[[x[2[2]2[x]2[o] [1]1]ofo[1]1]o[o] ough |
- J A Bank 61 A

...to determine the data memory
location to be used in that operation.
In this case, the FSR1 pair contains
3ECCh. This means the contents of

location 3ECF3h will be added to thgt 3E00h 00h
of the W register and stored back in | Bank 62
3ECCh. FFh
3FO00h 00h
Bank 63
3FFFh FFh

Operations on the FSRs with POSTDEC, POSTINC and PREINC affect the entire register pair; that is,
rollovers of the FSRnL register from FFh to 00h carry over to the FSRnH register. On the other hand,
results of these operations do not change the value of any flags in the STATUS register (e.g., Z, N, OV,
etc.).

The PLUSW register can be used to implement a form of Indexed Addressing in the data memory
space. By manipulating the value in the W register, users can reach addresses that are fixed

offsets from pointer addresses. In some applications, this can be used to implement some powerful
program control structure, such as software stacks, inside of data memory.

@ MICROCHIP

9.5.3.3 Operations by FSRs on FSRs

9.6

9.6.1

9.6.2

Indirect Addressing operations that target other FSRs or virtual registers represent special cases. For
example, using an FSR to point to one of the virtual registers will not result in successful operations.
As a specific case, assume that FSROH:FSROL contains the address of INDF1. Attempts to read the
value of the INDF1 using INDFO as an operand will return 00h. Attempts to write to INDF1 using
INDFO as the operand will result in a NOP.

On the other hand, using the virtual registers to write to an FSR pair may not occur as planned. In
these cases, the value will be written to the FSR pair but without any incrementing or decrementing.
Thus, writing to either the INDF2 or POSTDEC2 register will write the same value to FSR2H:FSR2L.

Since the FSRs are physical registers mapped in the SFR space, they can be manipulated through all
direct operations. Users need to proceed cautiously when working on these registers, particularly if
their code uses Indirect Addressing.

Similarly, operations by Indirect Addressing are permitted on all other SFRs. Users need to exercise
the appropriate caution that they do not inadvertently change settings that might affect the
operation of the device.

Data Memory and the Extended Instruction Set

Enabling the PIC18 extended instruction set (XINST Configuration bit = 1) significantly changes
certain aspects of data memory and its addressing. Specifically, the use of the Access Bank for many
of the core PIC18 instructions is different; this is due to the introduction of a new Addressing mode
for the data memory space.

What does not change is just as important. The size of the data memory space is unchanged, as well
as its linear addressing. The SFR map remains the same. Core PIC18 instructions can still operate

in both Direct and Indirect Addressing mode; inherent and literal instructions do not change at all.
Indirect addressing with FSRO and FSR1 also remain unchanged.

Indexed Addressing with Literal Offset

Enabling the PIC18 extended instruction set changes the behavior of Indirect Addressing using the
FSR2 register pair within Access RAM. Under the proper conditions, instructions that use the Access
Bank - that is, most bit-oriented and byte-oriented instructions - can invoke a form of Indexed
Addressing using an offset specified in the instruction. This special Addressing mode is known as
Indexed Addressing with Literal Offset or Indexed Literal Offset mode.

When using the extended instruction set, this Addressing mode requires the following:
* The use of the Access Bank is forced (‘@' = 0) and
+ The file address argument is less than or equal to 5Fh.

Under these conditions, the file address of the instruction is not interpreted as the lower byte of an
address (used with the BSR in Direct Addressing) or as an 8-bit address in the Access Bank. Instead,
the value is interpreted as an offset value to an Address Pointer, specified by FSR2. The offset and
the contents of FSR2 are added to obtain the target address of the operation.

Instructions Affected by Indexed Literal Offset Mode

Any of the core PIC18 instructions that can use Direct Addressing are potentially affected by the
Indexed Literal Offset Addressing mode. This includes all byte-oriented and bit-oriented instructions
or almost one-half of the standard PIC18 instruction set. Instructions that only use Inherent or
Literal Addressing modes are unaffected.

Additionally, byte-oriented and bit-oriented instructions are not affected if they do not use the
Access Bank (Access RAM bit is ‘1") or include a file address of 60h or above. Instructions meeting
these criteria will continue to execute as before. A comparison of the different possible Addressing
modes when the extended instruction set is enabled is shown in the following figure.

@ MICROCHIP

76

9.6.3

Those who desire to use byte-oriented or bit-oriented instructions in the Indexed Literal Offset
mode need to note the changes to assembler syntax for this mode. This is described in more detail
in the “Extended Instruction Syntax” section.

Figure 9-6. Comparing Addressing Options for Bit-Oriented and Byte-Oriented Instructions (Extended Instruction
Set Enabled)

EXAMPLE INSTRUCTION: ADDWF, £, d, a(Opcode: 0010 0lda ffff ffff)

0000h

When ‘@’ = 0 and f 2 60h Bank 0 -3
The instruction executes in 0400h
Direct Forced mode. ‘f is inter- Bank 4 00h
preted as a location in the 0460h
Access RAM between 060h Access 60h
and OFFh. This is the same as 04FFh SFRs
locations 460h to 4FFh
(Bank4) of data memory. FFh
Locations below 60h are not Bank 5-63 Access RAM
available in this Addressing
mode. 3FFFh
Data Memory
When ‘a’=0and f<5Fh 0000h
. . . Bank0-3
The instruction executes in
Indexed Literal Offset mode. f’ 0400h
is interpreted as an offset to the Bank 4
address value in FSR2. The 0460h
two are added together to Access
obtain the address of the target %‘éggn SFRs
register for the instruction. The Aé‘;er\fs
address can be anywhere in 0560h
the data memory space. Bank 5-63 (0010 0lda [££ff feff |
Note that in this mode, the
correct syntax is now: l T | FoROL l
3FFFh
ADDWF [k], d Data Memory
where ‘K’ is the same as f.
0000h
When ‘a’ = 1 (all values of f) Bank 0 -3
The instruction executes in 0400n
Direct mode (also known as Bank 4
Direct Long mode). ‘f’ is inter- 0460h
preted as a location in one of Asc;gss
the 63 banks of the data 04FFh S BSR
memory space. The bank is
designated by the Bank Bank 10
Select Register (BSR). The Bank 5-63 <
_ address can be_m any [00T0 olaa [£eif £ief]
implemented bank in the data 3FFFh
memory space. Data Memory

