14/20-Pin, Low-Power, High-Performance Microcontroller o
with XLP Technology c\ MICROCHIP

Introduction

The PIC18-Q20 microcontroller family is one of the smallest PIC18 product families available in 14/20-pin
devices for sensor-interfacing, real-time control and communication applications.

This family showcases the Improved Inter-Integrated Circuit® (13C) Target module with a higher communication
rate and a 10-bit 300 ksps ADC with Computation for responsive sensor designs. The family features a Multi-
Voltage I/0 (MVIO) interface with multiple pins powered by Vpp 02 and Vpp o3 that allows for these pins to
operate at a different voltage domain than the rest of the microcontroller. The family also features the 8-bit
Signal Routing Port module to interconnect digital peripherals without using external pins.

Additional features include vectored interrupt controller with fixed latency for handling interrupts, system
bus arbiter, Direct Memory Access (DMA) capabilities, UART with support for asynchronous, DMX, DALI and
LIN protocols, SPI, 12C, and a programmable 32-bit CRC with memory scan. This family also includes Memory
Access Partition (MAP) and SAFLOCK to support users in bootloader applications. SAFLOCK allows one-time
programmability of the Storage Area Flash (SAF). The Device Information Area (DIA) stores factory calibration
values to help improve temperature sensor accuracy.

PIC18-Q20 Family Types

Table 1. Memory Overview

Devi PIC18F04Q20 PIC18F05Q20 PIC18F06Q20
evices
PIC18F14Q20 PIC18F15Q20 PIC18F16Q20

Program Flash Memory 16 KB 32KB 64 KB
Data SRAM 1 KB 2 KB 4 KB
Data EEPROM 256B 256B 256B
Memory Access Partition (MAP) Yes Yes Yes
Device Information Area (DIA) Yes Yes Yes

Table 2. Peripheral Overview

14 20

Pins

I/0 Pins 11 16

Peripheral Pin Select (PPS) Yes Yes
Multi-Voltage 1/0 (MVIO) Pins 2 (on Vppio2) 4 (2 on Vppjoz and Vppo3 each)
High-Voltage Tolerant Pins 2

Signal Routing Port (8-Pin)
8-Bit Timer with HLT (TMR2)
16-Bit Timers (TMRO0/1)

16-Bit Universal Timer (UTMR)
16-Bit Dual PWM
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........... continued

PIC18F04Q20 PIC18F14Q20
Feature PIC18F05Q20 PIC18F15Q20
PIC18F06Q20 PIC18F16Q20

2 2

Capture/Compare/PWM (CCP)

Complimentary Waveform Generator (CWG) 1 1
Configurable Logic Cell (CLC) 4 4
10-Bit Ana~log-to-DigitaI Converter with 8 11
Computation (ADCC) External Channels
High/Low-Voltage Detect (HLVD) 1 1
Serial Peripheral Interface (SPI) 1 1
Inter-Integrated Circuit (12C) 1 Host, up to 2 Clients( 1 Host, up to 3 Clients(
Improved Inter-Integrated Circuit (13C°) 1 Target 2 Targets
Universal Asynchronous Receiver Transmitter ] ]
(UART)
UART with Protocol Support 1 1
Direct Memory Access (DMA) Channels 4 4
Windowed Watchdog Timer (WWDT) Yes Yes
32-Bit CRC with Scanner Yes Yes
Vectored Interrupts Yes Yes
Interrupt-on-Change (I0C) Yes Yes
Peripheral Module Disable (PMD) Yes Yes
Temperature Indicator Yes Yes
Note:
1. The I3C Target module can be configured to operate as an 12C Client module when the device is connected to an 12C Bus with no 13C
Controllers.
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Features

« C Compiler Optimized RISC Architecture
+ Operating Speed:
- DC-64 MHz clock input
- 62.5 ns minimum instruction cycle
+ Four Direct Memory Access (DMA) Controllers:
- Data transfers to SFR/GPR spaces from either Program Flash Memory, Data EEPROM or SFR/GPR spaces
- User-programmable source and destination sizes
- Hardware and software-triggered data transfers
+ Vectored Interrupt Capability:
- Selectable high/low priority
- Fixed interrupt latency of three instruction cycles
- Programmable vector table base address
- Backwards compatible with previous interrupt capabilities
+ 128-Level Deep Hardware Stack
*  Low-Current Power-on Reset (POR)
« Configurable Power-up Timer (PWRT)
* Brown-out Reset (BOR)
* Low-Power BOR (LPBOR) Option
* Windowed Watchdog Timer (WWDT):
- Watchdog Reset on too long or too short interval between watchdog clear events
- Variable prescaler selection
- Variable window size selection

Operating Characteristics
* Operating Voltage Range (Vpp):
- 1.8Vt05.5V

« Multi-Voltage 1/0 (MVIO) Range (Vppio2 and Vppjo3):
- 1.62V to 5.5V (3.63V with I3C enabled)

- High-Voltage tolerant MVIO-powered pins support I3C communication down to 0.95V

+ Temperature Range:
- Industrial: -40°C to 85°C

- Extended: -40°C to 125°C

Memory

+ Up to 64 KB of Program Flash Memory

* Up to 4 KB of Data SRAM Memory

+ 256 Bytes Data EEPROM

+ Memory Access Partition: The Program Flash Memory Can Be Partitioned into:
- Application Block
- Boot Block
- Storage Area Flash (SAF) Block
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* Programmable Code Protection and Write Protection
+ Device Information Area (DIA) Stores:
- Temperature indicator factory calibrated data
- Fixed Voltage Reference (FVR) measurement data
- Microchip Unique Identifier
* Device Characteristics Information (DCI) Area Stores:
- Program/erase row sizes
- Pin count details
- EEPROM size
+ Direct, Indirect and Relative Addressing Modes

