

LR645

High-Input Voltage SMPS, Start-up/Linear Regulator

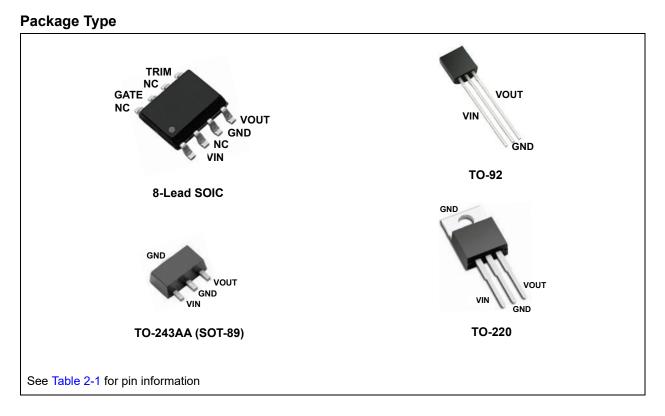
Features

- Accepts Inputs from 15 to 450V
- Output Currents: Up to 3.0 mA Continuous, 30 mA Peak
- Supply Current Typically 50 µA
- Line Regulation Typically 0.1 mV/V
- Output Can Be Trimmed from 8.0 to 12V
- Output Current Can be Increased to 150 mA with External FET

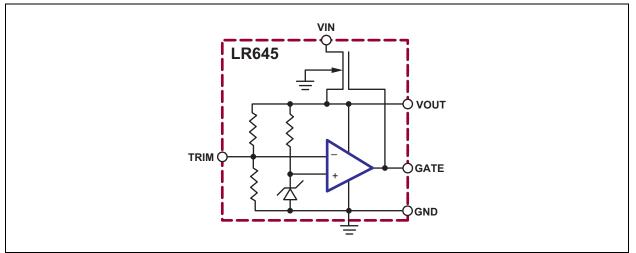
Applications

- Off-line SMPS Startup Circuits (Pulse Loads)
- · Low Power Off-Line Regulators
- Regulators for Noisy Inputs

Description


LR645 is a high-input voltage, low-output current, linear regulator that is available in two versions. A 3-terminal, fixed-output voltage version is available in TO-92, TO-220 and SOT-89 packages, as well as an adjustable voltage version available in an 8-lead SOIC package.

The 3-terminal version of LR645 functions like any other low-voltage, 3-terminal regulator except it allows the use of much higher-input voltages. When used in a Switched-mode Power Supply (SMPS), start-up circuit, LR645 eliminates the need for large power resistors. In this application, current is drawn from the high voltage line only during start-up. Only leakage current flows after start-up, thereby reducing the continuous power dissipation to a few milliwatts.


The adjustable-voltage version allows trimming of the output voltage from 8.0V to 12V. This version can also be connected to an external depletion mode metal-oxide-semiconductor field-effect transistor (MOSFET) for increased output current. When used in conjunction with depletion mode MOSFET DN2540N5, an output current of up to 150 mA is achieved.

WARNING

The LR645 does NOT provide galvanic isolation. When operated from an AC line, potentially lethal voltages can be present on the IC. Adequate means of protecting the end user from such voltages must be provided by the circuit developer.

Block Diagram

ELECTRICAL CHARACTERISTICS 1.0

ABSOLUTE MAXIMUM RATINGS[†]

Input Voltage	
Output voltage	15.5V
Operating and storage temperature	55°C to +150°C

Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage t to the device. This is a stress rating only and functional operation of the device at those or any other conditions, above those indicated in the operational listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