Mapping the Access Bank in Indexed Literal Offset Mode

The use of Indexed Literal Offset Addressing mode effectively changes how the first 96 locations of
Access RAM (00h to 5Fh) are mapped. Rather than containing just the contents of the top section of
Bank 5, this mode maps the contents from a user defined “window” that can be located anywhere in
the data memory space. The value of FSR2 establishes the lower boundary of the addresses mapped
into the window, while the upper boundary is defined by FSR2 plus 95 (5Fh). Addresses in the Access
RAM above 5Fh are mapped as previously described (see the Access Bank section). An example of
Access Bank remapping in this Addressing mode is shown in the following figure.

@ MICROCHIP

77

Figure 9-7. Remapping the Access Bank with Indexed Literal Offset Addressing

EXAMPLE: 000 Banko-3
ADDWF, £, d, a 0400h
FSR2H:FSR2L = 0x0220 Bank 4
0460h
Locations in the region Access
from the FSR2 pointer 05001 SFRs 00h
(A20h) to the pointer plus Bank 10 Window
05Fh (A7Fh) are mapped Bank 5-9 60h
to the Access RAM SFRs
(000h-05Fh). 0A20h. -~~~ Bank 10____] .
Special File Registers at 0A7FhL 77777 Window | Access RAM FFh
460h through 4FFh are Bank 10
mapped to 60h through
FFh, as usual.
Bank 4 addresses below Bank 11 - 63
5Fh can still be addressed
by using the BSR.
3FFFh
Data Memory

Remapping of the Access Bank applies only to operations using the Indexed Literal Offset mode.
Operations that use the BSR (Access RAM bit is ‘1) will continue to use Direct Addressing as before.

9.6.4 PIC18 Instruction Execution and the Extended Instruction Set

Enabling the extended instruction set adds additional commands to the existing PIC18 instruction
set. These instructions are executed as described in the “Extended Instruction Set” section.

9.7 Register Definitions: Memory Organization

78

@ MICROCHIP

9.7.1 PCL

Name: PCL
Address: 0x4F9

Low byte of the Program Counter Register

Bit 7 6 5 4 3 2 1 0
| PCL[7:0]
Access R/W R/W RIW R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 - PCL[7:0] Provides direct read and write access to the Program Counter

@ MICROCHIP

79

9.7.2 PCLAT
Name: PCLAT
Address: Ox4FA
Program Counter Latches

Holding register for bits [21:9] of the Program Counter (PC). Reads of the PCL register transfer the
upper PC bits to the PCLAT register. Writes to PCL register transfer the PCLAT value to the PC.

Bit 15 14 13 12 11 10 9 8
| | | | PCLATU[4:0]
Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| PCLATH[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 12:8 - PCLATU[4:0] Upper PC Latch Register
Holding register for Program Counter [21:17]

Bits 7:0 - PCLATH[7:0] High PC Latch Register
Holding register for Program Counter [16:8]

@ MICROCHIP

9.7.3 TOS
Name: TOS
Address: 0x4FD
Top-of-Stack Register

Contents of the stack pointed to by the STKPTR register. This is the value that will be loaded into the
Program Counter upon a RETURN or RETFIE instruction.

Bit 23 22 21 20 19 18 17 16
| | | | TOS[20:16]
Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
TOS[15:8]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
TOS[7:0]
Access R/W RIW R/W R/W R/W RIW R/W RIW
Reset 0 0 0 0 0 0 0 0

Bits 20:0 - TOS[20:0] Top-of-Stack

Notes: The individual bytes in this multibyte register can be accessed with the following register
names:

+ TOSU: Accesses the upper byte TOS[20:16]
+ TOSH: Accesses the high byte TOS[15:8]
+ TOSL: Accesses the low byte TOS[7:0]

@ MICROCHIP

9.7.4 STKPTR

Name: STKPTR
Address: O0x4FC

Stack Pointer Register

Bit 7 6 5 4 3 2 1 0
| | STKPTR[6:0]
Access R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0

Bits 6:0 - STKPTR[6:0] Stack Pointer Location

@ MICROCHIP

82

9.7.5 WREG

Name: WREG
Address: O0x4E8

Working Data Register

Bit 7 6 5 4 3 2 1 0
| WREG[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset X X X X X X X X

Bits 7:0 - WREG[7:0]

@ MICROCHIP

83

9.7.6 INDF
Name: INDFx
Address: Ox4EF,0x4E7,0x4DF
Indirect Data Register

This is a virtual register. The GPR/SFR register addressed by the FSRx register is the target for all
operations involving the INDFx register.

Bit 7 6 5 4 3 2 1 0
| INDF[7:0]
Access R/W R/W RIW R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 - INDF[7:0] Indirect data pointed to by the FSRx register

@ MICROCHIP

84

9.7.7 POSTDEC
Name: POSTDECx
Address: 0x4ED,0x4E5,0x4DD
Indirect Data Register with post decrement

This is a virtual register. The GPR/SFR register addressed by the FSRx register is the target for all
operations involving the POSTDECX register. FSRx is decrememted after the read or write operation.

Bit 7 6 5 4 3 2 1 0
| POSTDEC[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 - POSTDEC[7:0]

@ MICROCHIP

85

9.7.8 POSTINC
Name: POSTINCx
Address: Ox4EE,0x4E6,0x4DE
Indirect Data Register with post increment

This is a virtual register. The GPR/SFR register addressed by the FSRx register is the target for all
operations involving the POSTINCx register. FSRx is incremented after the read or write operation.