Power-Saving Functionality

+ Doze: CPU and Peripherals Running at Different Cycle Rates (CPU Is Typically Slower)
+ Idle: CPU Halted While Peripherals Operate

+ Sleep: Lowest Power Consumption

+ Peripheral Module Disable (PMD):

- Ability to selectively disable hardware module to minimize active power consumption of unused
peripherals

+ Low-Power Mode Features:
- Sleep: <1 pA typical @ 3V
- Operating Current:
+ 48 pA @ 32 kHz, 3V, typical

Digital Peripherals
+ Two 16-Bit Pulse-Width Modulators (PWM):
- Dual outputs for each PWM module
- Integrated 16-bit timer/counter
- Double-buffered user registers for duty cycles
- Right/Left/Center/Variable Aligned modes of operation
- Multiple clock and Reset signal selections
* Two 16-Bit Timers (TMRO0/1)
*  Two 8-Bit Timers (TMR2/4) with Hardware Limit Timer (HLT)
+  Two 16-Bit Universal Timers (TU16A/16B):

- New Timer module that combines most of the operations of all legacy timers (TMR0/1/2, SMT, CCP) into
one single timer

- Two 16-bit timers can be chained together to create a combined 32-bit timer
+ Four Configurable Logic Cells (CLC):

- Integrated combinational and sequential logic
+ One Complimentary Waveform Generator (CWG):

- Rising and falling edge dead-band control

- Full-bridge, half-bridge, one-channel drive

- Multiple signal sources

- Programmable dead band
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Fault-shutdown input

+ Two Capture/Compare/PWM (CCP) Modules:

16-bit resolution for Capture/Compare modes
10-bit resolution for PWM mode

«  Programmable CRC with Memory Scan:

Reliable data/program memory monitoring for Fail-Safe operation (e.g., Class B)
Calculate 32-bit CRC over any portion of Program Flash Memory

* Two UART Modules:

One module (UART1) supports LIN host and client, DMX mode, DALI gear and device protocols
Asynchronous UART, RS-232, RS-485 compatible

Automatic and user timed BREAK period generation

Automatic checksums

Programmable Stop bits (1, 1.5 and 2 Stop bits)

Wake-up on BREAK reception

DMA compatible

*  One SPI Module:

Configurable length bytes

Arbitrary length data packets

Transmit-without-receive and receive-without-transmit options

Transfer byte counter

Separate transmit and receive buffers with 2-byte FIFO and DMA capabilities

+ One I2C Module, SMBus, PMBus™ Compatible:

Supports Standard mode (100 kHz), Fast mode (400 kHz) and Fast mode Plus (1 MHz) modes of
operation

7-bit and 10-bit Addressing modes with Address Masking modes

Dedicated address, transmit and receive buffers and DMA capabilities

Bus collision detection with arbitration

Bus time-out detection and handling

12C, SMBus 2.0 and SMBus 3.0, and 1.8V input level selections

Separate transmit and receive buffers with 2-byte FIFO and DMA capabilities
Multi-Host mode, including self-addressing

Built-in Error Detection and Recovery

* Up To Two I13C Modules:

Supports 13C target device mode only

Can be used as an I2C Client module

Adheres to MIPI 13C Basic Specification 1.0

Supports Target Reset Action (RSTACT) CCC from MIPI I13C Specification 1.1

Supports Dynamic Address Assignment, Common Command Codes (CCC), Direct and Broadcast
addressing

Transfer speeds up to 12.5 Mbps in SDR mode
Recognizes HDR Entry and Exit patterns
Support for In-Band Interrupt (IBI) and Hot-Join
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Supports 7-bit configurable target static address
12C backward-compatible with static addressing for I12C transfers
Built-in Error Detection and Recovery

* Device I/0O Port Features:

11 I/0 pins including two Multi-Voltage I/0 (MVIO) pins powered by Vppio> (PIC18F04/05/06Q20)

16 I/0 pins including two Multi-Voltage I/0 (MVIO) pins powered by Vppio2 and two MVIO pins powered
by Vppios (PIC18F14/15/16Q20)

MVIO pins support a voltage range of 1.62V through 5.5V

Support for 0.95-3.63V I3C communication at up to 12.5 MHz on MVIO pins

Individually programmable 1/0 direction, open-drain, slew rate and weak pull-up control
Low-Voltage interface on all I/0 pins using LVBUF input buffer

Selectable 13C and I12C input buffers on MVIO pins

Interrupt-on-change on most pins

Three programmable external interrupt pins

+ One Signal Routing Port Module:

8 signal routing pins per module

Supports software read/write and customizable input/output control

Supports flip-flops and clock source selection for Hardware State Machine and shift register applications
Integration with PPS, Interrupt-on-Change and DMA/ADC triggers available

+ Peripheral Pin Select (PPS):

Enables pin mapping of digital I/0 (except I3C signals)

Analog Peripherals
+ 10-Bit Analog-to-Digital Converter with Computation (ADCC):

Up to 11 external channels and five internal channels
Supports grouping of external channels
Up to 300 ksps

Automated math functions on input signals:
+ Averaging, filter calculations, oversampling and threshold comparison

Operates in Sleep

Five internal analog channels

Hardware Capacitive Voltage Divider (CVD) Support:
+ Adjustable Sample-and-Hold capacitor array
+ Guard ring digital output drive

« Automates touch sampling and reduces software size and CPU usage when touch or proximity
sensing is required

+ Voltage Reference:

Fixed Voltage Reference with 1.024V, 2.048V and 4.096V output levels
Internal connections to ADC