1.1 **ELECTRICAL SPECIFICATIONS**

Symbol	Parameter	Min	Тур	Max	Units	Conditions
14	Output voltage	9.3	10	10.7	V	No load
V _{OUT}	Output voltage over temperature ²	9.0	10	11.5	V	T _J = -40 to +125°C, No load
A) /	Line regulation	_	40	200	mV	V _{IN} = 15 to 400V, No load
ΔV _{OUT}	Load regulation	_	150	400	mV	V _{IN} = 50V, I _{OUT} = 0 to 3.0 mA
V _{IN}	Operating input voltage range	15	—	450	V	
I _{INQ}	Input quiescent current	_	50	150	μA	No Load
I _{OFF}	VIN off-state leakage current	_	0.1	10	μA	$V_{AUX} \ge V_{OUT}$ +1V applied to V_{OUT} pin
I _{AUX}	Input current to V _{OUT}	_	—	200	μA	$V_{AUX} \ge V_{OUT} + 1V$ applied to V_{OUT} pin
$\Delta V_{OUT} / \Delta V_{IN}$	Ripple rejection ratio ²	50	60	_	dB	120 Hz, No Load
e _n	Noise voltage ²	_	25	_	μV	0.01 to 100 kHz
I _{PEAK}	Output peak current ³	_	30	_	mA	C _{OUT} = 10 μF, V _{IN} = 400V
V _{AUX}	External voltage applied to V_{OUT}		—	13.2	V	
8-lead, adjust	table voltage version only					
V _{OUT}	Output regulation trim range ²	8		12	V	No load
	Load regulation at 8V trim ²	_	200	400	mV	V _{IN} = 15V, I _{OUT} = 0 to 1.0 mA
ΔV _{OUT}	Load regulation at 12V trim	—	100	400	mV	V _{IN} = 50V, I _{OUT} = 0 to 3.0 mA

ELECTRICAL CHARACTERISTICS¹ **TABLE 1-1:**

Test² Conditions unless otherwise specified: $T_A = 25^{\circ}C$, $V_{IN} = 15V-450V$, $C_{OUT} = 0.01 \,\mu$ F. NOte 11

2: Ensured by design.

3: Pulse test duration <1.0 msec, duty cycle <2%Determined by characterization, not production tested.

TABLE 1-2: THERMAL CHARACTERISTICS¹

Package	θја	Power Dissipation @T _A =25°C
8-lead SOIC	101°C/W	0.31
TO-92	132°C/W	0.74
TO-220	29°C/W	1.8
TO-243AA (SOT-89)	133°C/W	1.6

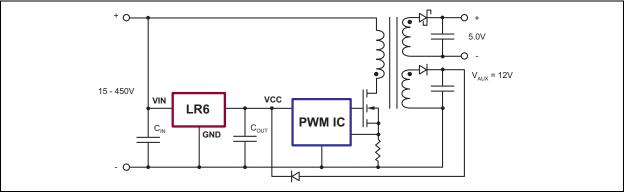
Note 1: Mounted on FR5 board; 25mm x 25mm x 1.57mm. Significant P_D increase possible on ceramic substrate.

2.0 PIN DESCRIPTION

The locations of the pins are listed in Package Type.

Function	Description
VIN	Regulator input.
GND	Ground return for all internal circuitry. This pin must be electrically connected to circuit common.
GATE	Output GATE driver for an external N-channel depletion.
TRIM	A voltage divider from V _{OUT} to this pin adjusts the output voltage.
VOUT	Regulator output.
NC	No connection.

3.0 FUNCTIONAL DESCRIPTION


3.1 SMPS Start-Up Circuit

One of the main applications for LR645 is a start-up circuit for off-line, switch-mode power supplies (SMPS), as shown in Figure 3-1. A minimum output capacitance of 10 nF is recommended for stability. The wide operating, input voltage range of LR645 allows the SMPS to operate and start-up from rectified AC, or a DC voltage of 15 to 450V, without adjustment.

During start-up, the LR645 powers the V_{CC} line of the Pulse-Width Modulation (PWM) IC with a nominal output voltage of 10V. The auxiliary voltage connected

through a diode to the V_{OUT} pin of LR645 will start to increase. When the auxiliary voltage becomes larger than the output voltage LR645 turns OFF both its internal high voltage input line and output voltage, allowing the auxiliary voltage to power the V_{CC} line of the PWM IC. After startup, LR645 doesn't draw any input current from the high-voltage line other than the leakage current of the internal MOSFET switch, which is typically 0.1 μ A.

The 3-terminal version shown in Figure 3-1 has load regulation guaranteed from 0 to 3.0 mA at a fixed nominal output voltage of 10V. Applications requiring higher output current and/or a different output voltage can use the 8 pin adjustable version.

SMPS Start-up Circuit.

3.2 High-Current SMPS Start-Up Circuit

The 8-lead version of LR645 has connections for an external depletion-mode MOSFET for higher-output current and external resistors for adjustable-output voltage. As shown in Figure 3-2, the output current is increased to 150 mA by using the DN2540, a 400V depletion-mode MOSFET. The maximum operating input voltage will be limited by the drain-to-source, breakdown voltage of the external MOSFET, but cannot exceed the 450V rating of LR645.