Bit 7 6 5 4 3 2 1 0
| POSTINC[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 - POSTINC[7:0]

@ MICROCHIP

86

9.7.9 PREINC
Name: PREINCx
Address: 0x4EC,0x4E4,0x4DC
Indirect Data Register with pre-increment

This is a virtual register. The GPR/SFR register addressed by the FSRx register plus 1 is the target
for all operations involving the PREINCx register. FSRx is incremented before the read or write

operation.
Bit 7 6 5 4 3 2 1 0
| PREINC[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 - PREINC[7:0]

@ MICROCHIP

87

9.7.10 PLUSW
Name: PLUSWx
Address: 0x4EB,0x4E3,0x4DB
Indirect Data Register with WREG offset

This is a virtual register. The GPR/SFR register addressed by the sum of the FSRx register plus the
signed value of the W register is the target for all operations involving the PLUSWx register.

Bit 7 6 5 4 3 2 1 0
| PLUSW[7:0]
Access R/W R/W R/W R/W RIW R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 - PLUSW[7:0]

@ MICROCHIP

9.7.11 FSR

Name: FSRx
Address: 0x4E9,0x4E1,0x4D9

Indirect Address Register

The FSR value is the address of the data to which the INDF register points.

Bit 15 14 13 12 11 10 9 8
| | | FSRH[5:0]
Access R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| FSRL[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 13:8 - FSRH[5:0] Most Significant address of INDF data

Bits 7:0 - FSRL[7:0] Least Significant address of INDF data

@ MICROCHIP

89

9.7.12 BSR
Name: BSR
Address: 0x4EO
Bank Select Register
The BSR indicates the data memory bank of the GPR address.

Bit 7 6 5 4 3 2 1 0
| | | BSR[5:0]
Access R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0

Bits 5:0 - BSR[5:0] Most Significant bits of the data memory address

@ MICROCHIP

90

9.8 Register Summary - Memory Organization

I S T R

0x04D9 FSR2
0x04DB PLUSW2
0x04DC PREINC2
0x04DD POSTDEC2
0x04DE POSTINC2
0x04DF INDF2
0x04E0 BSR
0x04E1 FSR1
Ox04E3 PLUSW1
Ox04E4 PREINC1
0x04E5 POSTDEC1
0x04E6 POSTINC1
Ox04E7 INDF1
Ox04E8 WREG
0x04E9 FSRO
0x04EB PLUSWO
Ox04EC PREINCO
0x04ED POSTDECO
Ox04EE POSTINCO
Ox04EF INDFO
0x04F0

Reserved
0x04F8
0x04F9 PCL
0x04FA PCLAT
0x04FC STKPTR
0x04FD TOS

@ MICROCHIP

15:8
7:0
7:0
7:0
7:0
7:0
7:0
7:0

15:8
7:0
7:0
7:0
7:0
7:0
7:0
7:0

15:8
7:0
7:0
7:0
7:0
7:0

7:0
7:0
15:8
7:0
7:0
15:8
23:16

I R N R

FSRL[7:0]
FSRH[5:0]

PLUSW[7:0]

PREINC[7:0]
POSTDEC[7:0]
POSTINC[7:0]

INDF[7:0]
BSR[5:0]
FSRL[7:0]
FSRH[5:0]

PLUSW[7:0]

PREINC[7:0]
POSTDEC[7:0]
POSTINC[7:0]

INDF[7:0]
WREG[7:0]
FSRL[7:0]
FSRH[5:0]

PLUSW[7:0]

PREINC[7:0]
POSTDEC[7:0]
POSTINC[7:0]

INDF[7:0]

PCL[7:0]
PCLATH[7:0]
PCLATU[4:0]
STKPTR[6:0]
TOS[7:0]
TOS[15:8]
TOS[20:16]

91

10.

10.1

NVM - Nonvolatile Memory Module

The Nonvolatile Memory (NVM) module provides run-time read and write access to the Program
Flash Memory (PFM), Data Flash Memory (DFM) and Configuration bits. PFM includes the program
memory and user ID space. DFM is also referred to as EEPROM which is accessed one byte at a time
and the erase before write is automatic.

The Table Pointer provides read-only access to the PFM, DFM and Configuration bits. The NVM
controls provide both read and write access to PFM, DFM and Configuration bits.

Reads and writes to and from the DFM are limited to single byte operations, whereas those for PFM
are 16-bit word or 128-word page operations. The page buffer memory occupies one full bank of
RAM space located in the RAM bank following the last occupied GPR bank. Refer to the “Memory
Organization” chapter for more details about the buffer RAM.

The registers used for control, address and data are as follows:
+ NVMCONQO - Operation start and active status

+ NVMCONT1 - Operation type and error status

+ NVMLOCK - Write-only register to guard against accidental writes
+ NVMADR - Read/write target address (multibyte register)

+ NVMDAT - Read/write target data (multibyte register)

« TBLPTR - Table Pointer PFM target address for reads and buffer RAM address for writes
(multibyte register)

+ TABLAT - Table Pointer read/write target data (single byte register)

The write and erase times are controlled by an on-chip timer. The write and erase voltages are
generated by an on-chip charge pump rated to function over the operating voltage range of the
device.

PFM and DFM can be protected in two ways: code protection and write protection. Code protection
(Configuration bit CP) disables read and write access through an external device programmer.

Write protection prevents user software writes to NVM areas tagged for protection by the WRTn
Configuration bits. Code protection does not affect the self-write and erase functionality, whereas
write protection does. Attempts to write a protected location will set the WRERR bit. Code protection
and write protection can only be reset on a Bulk Erase performed by an external programmer.

The Bulk Erase command is used to completely erase different memory regions. The area to be
erased is selected using a bit field combination. The Bulk Erase command can only be issued
through an external programmer. There is no run time access for this command.

If the device is code-protected and a Bulk Erase command for the configuration memory is
issued, all other memory regions are also erased. Refer to the appropriate Family Programming
Specification for more details.

Operations

NVM write operations are controlled by selecting the desired action with the NVMCMD bits and then
starting the operation by executing the unlock sequence. NVM read operations are started by setting
the GO bit after setting the read operation. Available NVM operations are shown in the following
table.