Clocking Structure
+ High-Precision Internal Oscillator Block (HFINTOSC):
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- +1% at calibration

- Active Clock Tuning of HFINTOSC for better accuracy
* 32 kHz Low-Power Internal Oscillator (LFINTOSC)
+ External 32 kHz Crystal Oscillator (SOSC)

+ External High-Frequency Oscillator Block:

- Configurable HS Crystal mode up to 32 MHz

- Digital Clock Input mode

- 4x PLL with external sources
+ Fail-Safe Clock Monitor:

- Allows for operational recovery if external clock stops
+ Oscillator Start-up Timer (OST):

- Ensures stability of crystal oscillator sources

Programming/Debug Features

+ In-Circuit Serial Programming™ (ICSP™) via Two Pins

* In-Circuit Debug (ICD) with Three Breakpoints via Two Pins
+ Debug Integrated On-Chip
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PIC18-Q20 Block Diagram
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1. Packages

Table 1-1. Packages

) 14-Pin 14-Pin 20-Pin 20-Pin 20-Pin 20-Pin
Device soIC TSSOP PDIP soIC SSOP VQFN
[ ] [ ]

PIC18F04Q20

PIC18F05Q20 . .
PIC18F06Q20 . .

PIC18F14Q20 . . . .
PIC18F15Q20 . . . .
PIC18F16Q20 . . . .
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2. Pin Diagrams

Figure 2-1.
14-Pin SOIC
14-Pin TSSOP

CLKIN/SOSCI/OSC1/RA5
CLKOUT/SOSCO/OSC2/RA4

2.2

Figure 2-2.

20-Pin PDIP
20-Pin SOIC
20-Pin SSOP
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Vbbp 1 14
2 13
3 12
MCLR/Vpp/RA3 4 11
RC5 5 10
RC4 6 9
RC3 7 8
Power
] Power Supply
[l Ground

[ Pin on Vpp Power Domain

[ ] Pin on Vppio, Power Domain

Vss
RAO/ICSPDAT
RA1/ICSPCLK
RA2

RCO

RC1

VDDIO2

Functionality

| 4 Programming/Debug
|4 ClockiCrystal
[] ’cisMBus-compatible

|4 13C-compatible



Voo .1 20
CLKIN/SOSCI/OSC1/RA5 2 19
CLKOUT/SOSCO/OSC2/RA4 3 18
MCLR/Vpp/RA3 4 17
RC5 5 16
RC4 6 15
RC3 7 14
RC6 8 13
RC7 9 12
RB7 [l 10 11
Power

] Power Supply

B Ground
I Pin on Vpp Power Domain
[ ] Pin on Vppio, Power Domain

[ ] Pin on Vppios Power Domain

2.3

Figure 2-3.
20-Pin VQFN
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Vss
RAO/ICSPDAT
RAL1/ICSPCLK
RA2

RCO

RC1

Vbpio2

Vopios
RB5

RB6

Functionality

| 4 Programming/Debug
|4 ClockiCrystal
] ’cisMBus-compatible

|4 13C®-compatible
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3.

Pin Allocation Tables

Table 3-1. 14-Pin Allocation Table

1/0

RAO

RA1
RA2
RA3

RA4

RAS

RCOv:®

RC10:®
RC3
RC4
RC5

6
VDD( )

(6)
VDD\OZ

VSS

ouT®

Notes:

1.
2

o & @ W

13

12
I

A/D

ANAO

ANA1
ANA2

ANA4

ANAS5

ANC3
ADACT™

ANC4
ANC5

ADCGRDA
ADCGRDB

Reference

VREF+ (ADC)
VREF- (ADC)

Timers

TUINO®

TOCKI™

T1G®

T1CKI®
T2IN®
TUINT®
T4IN®

TMRO
TU16A
TU16B

16-Bit
PWM/CCP

PWM1ERS™

PWM2ERS®™

CCP2IN®™
PWMIN1®

CCP1IN®
PWMINO™

PWM11
PWM12
PWM21
PWM22
CCP1
CCP2

cwaG

CWGTIN®

CWG1A
CWG1B
CWG1C
CWG1D

CLC

CLCIN3®™
CLCIN2®™
CLCINO®™

CLCIN1®

cLcrtout
cLczout
CLC30UT
CLc4ouT

SCK1m
SDI1®

SS1m

SS1
SCK1
SDO1

SscLiee
SDATGA

—(34)

—(34)

SDA1
SCL1

13C1_SCL®
13C1_SDA®

This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins.

All digital output signals shown in these rows are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options.

This is a bidirectional signal. For normal module operation, the firmware will map this signal to the same pin in both the PPS input and PPS output registers.

CTS2m
RX2M

CTS1™
RX1®M

DTR1
RTS1
TX1
DTR2
RTS2
X2

I0CAO

I0CA1
I0CA2
I0CA3

I0CA4

I0CAS5
10CCO
10CC1
10CC3
10CC4
10CC5

INTO™

INT1®

INT2®

Basic

ICDDAT
ICSPDAT
ICDCLK
ICSPCLK
MCLR
Ver
CLKOUT
SOSCO
0sc2
CLKIN
SOsCl
[eN@

VDD

VDDIOZ

VSS

These pins are configured for I?C logic levels; the SCLx/SDAx signals may be assigned to any of these pins. PPS assignments to the other pins (e.g., RB1) will operate, but input logic levels will be
standard LVBUF/ST as selected by the INLVL register, instead of the I>C specific or SMBus input buffer thresholds.

These pins are configured for 13C° logic levels and are not PPS remappable. MVIO must be enabled on these pins to be compliant with the I3C bus standards.