The output voltage can be adjusted from 8 to 12V with two external resistors: R1 and R2. The ratio of R2/R1 determines the output voltage. R2 is connected between the V_{OUT} and TRIM pins; R1 is connected between TRIM and GND pins. Figure 3-3 is a curve showing output voltage versus resistor ratio R2/R1. The optimum range for R1 + R2 is 200 k Ω to 300 k Ω . This minimizes loading and optimizes accuracy of the output voltage. Figure 3-3 uses an R1 + R2 of 250 k Ω .

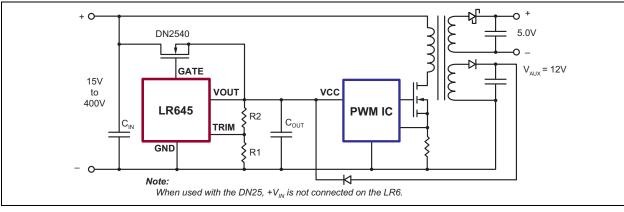
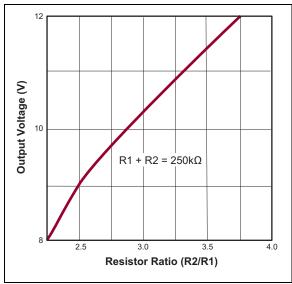
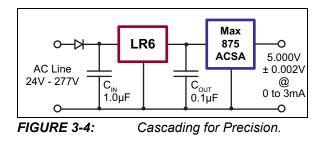



FIGURE 3-2: High-Current SMPS Start-up Circuit.

FIGURE 3-3: Typical Output Voltage vs Resistor Ratio.

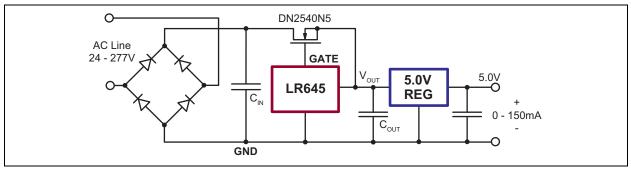

3.3 Off Line Linear Regulator

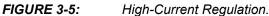
Circuits that require low voltages to operate logic and analog circuits benefit from LR645. The conventional use of step-down transformers can be eliminated, thereby saving space and cost. Some examples of lowvoltage applications are: proximity controlled light switches, street lamp controls, and low-voltage power supplies for appliances such as washing machines, dishwashers, and refrigerators.

The wide operating-input voltage range of 15 to 450V, as well as the ripple rejection ratio of 50 dB minimum, allows the use of a small, high-voltage input capacitor.

The input AC line can be either full-wave or half-wave rectified. A minimum output capacitance of $0.01 \ \mu\text{F}$ is recommended for output stability.

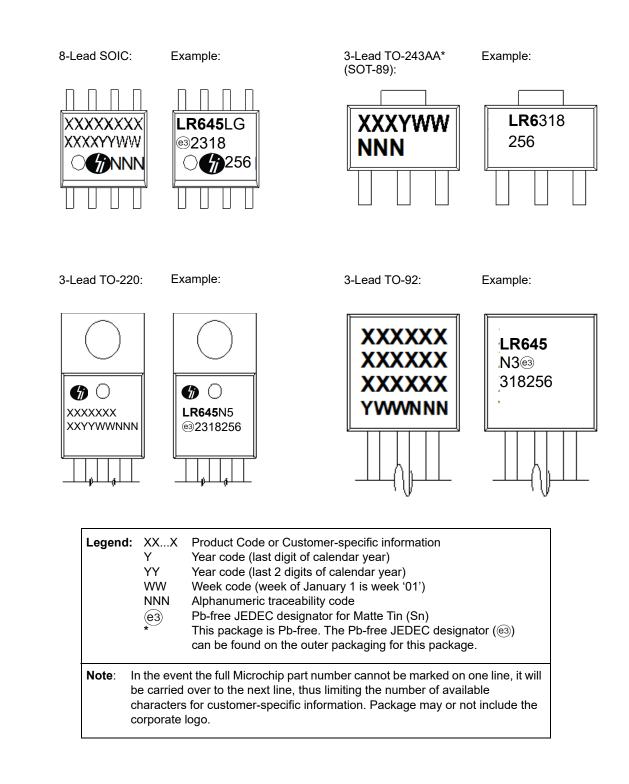
Figure 3-4 shows the LR645 as a pre-regulator to a precision regulator for high precision regulation. Higher output current is also possible by using an external depletion-mode MOSFET DN2540N5 as shown in Figure 3-5.