Table 10-1. NVM Operations

NVMCMD Operation Source/Destination
—m—mm—m-

No Read byte = word NVM to NVMDAT No
001 No Read and Post Increment byte word NVM to NVMDAT No No

@ MICROCHIP

92

10.2

10.3

........... continued

NVMCMD Operation Source/Destination
—m—mm—m-

010 Read Page page NVM to Buffer RAM

011 Yes Write byte word NVMDAT to NVM Yes Yes
100 Yes Write and Post Increment byte word NVMDAT to NVM Yes Yes
101 Yes Write Page — page Buffer RAM to NVM Yes Yes
110 Yes Erase Page — page n/a Yes Yes
111 No Reserved (No Operation) — — — No No

Important: When the GO bit is set, writes operations are blocked on all NVM
registers. The GO bit is cleared by hardware when the operation is complete. The
GO bit cannot be cleared by software.

Unlock Sequence

As an additional layer of protection against memory corruption, a specific code execution unlock
sequence is required to initiate a write or erase operation. All interrupts need to be disabled before
starting the unlock sequence to ensure proper execution.

Example 10-1. Unlock Sequence in C

NVMLOCK 0x55;
NVMLOCK = OxAA;
NVMCONObits.GO = 1;

Program Flash Memory (PFM)

The Program Flash Memory is readable, writable and erasable over the entire Vpp range.

A 128-word PFM page is the only size that can be erased by user software. A Bulk Erase operation
cannot be issued from user code. A read from program memory is executed either one byte, one
word or a 128-word page at a time. A write to program memory can be executed as either 1 or 128
words at a time.

Writing or erasing program memory will cease instruction fetches until the operation is complete.
The program memory cannot be accessed during the write or erase, so code cannot execute. An
internal programming timer controls the write time of program memory writes and erases.

A value written to program memory does not need to be a valid instruction. Executing a program
memory location that forms an invalid instruction results in a NOP.

It is important to understand the PFM memory structure for erase and programming operations.
Program memory word size is 16 bits wide.

After a page has been erased, all or a portion of this page can be programmed. Data can be written
directly into PFM one 16-bit word at a time using the NVMADR, NVMDAT and NVMCON1 controls
or as a full page from the buffer RAM. The buffer RAM is directly accessible as any other SFR/GPR
register and also may be loaded via sequential writes using the TABLAT and TBLPTR registers.

@ MICROCHIP

93

Important: To modify only a portion of a previously programmed page, the
contents of the entire page must be read and saved in the buffer RAM prior

to the page erase. The Read Page operation is the easiest way to do this. The
page needs to be erased so that the new data can be written into the buffer RAM
to reprogram the page of PFM. However, any unprogrammed locations can be
written using the single word Write operation without first erasing the page.

10.3.1 Page Erase

The erase size is always 128 words. Only through the use of an external programmer can larger
areas of program memory be Bulk Erased. Word erase in the program memory is not supported.

When initiating an erase sequence from user code, a page of 128 words of program memory is
erased. The NVMADR[21:8] bits point to the page being erased. The NVMADR[7:0] bits are ignored.
The NVMCONO and NVMCON1 registers command the erase operation. The NVMCMD bits are set
to select the erase operation. The GO bit is set to initiate the erase operation as the last step in the
unlock sequence.

The NVM unlock sequence described in the Unlock Sequence section must be used; this guards
against accidental writes. Instruction execution is halted during the erase cycle. The erase cycle is
terminated by the internal programming timer.

The sequence of events for erasing a page of PFM is:

Set the NVMADR registers to an address within the intended page.

Set the NVMCMD control bits to *‘b110 (Page Erase).

Disable all interrupts.

Perform the unlock sequence as described in the Unlock Sequence section.

Set the GO bit to start the PFM page erase.

Monitor the GO bit or NVMIF interrupt flag to determine when the erase has completed.
Interrupts can be enabled after the GO bit is clear.

8. Setthe NVMCMD control bits to ‘b000.

NouhkwbnN-=

If the PFM address is write-protected, the GO bit will be cleared, the erase operation will not take
place, and the WRERR bit will be set.

While erasing the PFM page, the CPU operation is suspended and then resumes when the operation
is complete. Upon erase completion, the GO bit is cleared in hardware, the NVMIF is set, and an
interrupt will occur (if the NVMIE bit is set and interrupts are enabled).

The buffer RAM data are not affected by erase operations and the NVMCMD bits will remain
unchanged throughout the erase opeation.

@ MICROCHIP

Figure 10-1. PFM Page Erase Flowchart

Start Erase Operation

Load the NVMADR register with
address in the page to be erased

!

Set NVM Command to erase
(NVMCMD = *b110)

!

Disable interrupts
(GIE=0)

!

Execute unlock sequence
including setting the GO bit

!

CPU stalls while erase executes

!

Enable interrupts
(GIE=1)

!

Clear NVM Command
(NVMCMD = 'b000)

End Erase Operation

Example 10-2. Erasing a Page of Program Flash Memory in C

// Code sequence to erase one page of PFM
// PFM target address is specified by PAGE ADDR

// Save interrupt enable bit value
uint8 t GIEBitValue = INTCONObits.GIE;

// Load NVMADR with the base address of the memory page
NVMADR = PAGE_ADDR;

NVMCON1bits.CMD = 0x06; // Set the page erase command
INTCONObits.GIE = 0; // Disable interrupts

J) === Required Unlock Sequence ————————-

NVMLOCK = 0x55;

NVMLOCK = O0xAA;

NVMCONObits.GO = 1; // Start page erase

Y i et

while (NVMCONObits.GO) ; // Wait for the erase operation to complete

// Verify erase operation success and call the recovery function if needed
if (NVMCONlbits.WRERR) {

ERASE FAULT RECOVERY () ;
}

INTCONObits.GIE = GIEBitValue; // Restore interrupt enable bit value
NVMCON1lbits.CMD = 0x00; // Disable writes to memory

@ MICROCHIP

Important:

« If a write or erase operation is terminated by an unexpected Reset, the WRERR
bit will be set and the user can check to decide whether a rewrite of the
location(s) is needed.