A 0.1 uF bypass capacitor to V is required on the V,, and Vg, pins.

MVIO pins, powered by V0.

High-voltage tolerant pins.
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Table 3-2. 20-Pin Allocation Table

20-Pi 16-Bi
/0 V%F:\T A/D Reference | Timers Pwﬁn/étcp CWG CLC SPI 12C UART
ICDDAT
RAO 19 16 ANAO — — — — — — — — — I0CAD — (CSPOAT
ICDCLK
(1) p— — — p— —_ R P pa—
RAT 18 15 ANA1 VREF+ (ADC)  TUINO I0CA1 (CSPCLK
RA2 17 14 ANA2 VREF- (ADC)  TOCKI® — CWGTIN®  CLCINO® — — — — I0CA2 INTO® —
RA3 4 1 — — — — — — — — — — I0CA3 — Ll
Ver
CLKOUT
RA4 3 20 ANA4 — TGO — — — — — — — I0CA4 INT1® S0SCO
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This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins.

All digital output signals shown in these rows are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options.
This is a bidirectional signal. For normal module operation, the firmware will map this signal to the same pin in both the PPS input and PPS output registers.

These pins are configured for I°C logic levels; the SCLx/SDAXx signals may be assigned to any of these pins. PPS assignments to the other pins (e.g., RB1) will operate, but input logic levels will be
standard LVBUF/ST as selected by the INLVL register, instead of the I>C specific or SMBus input buffer thresholds.

These pins are configured for I13C° logic levels and are not PPS remappable. MVIO must be enabled on these pins to be compliant with the I3C bus standards.
A 0.1 uF bypass capacitor to V is required on the V,, and V., pins.

MVIO pins, powered by V0.

MVIO pins, powered by V05

High-voltage tolerant pins.



4. Guidelines for Getting Started with PIC18-Q20 Microcontrollers

4.1 Basic Connection Requirements

Getting started with the PIC18-Q20 family of 8-bit microcontrollers requires attention to a minimal
set of device pin connections before proceeding with development.

The following pins must always be connected:

« All Vpp and Vss pins (see the Power Supply Pins section)
* MOCLR pin (see the Master Clear (MCLR) Pin section)

These pins must also be connected if they are being used in the end application:

+ ICSPCLK/ICSPDAT pins used for In-Circuit Serial Programming” (ICSP™) and debugging purposes
(see the In-Circuit Serial Programming (ICSP) Pins section)

+ 0OSCl and OSCO pins when an external oscillator source is used (see the External Oscillator Pins
section)

Additionally, the following pins may be required:
*  Vrert/VRrer- pins are used when external voltage reference for analog modules is implemented

The minimum mandatory connections are shown in the figure below.

Figure 4-1. Recommended Minimum Connections

VDD H:H
R1 s
R2 s ¥

MCLR

PIC®MCU

Key:

C1: 0.1 uF, 20V ceramic (recommended)
R1: 10 kQ (recommended)

R2: 100Q to 470Q (recommended)

C2: 0.1 uF, 20V ceramic (required)

4.2 Power Supply Pins

4.2.1 Decoupling Capacitors
The use of decoupling capacitors on every pair of power supply pins (Vpp, Vpopiox and Vss) is required.

Consider the following criteria when using decoupling capacitors:

+ Value and type of capacitor: A 0.1 uF (100 nF), 10-20V capacitor is recommended. The capacitor
needs to be a low-ESR device, with a resonance frequency in the range of 200 MHz and higher.
Ceramic capacitors are recommended.

+ Placement on the printed circuit board: The decoupling capacitors need to be placed as close to
the pins as possible. It is recommended to place the capacitors on the same side of the board as
the device. If space is constricted, the capacitor can be placed on another layer on the PCB using
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a via; however, ensure that the trace length from the pin to the capacitor is no greater than 0.25
inch (6 mm).

« Handling high-frequency noise: If the board is experiencing high-frequency noise (upward of tens
of MHz), add a second ceramic type capacitor in parallel to the above described decoupling
capacitor. The value of the second capacitor can be in the range of 0.01 pF to 0.001 pF. Place
this second capacitor next to each primary decoupling capacitor. In high-speed circuit designs,
consider implementing a decade pair of capacitances as close to the power and ground pins as
possible (e.g., 0.1 yF in parallel with 0.001 pF).

+ Maximizing performance: On the board layout from the power supply circuit, run the power and
return traces to the decoupling capacitors first and then to the device pins. This ensures that the
decoupling capacitors are first in the power chain. Equally important is to keep the trace length
between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.

4.2.2 Tank Capacitors

On boards with power traces running longer than six inches in length, it is suggested to use a

tank capacitor for integrated circuits, including microcontrollers, to supply a local power source.

The value of the tank capacitor will be determined based on the trace resistance that connects the
power supply source to the device and the maximum current drawn by the device in the application.
In other words, select the tank capacitor that meets the acceptable voltage sag at the device. Typical
values range from 4.7 pF to 47 pF.

4.3 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions: Device Reset and Device Programming

and Debugging. If programming and debugging are not required in the end application, a direct
connection to Vpp may be all that is required. The addition of other components, to help increase
the application’s resistance to spurious Resets from voltage sags, may be beneficial. A typical
configuration is shown in Figure 4-1. Other circuit designs may be implemented, depending on the
application’s requirements.

During programming and debugging, the resistance and capacitance that can be added to the
pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently,
specific voltage levels (Vi and V) and fast signal transitions must not be adversely affected.
Therefore, specific values of R1 and C1 will need to be adjusted based on the application and PCB
requirements. For example, it is recommended that the capacitor, C1, be isolated from the MCLR
pin during programming and debugging operations by using a jumper (Figure 4-2). The jumper is
replaced for normal run-time operations.