3.4 Power Dissipation Considerations

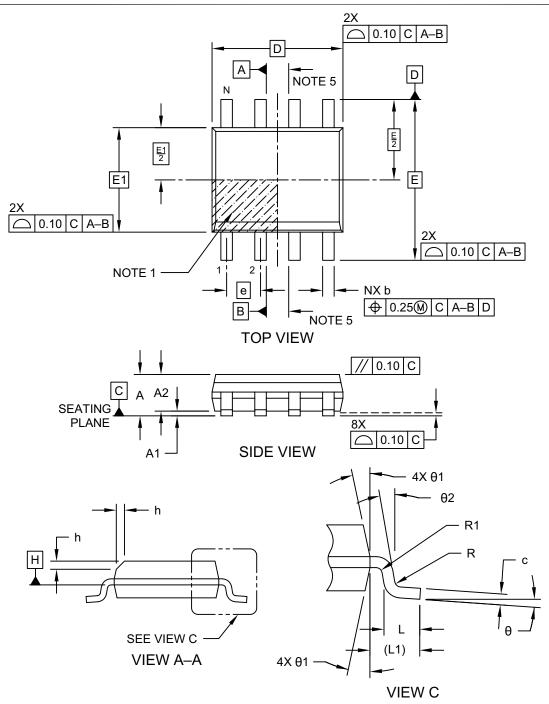

LR645 is a true linear regulator. Its power dissipation is therefore a function of input voltage and output load current. For example, if the LR645 provides a continuous load current of 3 mA at 10V, while its input voltage is 400V, total dissipation in the LR645 can be calculated using Equation 3-1.

The 1.23 watts is for continuous operation. This is within the dissipation capabilities of the TO-220 and SOT-89 packages. See Table 1-2 on Page 3 for deratings. For SMPS start-up applications, the output current is usually required only during start-up. This duration depends upon the auxiliary supply output capacitor and C_{OUT} , but is typically a few hundred milliseconds. All package types of the LR645 have been characterized for use with a C_{OUT} of at least 10 μ F, and an AC line of 277V.

EQUATION 3-1:

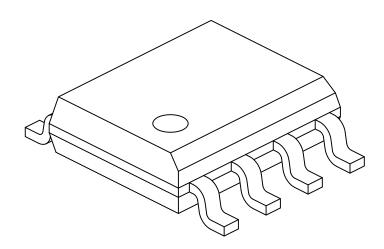

$$P_{DISS} = (V_{IN} - V_{OUT}) \times (I_{OUT} + I_{MAXQuiescent}) = (400V - 10V) \times (3.0 \text{ mA} + 150 \text{ µA})$$

= 1.23 Watts


4.0 PACKAGING INFORMATION

4.1 Package Marking Information

8-Lead Plastic Small Outline (C2X) - Narrow, 3.90 mm (.150 In.) Body [SOIC] Atmel Legacy Global Package Code SWB


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing No. C04-057-C2X Rev K Sheet 1 of 2

8-Lead Plastic Small Outline (C2X) - Narrow, 3.90 mm (.150 In.) Body [SOIC] Atmel Legacy Global Package Code SWB

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Ν	IILLIMETER	S		
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	N		8		
Pitch	е		1.27 BSC		
Overall Height	A	-	-	1.75	
Molded Package Thickness	A2	1.25	-	-	
Standoff §	A1	0.10	_	0.25	
Overall Width	E		6.00 BSC		
Molded Package Width	E1	3.90 BSC			
Overall Length	D	4.90 BSC			
Chamfer (Optional)	h	0.25	-	0.50	
Foot Length	L	0.40 – 1.27			
Footprint	L1		1.04 REF		
Lead Thickness	С	0.17	-	0.25	
Lead Width	b	0.31	—	0.51	
Lead Bend Radius	R	0.07 – –			
Lead Bend Radius	R1	0.07 – –			
Foot Angle	θ	0° – 8°			
Mold Draft Angle	θ1	5° – 15°			
Lead Angle	θ2	0°	_	_	

Notes:

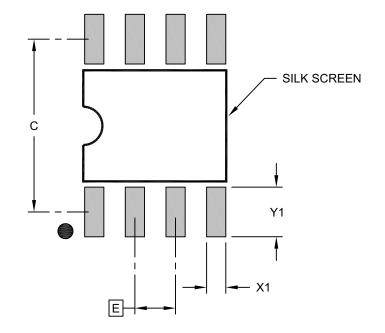
1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.