+ If a write or erase operation is attempted on a write-protected area, the WRERR
bit will be set.

+ If a write or erase operation is attempted on an invalid address location, the
WRERR bit is set (refer to the Program and Data Memory Map in the “Memory
Organization” chapter for more information on valid address locations).

10.3.2 Page Read

PFM can be read one word or 128-word page at a time. A page is read by setting the NVMADR
registers to an address within the target page and setting the NVMCMD bits to *b010. The page
content is then transferred from PFM to the buffer RAM by starting the read operation by setting the
GO bit.

The sequence of events for reading a 128-word page of PFM is:

Set the NVMADR registers to an address within the intended page.

Set the NVMCMD control bits to *‘b010 (Page Read).

Set the GO bit to start the PFM page read.

Monitor the GO bit or NVMIF interrupt flag to determine when the read has completed.

El S

Example 10-3. Reading a Page of Program Flash Memory in C

// Code sequence to read one page of PFM to Buffer Ram
// PFM target address is specified by PAGE ADDR

// Load NVMADR with the base address of the memory page
NVMADR = PAGE_ADDR;

NVMCON1lbits.CMD = 0x02; // Set the page read command
NVMCONObits.GO = 1; // Start page read
while (NVMCONObits.GO) ; // Wait for the read operation to complete

10.3.3 Word Read

A single 16-bit word is read by setting the NVMADR registers to the target address and setting the
NVMCMD bits to *‘b000. The word is then transferred from PFM to the NVMDAT registers by starting
the read operation by setting the GO bit.

The sequence of events for reading a word of PFM is:

Set the NVMADR registers to the target address.

Set the NVMCMD control bits to *b000 (Word Read).

Set the GO bit to start the PFM word read.

Monitor the GO bit or NVMIF interrupt flag to determine when the read has completed.

A wbn =

Example 10-4. Reading a Word from Program Flash Memory in C

// Code sequence to read one word from PFM
// PFM target address is specified by WORD ADDR

// Variable to store the word value from desired location in PFM

96

@ MICROCHIP

uintl6_t WordValue;

// Load NVMADR with the desired word address
NVMADR = WORD ADDR;

NVMCON1bits.CMD = 0x00; // Set the word read command
NVMCONObits.GO = 1; // Start word read

while (NVMCONObits.GO) ; // Wait for the read operation to complete
WordValue = NVMDAT; // Store the read value to a variable

10.3.4 Page Write

A page is written by first loading the buffer registers in the buffer RAM. All buffer registers are then
written to PFM by setting the NVMADR to an address within the intended address range of the target
PFM page, setting the NVMCMD bits to ‘b101, and then executing the unlock sequence and setting
the GO bit.

If the PFM address in the NVMADR is write-protected, or if NVMADR points to an invalid location, the
GO bit is cleared without any effect, and the WRERR bit is set.

CPU operation is suspended during a page write cycle and resumes when the operation is complete.
The page write operation completes in one extended instruction cycle. When complete, the GO bit
is cleared by hardware and NVMIF is set. An interrupt will occur if NVMIE is also set. The buffer
registers and NVMCMD bits are not changed throughout the write operation.

The internal programming timer controls the write time. The write/erase voltages are generated by
an on-chip charge pump and rated to operate over the voltage range of the device.

Important: Individual bytes of program memory may be modified, provided that
the modification does not attempt to change any NVM bit from a ‘0" to a ‘1". When
modifying individual bytes with a page write operation, it is necessary to load

all buffer registers with either OXFF or the existing contents of memory before
executing a page write operation. The fastest way to do this is by performing a
page read operation.

In this device a PFM page is 128 words (256 bytes). This is the same size as one bank of general
purpose RAM (GPR). This area of GPR space is dedicated as a buffer area for NVM page operations.
The buffer areas for each device in the family are shown in the following table:

Table 10-2. NVM Buffer Banks

PIC18Fx7Q43 37
PIC18Fx6Q43 21
PIC18Fx5Q43 13

There are several ways to address the data in the GPR buffer space:
+ Using the TBLRD and TBLWT instructions

« Using the indirect FSR registers
+ Direct read and writes to specific GPR locations

Neglecting the bank select bits, the 8 address bits of the GPR buffer space correspond to the 8 LSbs
of each PFM page. In other words, there is a one-to-one correspondence between the NVMADRL
register and the FSRxL register, where the x in FSRx is 0, 1 or 2.

The sequence of events for programming a page of PFM is:

1. Set the NVMADR registers to an address within the intended page.
2. Setthe NVMCMD to ‘b110 (Erase Page).

97

@ MICROCHIP

Disable all interrupts.

Perform the unlock sequence as described in the Unlock Sequence section.

Set the GO bit to start the PFM page erase.

Monitor the GO bit or NVMIF interrupt flag to determine when the erase has completed.
Set NVMCMD to ‘b101 (Page Write).

Perform the unlock sequence.

9. Setthe GO bit to start the PFM page write.

10. Monitor the GO bit or NVMIF interrupt flag to determine when the write has completed.

© N o kW

11. Interrupts can be enabled after the GO bit is clear.
12. Set the NVMCMD control bits to *b000.

Example 10-5. Writing a Page of Program Flash Memory in C

// Code sequence to write a page of PFM
// Input[] 1is the user data that needs to be written to PFM
// PFM target address is specified by PAGE ADDR

#define PAGESIZE 128 // PFM page size

// Save Interrupt Enable bit Value
uint8 t GIEBitValue = INTCONObits.GIE;

// The BufferRAMStartAddr will be changed based on the device, refer
// to the "Memory Organization" chapter for more details
uintlé_t bufferRAM __ at (BufferRAMStartAddr) ;

// Defining a pointer to the first location of the Buffer RAM
uintlé t *bufferRamPtr = (uintl6 t*) & bufferRAM;

//Copy application buffer contents to the Buffer RAM

for (uint8 t i = 0; i < PAGESIZE; i++) {
*bufferRamPtr++ = Input[i];