Any components associated with the MCLR pin need to be placed within 0.25 inch (6 mm) of the pin.

Figure 4-2. Example of MCLR Pin Connections

\bb "
R1
R2
MCLR
PIC® MCU
JP
% C1
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Notes:

1. R1<10kQ is recommended. A suggested starting value is 10 kQ. Ensure that the MCLR pin V|
and V|_specifications are met.

2. R2<470Q will limit any current flowing into MCLR from the extended capacitor, C1, in the
event of MCLR pin breakdown, due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS).
Ensure that the MCLR pin V|4 and V,_ specifications are met.

4.4  In-Circuit Serial Programming” (ICSP™) Pins

The ICSPCLK and ICSPDAT pins are used for ICSP and debugging purposes. It is recommended
to keep the trace length between the ICSP connector and the ICSP pins on the device as short
as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is
recommended, with the value in the range of a few tens of ohms, not to exceed 100Q.

Pull-up resistors, series diodes and capacitors on the ICSPCLK and ICSPDAT pins are not
recommended as they can interfere with the programmer/debugger communications to the device.
If such discrete components are an application requirement, they need to be removed from the
circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and
timing requirements information in the respective device Flash programming specification for
information on capacitive loading limits as well as pin input voltage high (V,4) and input low (V)
requirements.

For device emulation, ensure that the “Communication Channel Select” pins (i.e., ICSPCLK/ICSPDAT)
programmed into the device match the physical connections for the ICSP to the Microchip
debugger/emulator tool.

4.5 External Oscillator Pins

Many microcontrollers have options for at least two oscillators: A high-frequency primary oscillator
and a low-frequency secondary oscillator.

The oscillator circuit needs to be placed on the same side of the board as the device. Place the
oscillator circuit close to the respective oscillator pins with no more than 0.5 inch (12 mm) between
the circuit components and the pins. The load capacitors have to be placed next to the oscillator
itself, on the same side of the board.

Use a grounded copper pour around the oscillator circuit to isolate it from surrounding circuits. The
grounded copper pour needs to be routed directly to the MCU ground. Do not run any signal traces
or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the
other side of the board where the crystal is placed.

Layout suggestions are shown in the following figure. In-line packages may be handled with a
single-sided layout that completely encompasses the oscillator pins. With fine-pitch packages, it is
not always possible to completely surround the pins and components. A suitable solution is to

tie the broken guard sections to a mirrored ground layer. In all cases, the guard trace(s) must be
returned to ground.

20
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Figure 4-3. Suggested Placement of the Oscillator Circuit

Rev. 30-000059A
41612017

Single-Sided and In-Line Layouts:

Copper Pour Primary Oscillator
(tied to ground) Crystal

DEVICE PINS

Prima
Oscilla{gr

C1

Secondag Oscillator|
(SOSC)

Crystal

SOSC: C2

Fine-Pitch (Dual-Sided) Layouts:

Top Layer Copper Pour
(tied to ground)

Bottom Layer

Copper Pour g
(tied to ground)

0OSCO

C2

Oscillator
Crystal

GND

C1

OscCl

DEVICE PINS

In planning the application’s routing and I/0 assignments, ensure that adjacent PORT pins and other
signals in close proximity to the oscillator are benign (i.e., free of high frequencies, short rise and fall
times, and other similar noise).

For additional information and design guidance on oscillator circuits, refer to these Microchip
application notes, available at the corporate website (www.microchip.com):

«  ANB826, “Crystal Oscillator Basics and Crystal Selection for rfPIC™ and PICmicro” Devices”
«  ANB849, “Basic PICmicro” Oscillator Design”

« AN943, “Practical PICmicro” Oscillator Analysis and Design”

+ AN949, “Making Your Oscillator Work”
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4.6 Unused 1/Os

Unused I/0 pins need to be configured as outputs and driven to a Logic Low state. Alternatively,
connect a 1 kQ to 10 kQ resistor to Vss on unused pins to drive the output to logic low.
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5. Register and Bit Naming Conventions

5.1 Register Names
When there are multiple instances of the same peripheral in a device, the Peripheral Control
registers will be depicted as the concatenation of a peripheral identifier, peripheral instance, and
control identifier. The Control registers section will show just one instance of all the register names
with an ‘X’ in the place of the peripheral instance number. This naming convention may also be
applied to peripherals when there is only one instance of that peripheral in the device to maintain
compatibility with other devices in the family that contain more than one.

5.2 Bit Names

There are two variants for bit names:

+ Short name: Bit function abbreviation
* Long name: Peripheral abbreviation + short name

5.2.1 Short Bit Names

Short bit names are an abbreviation for the bit function. For example, some peripherals are enabled
with the EN bit. The bit names shown in the registers are the short name variant.

Short bit names are useful when accessing bits in C programs. The general format for accessing bits
by the short name is RegisterNamebits.ShortName. For example, the enable bit, ON, in the ADCONO
register can be set in C programs with the instruction ADCONObits.ON = 1.

Short names are not useful in assembly programs because the same name may be used by different
peripherals in different bit positions. When it occurs, during the include file generation, the short

bit name instances are appended with an underscore plus the name of the register where the bit
resides, to avoid naming contentions.

5.2.2 Long Bit Names
Long bit names are constructed by adding a peripheral abbreviation prefix to the short name. The
prefix is unique to the peripheral, thereby making every long bit name unique. The long bit name for
the ADC enable bit is the ADC prefix, AD, appended with the enable bit short name, ON, resulting in
the unique bit name ADON.