5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-057-C2X Rev K Sheet 2 of 2

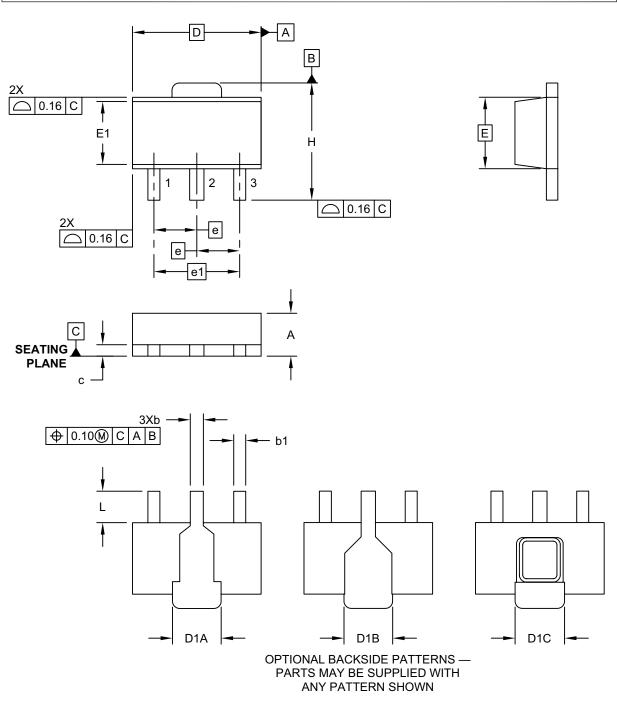
8-Lead Plastic Small Outline (C2X) - Narrow, 3.90 mm (.150 In.) Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units			S
Dimension	Dimension Limits		NOM	MAX
Contact Pitch	E	1.27 BSC		
Contact Pad Spacing	С		5.40	
Contact Pad Width (X8)	X1			0.60
Contact Pad Length (X8)	Y1	1.55		

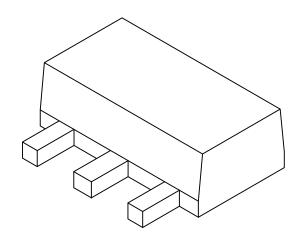
Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2057-C2X Rev K

3-Lead Plastic Small Outline Transistor (MB) - [SOT-89]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

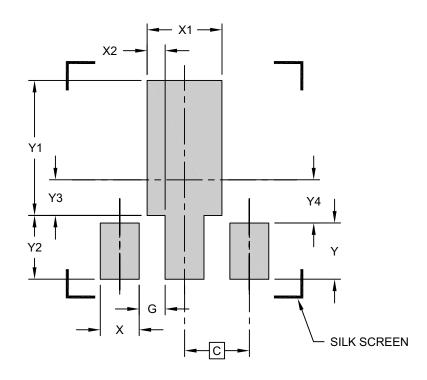
Microchip Technology Drawing C04-029C Sheet 1 of 2

3-Lead Plastic Small Outline Transistor (MB) - [SOT-89]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIM	ETERS		
Dimensior	Dimension Limits		NOM	MAX
Number of Leads	Ν		3	
Pitch	е		1.50 BSC	
Outside Lead Pitch	e1		3.00 BSC	
Overall Height	Α	1.40	1.50	1.60
Overall Width	Н	3.94	4.10	4.25
Molded Package Width at Base	E	2.50 BSC		
Molded Package Width at Top	E1	2.13	2.20	2.29
Overall Length	D	4.50 BSC		
Tab Length (Option A)	D1A	1.63	1.73	1.83
Tab Length (Option B)	D1B	1.40	1.60	1.75
Tab Length (Option C)	D1C	1.62	1.73	1.83
Foot Length	L	0.79	1.10	1.20
Lead Thickness	С	0.35	0.40	0.44
Lead 2 Width	b	0.41	0.50	0.56
Leads 1 & 3 Width	b1	0.36	0.42	0.48