}

// Load NVMADR with the base address of the memory page
NVMADR = PAGE_ADDR;

NVMCON1bits.CMD = 0x06; // Set the page erase command
INTCONObits.GIE = 0; // Disable interrupts
=== Required Unlock Sequence ——-—-————-

NVMLOCK = 0x55;
NVMLOCK = 0xAA;

NVMCONObits.GO = 1; // Start page erase
Y i e e
while (NVMCONObits.GO) ; // Wait for the erase operation to complete

// Verify erase operation success and call the recovery function if needed
if (NVMCONlbits.WRERR) {

ERASE FAULT RECOVERY () ;
}

// NVMADR is already pointing to target page

NVMCON1bits.CMD = 0x05; // Set the page write command
Vi e Required Unlock Sequence ————————-—

NVMLOCK = 0x55;

NVMLOCK = OxAA;

NVMCONQObits.GO = 1; // Start page write
Y e e
while (NVMCONObits.GO); // Wait for the write operation to complete

// Verify write operation success and call the recovery function if needed
if (NVMCONlbits.WRERR) {

WRITE FAULT RECOVERY () ;
}

INTCONObits.GIE GIEBitValue; // Restore interrupt enable bit value
NVMCON1bits.CMD = 0x00; // Disable writes to memory

@ MICROCHIP

10.3.5 Word Write

PFM can be written one word at a time to a pre-erased memory location. Refer to the “Word Modify”
section for more information on writing to a prewritten memory location.

A single word is written by setting the NVMADR to the target address and loading NVMDAT with
the desired word. The word is then transferred to PFM by setting the NVMCMD bits to *b011 then
executing the unlock sequence and setting the GO bit.

The sequence of events for programming single word to a pre-erased location of PFM is:
Set the NVMADR registers to the target address.

Load the NVMDAT with desired word.

Set the NVMCMD control bits to *b011 (Word Write).

Disable all interrupts.

Perform the unlock sequence as described in the Unlock Sequence section.

Set the GO bit to start the PFM word write.

Monitor the GO bit or NVMIF interrupt flag to determine when the write has completed.
Interrupts can be enabled after the GO bit is clear.

Set the NVMCMD control bits to *b000.

e N u A W=

Example 10-6. Writing a Word of Program Flash Memory in C

// Code sequence to program one word to a pre-erased location in PFM
// PFM target address is specified by WORD ADDR
// Target data are specified by WordValue

// Save interrupt enable bit value
uint8 t GIEBitValue = INTCONObits.GIE;

// Load NVMADR with the target address of the word
NVMADR = WORD ADDR;

NVMDAT = WordValue; // Load NVMDAT with the desired value
NVMCON1bits.CMD = 0x03; // Set the word write command
INTCONObits.GIE = 0; // Disable interrupts

e Required Unlock Sequence —-————————

NVMLOCK = 0x55;

NVMLOCK = 0xAA;

NVMCONObits.GO = 1; // Start word write

Y e

while (NVMCONObits.GO) ; // Wait for the write operation to complete

// Verify word write operation success and call the recovery function if needed
if (NVMCONlbits.WRERR) {

WRITE FAULT RECOVERY () ;
}

INTCONObits.GIE
NVMCON1bits.CMD

GIEBitValue; // Restore interrupt enable bit value
0x00; // Disable writes to memory

10.3.6 Word Modify
Changing a word in PFM requires erasing the word before it is rewritten. However, the PFM cannot
be erased by less than a page at a time. Changing a single word requires reading the page, erasing
the page, and then rewriting the page with the modified word. The NVM command set includes page
operations to simplify this task.
The steps necessary to change one or more words in PFM space are as follows:
1. Setthe NVMADR registers to the target address.
2. Setthe NVMCMD to ‘b010 (Page Read).

3. Set the GO bit to start the PFM read into the GPR buffer.

99

@ MICROCHIP

Monitor the GO bit or NVMIF interrupt flag to determine when the read has completed.
Make the desired changes to the GPR buffer data.

Set NVMCMD to ‘b110 (Page Erase).

Disable all interrupts.

© N o v ok

Perform the unlock sequence as described in the Unlock Sequence section.

9. Setthe GO bit to start the PFM page erase.

10. Monitor the GO bit or NVMIF interrupt flag to determine when the erase has completed.
11. Set NVMCMD to ‘b101 (Page Write).

12. Perform the unlock sequence.

13. Set the GO bit to start the PFM page write.

14. Monitor the GO bit or NVMIF interrupt flag to determine when the write has completed.
15. Interrupts can be enabled after the GO bit is clear.

16. Set the NVMCMD control bits to *b000.

Example 10-7. Modifying a Word in Program Flash Memory in C

// Code sequence to modify one word in a programmed page of PFM

// The variable with desired value is specified by ModifiedWord

// PFM target address is specified by WORD ADDR

// PFM page size is specified by PAGESIZE

// The Buffer RAM start address is specified by BufferRAMStartAddr. This value
// will be changed based on the device, refer to the "Memory Organization"
//chapter for more details.

// Save Interrupt Enable bit Value
uint8_t GIEBitValue = INTCONObits.GIE;

uintl6_t bufferRAM __ at (BufferRAMStartAddr) ;

// Defining a pointer to the first location of the Buffer RAM
uintlé t *bufferRamPtr = (uintl6 t*) & bufferRAM;

// Load NVMADR with the base address of the memory page
NVMADR = WORD_ADDR;

NVMCON1lbits.CMD = 0x02; // Set the page read command
INTCONObits.GIE = 0; // Disable interrupts

NVMCONObits.GO = 1; // Start page read

while (NVMCONObits.GO) ; // Wait for the read operation to complete
// NVMADR is already pointing to target page

NVMCON1lbits.CMD = 0x06; // Set the page erase command

=== Required Unlock Sequence ——--————-

NVMLOCK = 0x55;

NVMLOCK = O0xAA;