Long bit names are useful in both C and assembly programs. For example, in C the ADCONO
enable bit can be set with the ADON = 1 instruction. In assembly, this bit can be set with the BSF
ADCONO, ADON instruction.

5.2.3 Bit Fields
Bit fields are two or more adjacent bits in the same register. Bit fields adhere only to the short bit
naming convention. For example, the three Least Significant bits of the ADCON2 register contain the
ADC Operating Mode Selection bit. The short name for this field is MD and the long name is ADMD.
Bit field access is only possible in C programs. The following example demonstrates a C program
instruction for setting the ADC to operate in Accumulate mode:

ADCON2bits.MD = 0b001;

Individual bits in a bit field can also be accessed with long and short bit names. Each bit is

the field name appended with the number of the bit position within the field. For example, the

Most Significant MODE bit has the short bit name MD2 and the long bit name is ADMD2. The
following two examples demonstrate assembly program sequences for setting the ADC to operate in
Accumulate mode:

MOVLW ~ (1<<MD2 | 1<<MD1)
ANDWEF ADCON2, F
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MOVLW  1<<MDO
IORWF ADCON2,F

BCF ADCON2, ADMD2
BCF ADCON2, ADMD1
BSF ADCONZ2, ADMDO

5.3 Register and Bit Naming Exceptions

5.3.1  Status, Interrupt and Mirror Bits

Status, Interrupt enables, Interrupt flags and Mirror bits are contained in registers that span more
than one peripheral. In these cases, the bit name shown is unique so there is no prefix or short

name variant.
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6. Register Legend

Table 6-1. Register Legend

R Readable bit

W Writable bit

HS Hardware settable bit
HC Hardware clearable bit

S Set only bit

C Clear only bit

u Unimplemented bit, read as ‘0’
1’ Bit value is set

‘0 Bit value is cleared

X Bit value is unknown

u Bit value is unchanged

q Bit value depends on condition
m Bit value is predefined
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7. PIC18 CPU

This family of devices contains a PIC18 8-bit CPU core based on the modified Harvard architecture.
The PIC18 CPU supports:

+ System arbitration which decides memory access allocation depending on user priorities
« Vectored interrupt capability with automatic two-level deep context saving

« 127-level deep hardware stack with overflow and underflow Reset capabilities

+ Support Direct, Indirect, and Relative Addressing modes

+ 8x8 hardware multiplier

Figure 7-1. Family Block Diagram

9 PCLATU|PCLATH

[PCU[PCH[PCL
Program Counter

Data Latch

Data Memory

N Address Latch
128-Level Stack i
Address Latch Data Address
STKPTR I
Program Memory
Data Latch FSR1 Bank
FSR2
inc/dec
Table Latch logic
i g
=1
Q
' Instruction Address @
Instruction Bus Latch Decode @
D'Zi‘&”;?fn" ! State Machine PRODH | PRODL
Control Signals
Control 8x8 Multiply
BITOP

7.1 System Arbitration
The system arbiter resolves memory access between the system level selections (i.e., Main, Interrupt
Service Routine) and peripheral selection (e.g., DMA and Scanner) based on user-assigned priorities.
A block diagram of the system arbiter can be found below. Each of the system level and peripheral
selections has its own priority selection registers. Memory access priority is resolved using the
number written to the corresponding Priority registers, 0 being the highest priority selection and
the maximum value being the lowest priority. All system level and peripheral level selections default
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to the lowest priority configuration. If the same value is in two or more Priority registers, priority is
given to the higher-listed selection according to the following table.

Table 7-1. Default Priorities
System Level ISR 7
MAIN
Peripheral DMA1
DMA2
DMA3
DMA4
SCANNER

NN N NN

Figure 7-2. System Arbiter Block Diagram

Memory Program Flash
CPU Access Scanner I\%Iemo Data EEPROM
NVMCON v
AA A A AA A A
Y \4A 4 Y Y
Priority = System Arbiter
AAA A 4 AAA A 4 AAA A 4 A\ 4
SFR/GRP
DMA 1 DMA2 | .. ... .. DMAnNn SRAM Data

Legend

—— Program Flash Memory Data
Data EEPROM Data

» SFR/GPR Data

7.1.1  Priority Lock

The system arbiter grants memory access to the peripheral selections (DMAX, Scanner) as long as
the PRLOCKED bit is set. Priority selections are locked by setting the PRLOCKED bit. Setting and
clearing this bit requires a special sequence as an extra precaution against inadvertent changes. The
following code examples demonstrate the Priority Lock and Priority Unlock sequences.

Example 7-1. Priority Lock Sequence

INTCONObits.GIE = 0; // Disable Interrupts;

PRLOCK = 0x55;

PRLOCK = 0xAA;

PRLOCKbits.PRLOCKED = 1; // Grant memory access to peripherals;
INTCONObits.GIE = 1; // Enable Interrupts;
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7.2

7.2.1

7.2.2

7.2.3

7.24

7.3

Example 7-2. Priority Unlock Sequence

INTCONObits.GIE = 0; // Disable Interrupts;

PRLOCK = 0x55;

PRLOCK = 0xAA;

PRLOCKbits.PRLOCKED = 0; // Allow changing priority settings;
INTCONObits.GIE = 1; // Enable Interrupts;

Memory Access Scheme

The user can assign priorities to both system level and peripheral selections based on which the
system arbiter grants memory access. Consider the following priority scenarios between ISR, MAIN
and peripherals.