Notes:


- 1. Dimensions D and E do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127mm per side.
- 2. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-029C Sheet 2 of 2

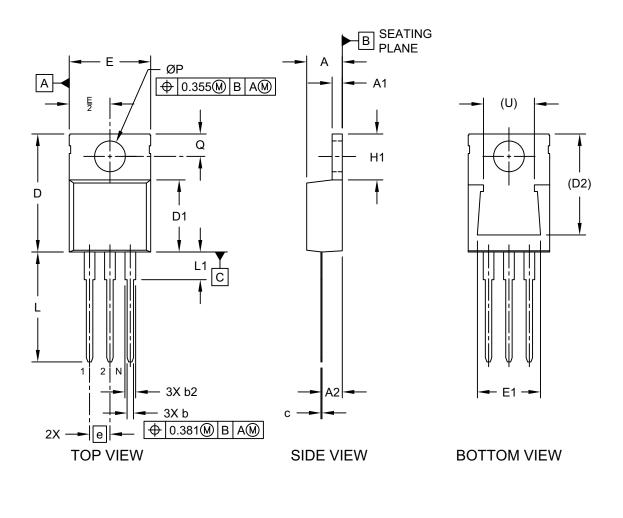
3-Lead Plastic Small Outline Transistor (MB) - [SOT-89]

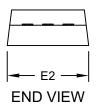
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units	MILLIMETERS				
Dimension Limits	MIN	NOM	MAX		
С		1.50 (BSC)			
X (3 PLACES)		0.900			
X1		1.733			
X2 (2 PLACES)		0.416			
G (2 PLACES)		0.600			
Y (2 PLACES)		1.300			
Y1		3.125			
Y2		1.475			
Y3		0.825			
Y4		1.000			

Notes:

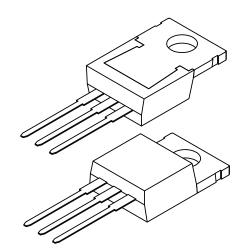

1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2029C

3-Lead Transistor Outline Package (Supertex N5) - [TO-220] Supertex Legacy

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-034-N5 Rev C Sheet 1 of 2

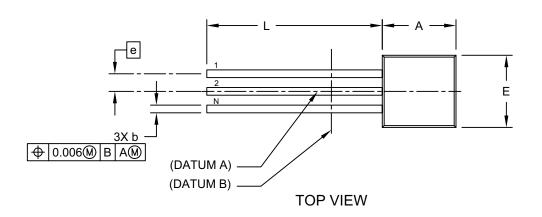
3-Lead Transistor Outline Package (Supertex N5) - [TO-220] Supertex Legacy

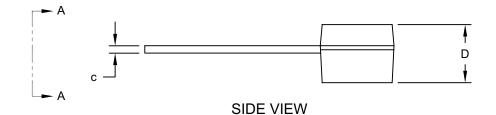
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

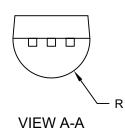
	Units			MILLIMETERS			
	Dimension Limits	MIN	NOM	MAX			
Number of Terminals	of Terminals N 3						
Terminal Pitch	е		2.54 BSC				
Overall Height	A	4.064	4.445	4.826			
Tab Thickness	A1	1.143	1.270	1.397			
Base to Lead	A2	2.032	2.540	3.048			
Terminal Width	b	0.635	0.826	1.016			
Shoulder Width	b2	1.143	1.334	1.524			
Terminal Thickness	С	0.305	0.432	0.559			
Overall Length	D	13.730	14.730	15.730			
Molded Package Length	D1	8.850	9.000	9.150			
Exposed Pad Length	D2	12.6 REF					
Overall Width	E	9.652	10.160	10.668			
Exposed Pad Width	U		6.35 REF				
Exposed Pad Width	E1	6.858	7.874	8.890			
Body Width	E2	9.779	10.224	10.668			
Tab Length	H1	5.842	6.350	6.858			
Terminal Length	L	12.700	13.716	14.732			
Terminal Shoulder Length	L1	3.050	3.455	3.860			
Mounting Hole Diameter	Р	3.708	3.835	3.962			
Mounting Hole Center	Q	2.540	2.794	3.048			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

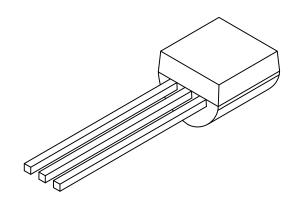

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.