NVMCONQObits.GO = 1; // Start page erase

e

while (NVMCONObits.GO) ; // Wait for the erase operation to complete

// Verify erase operation success and call the recovery function if needed
if (NVMCONlbits.WRERR) {

ERASE_FAULT_ RECOVERY () ;
}

//Modify Buffer RAM for the given word to be written to PFM

uint8 t offset = (uint8 t) ((WORD_ADDR & ((PAGESIZE * 2) - 1)) / 2);
bufferRamPtr += offset;

*bufferRamPtr = ModifiedWord;

// NVMADR is already pointing to target page

NVMCON1lbits.CMD = 0x05; // Set the page write command

J)==mmmmm== Required Unlock Sequence ——-—-————-

NVMLOCK = 0x55;

NVMLOCK = O0xAA;

NVMCONQObits.GO = 1; // Start page write

Y

while (NVMCONObits.GO) ; // Wait for the write operation to complete

100

@ MICROCHIP

// Verify write operation success and call the recovery function if needed
if (NVMCONlbits.WRERR) {

WRITE FAULT RECOVERY () ;
}

INTCONObits.GIE = GIEBitValue; // Restore interrupt enable bit value
NVMCON1bits.CMD = 0x00; // Disable writes to memory

10.3.7 Write Verify

Depending on the application, good programming practice can dictate that the value written to the
memory shall be verified against the original value. This can be used in applications where excessive
writes can stress bits near the specification limit. Since program memory is stored as a full page, the
stored program memory contents are compared with the intended data stored in the buffer RAM
after the last write is complete.

Figure 10-2. Program Flash Memory Write Verify Flowchart

Rev. 10-000051=
11302019

Start
Verify Operation

y

This routine assumes that the last
page of data written was from the
buffer RAM. This image will be
used to verify the data currently
stored in PFM

Set NVMCMD to Read and Post
Increment

A J

Set GO bit

NVMDAT =
RAM image ?

v

Fail
Verify Operation

End
Verify Operation

101

@ MICROCHIP

10.3.8 Unexpected Termination of Write Operation
If a write is terminated by an unplanned event, such as loss of power or an unexpected Reset, the
memory location just programmed needs to be verified and reprogrammed, if needed. If the write
operation is interrupted by a MCLR Reset or a WDT Time-out Reset during normal operation, the
WRERR bit will be set. The user can then decide whether a rewrite of the location(s) is needed.

10.3.9 User ID, Device ID, Configuration Settings Access, DIA and DCI
The NVMADR value determines which NVM address space is accessed. The User IDs and

Configuration areas allow read and write access, whereas Device and Revision IDs are limited to
read-only.

Reading and writing User ID space is identical to reading and writing PFM space as described in the
preceding paragraphs.

Writing to the Configuration bits is performed in the same manner as writing to the Data Flash
Memory (DFM). Configuration settings are modified one byte at a time with the NVM Read and
Write operations. When a Write operation is performed on a Configuration byte, an erase byte is
performed automatically before the new byte is written. Any code protection settings that are not
enabled will remain not enabled after the Write operation, unless the new values enable them.
However, any code protection settings that are enabled cannot be disabled by a self-write of the
configuration space. The user can modify the configuration space by following these steps:

1. Read the target Configuration byte by setting the NVMADR with the target address.
2. Retrieve the Configuration byte with the Read operation (NVMCMD = ‘1000).

3. Modify the Configuration byte in NVMDAT register.
4

Write the NVMDAT register to the Configuration byte using the Write operation (NVMCMD =
‘b011) and unlock sequence.

10.3.10 Table Pointer Operations

To read and write program memory, there are two operations that allow the processor to move
bytes between the program memory space and the data RAM:

+ Table Read (TBLRD¥*)
+ Table Write (TBLWT*)

The SFR registers associated with these operations include:
+ TABLAT register

+ TBLPTR registers

The program memory space is 16 bits wide, while the data RAM space is eight bits wide. The TBLPTR
registers determine the address of one byte of the NVM memory. Table reads move one byte of data
from NVM space to the TABLAT register, and table writes move the TABLAT data to the buffer RAM
ready for a subsequent write to NVM space with the NVM controls.

10.3.10.1 Table Pointer Register

The Table Pointer (TBLPTR) register addresses a byte within the program memory. The TBLPTR
comprises three SFR registers: Table Pointer Upper Byte, Table Pointer High Byte and Table Pointer
Low Byte (TBLPTRU:TBLPTRH:TBLPTRL). These three registers join to form a 22-bit wide pointer (bits
0 through 21). The bits 0 through 20 allow the device to address up to 2 Mbytes of program memory
space. Bit 21 allows access to the Device ID, the User ID, Configuration bits as well as the DIA and
DCl.

The Table Pointer register, TBLPTR, is used by the TBLRD and TBLWT instructions. These instructions
can increment and decrement TBLPTR, depending on specific appended characters shown in the
following table. The increment and decrement operations on the TBLPTR affect only bits 0 through
20.

102

@ MICROCHIP

Table 10-3. Table Pointer Operations with TBLRD and TBLWT Instructions

Example Operation on Table Pointer

TBLRD* . o

TBLWT* TBLPTR is not modified

TBLRD*+ o .
TBLWT*+ TBLPTR is incremented after the read/write
TBLRD*—) ;
TBLWT* - TBLPTR is decremented after the read/write
TBLRD+* o)
TBLWT+* TBLPTR is incremented before the read/write

10.3.10.2 Table Latch Register

The Table Latch (TABLAT) is an 8-bit register mapped into the SFR space. The Table Latch register
receives one byte of NVM data resulting from a TBLRD* instruction and is the source of the 8-bit
data sent to the holding register space as a result of a TBLWT* instruction.

10.3.10.3 Table Read Operations

The table read operation retrieves one byte of data directly from program memory pointed to by the
TBLPTR registers and places it into the TABLAT register. The following figure shows the operation of a
table read.

Figure 10-3. Table Read Operation

Instruction: TBLRD*

Table Pointer" Program Memory Table Latch (8-bit)
TBLPTRU | TBLPTRH | TBLPTRL TABLAT
N J

Program Memory
(TBLPTR)

Note: 1. The Table Pointer register points to a byte in program memory.