ISR Priority > Main Priority > Peripheral Priority

When the peripheral priority (e.g., DMA, Scanner) is lower than ISR and MAIN priority, and the
peripheral requires:

1. Access to the Program Flash Memory, then the peripheral waits for an instruction cycle in which
the CPU does not need to access the PFM (such as a branch instruction) and uses that cycle to do
its own Program Flash Memory access, unless a PFM Read/Write operation is in progress.

2. Access to the SFR/GPR, then the peripheral waits for an instruction cycle in which the CPU does
not need to access the SFR/GPR (such as MOVLW, CALL, NOP) and uses that cycle to do its own
SFR/GPR access.

3. Access to the Data EEPROM, then the peripheral has access to Data EEPROM unless a Data
EEPROM Read/Write operation is being performed.

This results in the lowest throughput for the peripheral to access the memory and does so without
any impact on execution times.

Peripheral Priority > ISR Priority > Main Priority

When the peripheral priority (DMA, Scanner) is higher than ISR and MAIN priority, the CPU operation
is stalled when the peripheral requests memory. The CPU is held in its current state until the
peripheral completes its operation. This results in the highest throughput for the peripheral to
access the memory, but has the cost of stalling other execution while it occurs.

ISR Priority > Peripheral Priority > Main Priority

In this case, interrupt routines and peripheral operation (DMAX, Scanner) will stall the Main loop.
Interrupt will preempt peripheral operation, which results in lowest interrupt latency.

Peripheral 1 Priority > ISR Priority > Main Priority > Peripheral 2 Priority

In this case, the Peripheral 1 will stall the execution of the CPU. However, Peripheral 2 can access the
memory in cycles unused by Peripheral 1, ISR and the Main Routine.

8x8 Hardware Multiplier

This device includes an 8x8 hardware multiplier as part of the ALU within the CPU. The multiplier
performs an unsigned operation and yields a 16-bit result that is stored in the product register,
PROD. The multiplier's operation does not affect any flags in the STATUS register.

Making multiplication a hardware operation allows it to be completed in a single instruction

cycle. This has the advantages of higher computational throughput and reduced code size for
multiplication algorithms and allows the device to be used in many applications previously reserved
for digital signal processors. A comparison of various hardware and software multiply operations,
along with the savings in memory and execution time, is shown in Table 7-2.
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Table 7-2. Performance Comparison for Various Multiply Operations

Routine Multiply Method Memory y
(Words) | (M2X) | @64MHz | @40 MHz | @ 10 MHz | @ 4 MHz
) Without hardware multiply 69 4.3 ps 6.9 ps 27.6 ps 69 ps
8x8 unsigned i
Hardware multiply 1 1 62.5ns 100 ns 400 ns 1 s
) Without hardware multiply 33 91 5.7 ps 9.1 ps 36.4 s 91 ps
8x8 signed :
Hardware multiply 6 6 375ns 600 ns 2.4 pus 6 ps
Without hardware multiply 21 242 15.1 ps 24.2 ps 96.8 ps 242 ps
16x16 unsigned :
Hardware multiply 28 28 1.8 us 2.8 ps 11.2 ps 28 s
) Without hardware multiply 52 254 15.9 ps 25.4 ys 102.6 s 254 ps
16x16 signed
Hardware multiply 35 40 2.5 us 4.0 ps 16.0 ps 40 ps

7.3.1 Operation

Example 7-3 shows the instruction sequence for an 8x8 unsigned multiplication. Only one
instruction is required when one of the arguments is already loaded in the WREG register. Example
7-4 shows the sequence to do an 8x8 signed multiplication. To account for the sign bits of the
arguments, each argument’s Most Significant bit (MSb) is tested and the appropriate subtractions
are done.

Example 7-3. 8x8 Unsigned Multiply Routine

MOVF ARGl, W  ;

MULWE ARG2 ; ARGl * ARG2 -> PRODH:PRODL

Example 7-4. 8x8 Signed Multiply Routine

MOVEF ARGl, W

MULWE  ARG2 ; ARGl * ARG2 -> PRODH:PRODL
BTFSC ARG2, SB ; Test Sign Bit

SUBWF PRODH, F ; PRODH = PRODH - ARGl

MOVE ARG2, W

BTFSC ARGl, SB ; Test Sign Bit

SUBWF PRODH, F ; PRODH = PRODH - ARG2

7.3.2 16x16 Unsigned Multiplication Algorithm

Example 7-6 shows the sequence to do a 16x16 unsigned multiplication. Example 7-5 shows the
algorithm that is used. The 32-bit result is stored in four registers.

Example 7-5. 16x16 Unsigned Multiply Algorithm

RES3:RESO = ARG1H:ARG1L » ARG2H: ARG2L = (ARGlH e ARG2H o 216) + (ARGlH
e ARG2L o 28) + (AR(;1L e ARG2H o 28) + (ARG1L . ARGZL)

. 29
ﬁ\ MICROCHIP



Example 7-6. 16x16 Unsigned Multiply Routine

MOVF ARGIL, W

MULWE ARG2L ; ARG1L * ARG2L — PRODH:PRODL
MOVFEF PRODH, RES1 ;

MOVFEF PRODL, RESO ;

MOVEF ARGIH, W
MULWF ARG2H
MOVEF PRODH, RES3
MOVFEF PRODL, RES2

ARG1H * ARG2H — PRODH:PRODL

MOVF ARG1L, W

MULWF ARG2H ; ARG1L * ARG2H — PRODH:PRODL
MOVF PRODL, W 2

ADDWF RES1, F ; Add cross products

MOVF PRODH, W g

ADDWFC RES2, F 2

CLRF WREG ;

ADDWFC RES3, F

MOVF ARG1H, W 2

MULWF ARG2L ; ARG1H * ARG2L - PRODH:PRODL
MOVF PRODL, W 2

ADDWF RES1, F ; Add cross products

MOVF PRODH, W g

ADDWFC RES2, F 2

CLRF WREG ;

ADDWFC RES3, F

7.3.3 16x16 Signed Multiplication Algorithm

Example 7-8 shows the sequence to do a 16x16 signed multiply. Example 7-7 shows the algorithm
used. The 32-bit result is stored in four registers. To account for the sign bits of the arguments, the
MSb for each argument pair is tested and the appropriate subtractions are done.