Microchip Technology Drawing C04-034-N5 Rev C Sheet 2 of 2

3-Lead Plastic Transistor Outline (TO) [TO-92]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-101-TO Rev D Sheet 1 of 2

3-Lead Plastic Transistor Outline (TO) [TO-92]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

		INCHES		
Dimensio	Units Dimension Limits		NOM	MAX
Number of Pins	Ν		3	
Pitch	е	.050 BSC		
Bottom to Package Flat	D	.125	-	.165
Overall Width	E	.175	-	.205
Overall Length	Α	.170	-	.210
Molded Package Radius	R	.080	-	.105
Tip to Seating Plane	L	.500	-	-
Lead Thickness	С	.014	-	.021
Lead Width	b	.014	-	.022

Notes:

- 1. Dimensions D and E do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" per side.
- 2. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-101-TO Rev D Sheet 2 of 2

NOTES:

APPENDIX A: REVISION HISTORY

Revision B (October 2023)

- Minor style edits.
- Updated Section 4.0 "Packaging Information".

Revision A (April 2015)

• Converted Supertex Document # DSFP-LR645 A062113 to Microchip Data Sheet DS20005384A.

LR645

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u>xx</u>	<u>-</u> ¥	<u>-xxxx</u>	Ex	ampl	les:	
Device	Package Type	Environmental	Media Type	a)	LR6	45LG-G:	Tape and Reel, 8-lead SOIC package, Adjustable voltage
Device:	LR645	 High-Input, Voltage S Regulator 	SMPS, Start-up/Linear	b)	LR6	45N3-G	TO-92 package, Bag, Fixed voltage
Package:	LG N3	 8-lead SOIC (adjusta TO-92 (fixed voltage 		c)	LR6	45N3-G-P003:	Tape and Reel, TO-92 package, Fixed voltage
	N5 N8	= TO-92 (fixed voltage = TO-220 (fixed voltag = TO-243AA (SOT-89)	je)	d)	LR6	45N3-G-P013:	AMMO Pack, TO-92 package, Fixed voltage
Environmental:	G	= Lead (Pb)-free/ROH	HS-compliant package	e)	LR6	45N5-G	TO-220 package, Tube, Fixed voltage
Media Type:	(blank)	 = 3300/Reel for LG particular = 1000/Bag for N3 pact = 50/Tube for N5 pack = 2000/Reel for N8 particular 	ckage kage	f)		45N8-G	Tape and Reel, TO-243AA package, Fixed voltage
	P003	= 2000/Reel for N3 page	ckage	NOT	e 1:		identifier only appears in the mber description. This
	P013	= 2000/Ammo Pack for	r N3 package			is not printed or with your Micro	d for ordering purposes and n the device package. Check ochip Sales Office for bility with the Tape and Reel

NOTES:

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable" Code protection is constantly evolving. Microchip is committed to
 continuously improving the code protection features of our products.

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at https:// www.microchip.com/en-us/support/design-help/client-supportservices.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WAR-RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDI-RECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSE-QUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet- Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, KoD, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

 $\textcircled{\mbox{\sc op}}$ 2015-2023, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

ISBN: 978-1-6683-3277-1

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000 China - Chengdu

Tel: 86-28-8665-5511 China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138 China - Zhuhai

Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631 India - Pune

Tel: 91-20-4121-0141 Japan - Osaka

Tel: 81-6-6152-7160

Japan - Tokyo Tel: 81-3-6880- 3770

Korea - Daegu Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

Germany - Garching Tel: 49-8931-9700

> **Germany - Haan** Tel: 49-2129-3766400

EUROPE

Austria - Wels

Tel: 43-7242-2244-39

Tel: 45-4485-5910

Fax: 45-4485-2829

Tel: 358-9-4520-820

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Finland - Espoo

France - Paris

Fax: 43-7242-2244-393

Denmark - Copenhagen

Germany - Heilbronn Tel: 49-7131-72400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820