10.3.10.4 Table Write Operations
The table write operation stores one byte of data from the TABLAT register into a buffer RAM
register. The following figure shows the operation of a table write from the TABLAT register to the
buffer RAM space. The procedure to write the contents of the buffer RAM into program memory is
detailed in the “Page Write"” section.

103

@ MICROCHIP

Figure 10-4. Table Write Operation

Table Pointer!”

Instruction: TBLWT *

Program Memory

TBLPTRU

TBLPTRH

TBLPTRL

\

A

J

Program Memory
(TBLPTR[MSbs])

GPR Space

Table Latch (8-bit)

TABLAT

Note 1: During table writes the Table Pointer does not point directly to program memory. TBLPTRL
actually points to an address within the buffer registers. TBLPTRU:TBLPTRH points to program memory
where the entire buffer space will eventually be written with the NVM commands.

Table operations work with byte entities. Tables containing data, rather than program instructions,
are not required to be word-aligned. Therefore, a table can start and end at any byte address. If a
table write is being used to write executable code into program memory, program instructions will

need to be word-aligned.

10.3.10.5 Table Pointer Boundaries

The TBLPTR register is used in reads of the Program Flash Memory. Writes using the TBLPTR register
go into a buffer RAM from which the data can eventually be transferred to Program Flash Memory

using the NVMADR register and NVM commands.

When a TBLRD instruction is executed, all 22 bits of the TBLPTR determine which byte is read from

program memory directly into the TABLAT register.

When a TBLWT instruction is executed, the byte in the TABLAT register is written not to Flash memory
but to a buffer register in preparation for a program memory write. All the buffer registers form a
write block of size 128 words/256 bytes. The LSbs of the TBLPTR register determine to which specific
address within the buffer register block the write affects. The size of the write block determines the

number of LSbs that are affected. The MSbs of the TBLPTR register have no effect during TBLWT

operations.

When a program memory page write is executed, the entire buffer register block is written to

the Flash memory at the address determined by the MSbs of the NVMADR register. The LSbs are
ignored during Flash memory writes.

The following figure illustrates the relevant boundaries of the TBLPTR register based on NVM

operations.

@ MICROCHIP

104

Figure 10-5. Table Pointer Boundaries Based on Operation

24 TBLPTRU 16 15 TBLPTRH 8 7 TBLPTRL 0

A NVMADRU NVMADRH TBLPTRL A
Page Erase/Write Table Write
NVMADR[21:8] TBLPTR[7:0]

Table Read - TBLPTR[21:0]

Note:

1. Refer to the “Memory Organization” chapter for more details about the size of the buffer
registers block.

10.3.10.6 Reading the Program Flash Memory
The TBLRD instruction retrieves data from program memory at the location to which the TBLPTR
register points and places it into the TABLAT SFR register. Table reads from program memory
are performed one byte at a time. The instruction set includes incrementing the TBLPTR register
automatically for the next table read operation.

The CPU operation is suspended during the read and resumes operation immediately after. From
the user point of view, the value in the TABLAT register is valid in the next instruction cycle.

The internal program memory is typically organized by words. The Least Significant bit of the
address selects between the high and low bytes of the word. The following figure illustrates the
interface between the internal program memory and the TABLAT register.

Figure 10-6. Reads from Program Flash Memory

Program Flash Memory

(Even Byte Address) (Odd Byte Address)
TBLPTR = xxxxx1 TBLPTR = xxxxx0
Instruction FETCH TBLRD TABLAT
Register (IR) Read Register

105

@ MICROCHIP

Figure 10-7. Program Flash Memory Read Flowchart

<Start Read Operation>

Select Byte Address
(TBLPTR Register)

v

Initiate Read Operation
(TBLRD)

v

Data read now
in TABLAT register

<End Read Operation>

Example 10-8. Reading a Program Flash Memory Word

MOVLW CODE_ADDR UPPER ; Load TBLPTR with the base
MOVWE TBLPTRU ; address of the word
MOVLW CODE_ADDR_HIGH

MOVWEF TBLPTRH

MOVLW CODE_ADDR_LOW

MOVWEF TBLPTRL

READ WORD:
TBLRD*+ ; read into TABLAT and increment
MOVF TABLAT, W ; get data
MOVWE WORD_EVEN
TBLRD*+ ; read into TABLAT and increment
MOVEW TABLAT, W ; get data
MOVF WORD_ODD

10.4 Data Flash Memory (DFM)

The Data Flash Memory is a nonvolatile memory array, also referred to as EEPROM. The DFM is
mapped above program memory space. The DFM can be accessed using the Table Pointer or NVM
Special Function Registers (SFRs). The DFM is readable and writable during normal operation over
the entire Vpp range.

The DFM can only be read and written one byte at a time. When interfacing to the data memory
block, the NVMDATL register holds the 8-bit data for read/write and the NVMADR register holds the
address of the DFM location being accessed.

The DFM is rated for high erase/write cycle endurance. A byte write automatically erases the
location and writes the new data (erase-before-write). The write time is controlled by an internal
programming timer; it will vary with voltage and temperature as well as from device-to-device. Refer
to the data EEPROM memory parameters in the “Electrical Specifications” chapter for the limits.

10.4.1 Reading the DFM
To read a DFM location, the user must write the address to the NVMADR register, set the NVMCMD
bits for a single read operation (NVMCMD = ‘b000), and then set the GO control bit. The data are
available on the very next instruction cycle. Therefore, the NVMDATL register can be read by the next
instruction. NVMDATL will hold this value until another read operation or until it is written to by the
user (during a write operation).

106

@ MICROCHIP

Note: Only byte reads are supported for DFM. Reading DFM with the Read Page operation is not
supported.

The sequence of events for reading a byte of DFM is:

1. Setthe NVMADR registers to an address within the intended page.

2. Setthe NVMCMD control bits to *b000 (Byte Read).

3. Setthe GO bit to start the DFM byte read.

4. Monitor th