Example 7-7. 16x16 Signed Multiply Algorithm

RES3:RESO = ARG1H:ARG1L » ARG2H: ARG2L = (ARGIH e ARG2H o 216) + (ARGlH
e ARG2L o 28) + (ARG1L e ARG2H o 28) + (ARGIL . ARGZL) + (— 1e ARG2H < 7 >
e ARG1H:ARG1L o 216) + (— 1 ARG1H <7 > ¢ ARG2H:ARG2L » 216)

Example 7-8. 16x16 Signed Multiply Routine

MOVF ARGIL, W
MULW ARG2L ; ARG1L * ARG2L - PRODH:PRODL
MOVEF PRODH, RES1 ;

MOVFEF PRODL, RESO 2

MOVEF ARGIH, W

MULWE ARG2H ; ARG1H * ARG2H - PRODH:PRODL
MOVEF PRODH, RES3 ;

MOVFF PRODL, RES2 ;

MOVF ARG1L, W

MULWF ARG2H ; ARG1L * ARG2H - PRODH:PRODL
MOVF PRODL, W g

ADDWF RES1, F ; Add cross products

MOVF PRODH, W g

ADDWFC RES2, F g

CLRF WREG ;

ADDWFC RES3, F

MOVF ARG1H, W 2
MULWF ARG2L ; ARG1H * ARG2L - PRODH:PRODL
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7.4

74.1

7.4.2

MOVF PRODL, W

ADDWF RES1, F Add cross products

MOVEF PRODH, W
ADDWFC RES2, F
CLRF WREG

ADDWFC RES3, F

BTFSS ARG2H, 7 ARG2H:ARG2L neg?

BRA SIGN_ARG1 ; no, check ARG1
MOVEF ARG1L, W ;
SUBWF RES2 ;
MOVE ARG1H, W ;

SUBWEFB RES3

’

SIGN ARGL:
BTFSS ARG1H, 7 ; ARG1H:ARG1L neg?
BRA CONT_CODE ; no, done
MOVEF ARG2L, W ;
SUBWF RES2 ;
MOVE ARG2H, W ;

SUBWEFB RES3

CONT CODE:

PIC18 Instruction Cycle

Instruction Flow/Pipelining

An “Instruction Cycle” consists of four cycles of the oscillator clock. The instruction fetch and execute
are pipelined in such a manner that a fetch takes one instruction cycle, while the decode and
execute take another instruction cycle. However, due to the pipelining, each instruction effectively
executes in one cycle. If an instruction causes the Program Counter (PC) to change (e.g., GOTO), then
two cycles are required to complete the instruction (Figure 7-3).

A fetch cycle begins with the Program Counter (PC) incrementing followed by the execution cycle.

In the execution cycle, the fetched instruction is latched onto the Instruction Register (IR). This
instruction is then decoded and executed during the next few oscillator clock cycles. Data memory is
read (operand read) and written (destination write) during the execution cycle as well.

Figure 7-3. Instruction Pipeline Flow

’ Tcvo Tevl Tev2 Tevs Tcva ’ Tevs ’
1. MOVLW 55h | Fetch 1 Execute 1
2. MOVWF PORTB Fetch 2 Execute 2
3. BRA Sub_1 Fetch 3 Execute 3
4. BSF PORTA, BITS (Forced NOP) Fetch 4 Flush (NOP)
5. Instruction @ address Sub_1 Fetch Sub_1 |Execute Sub_1

Note: There are some instructions that take multiple cycles to execute. Refer to the “Instruction
Set Summary” section for details.

Instructions in Program Memory

The program memory is addressed in bytes. Instructions are stored as either two bytes, four bytes,
or six bytes in program memory. The Least Significant Byte of an instruction word is always stored in
a program memory location with an even address (LSb = 0). To maintain alignment with instruction
boundaries, the PC increments in steps of two and the LSb will always read ‘0". See the “Program
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743

Counter” section in the “Memory Organization” chapter for more details. The instructions in the
Program Memory figure below shows how instruction words are stored in the program memory.

The cALL and GOTO instructions have the absolute program memory address embedded into the
instruction. Since instructions are always stored on word boundaries, the data contained in the
instruction is a word address. The word address is written to the corresponding bits of the Program
Counter register, which accesses the desired byte address in program memory. Instruction #2 in
the example shows how the instruction GOTO 0006h is encoded in the program memory. Program
branch instructions, which encode a relative address offset, operate in the same manner. The offset
value stored in a branch instruction represents the number of single-word instructions by which the
PC will be offset.

Figure 7-4. Instructions in Program Memory

Word Address

LSB=1 LSB=0
Program Memory 000000h
Byte Locations 000002h
000004h
000006h
Instruction 1:  MOVLW 055h OFh 55h 000008h
Instruction 2:  GOTO 0006h EFh 03h 00000Ah
FOh 00h 00000Ch
Instruction 3:  MOVFF 123h, 456h C1h 23h 00000Eh
F4h 56h 000010h
Instruction 4: MOVFEFL 123h, 456h 00h 60h 000012h
F4h 8Ch 000014h
F4h 56h 000016h
000018h
00001Ah

Multi-Word Instructions

The standard PIC18 instruction set has six two-word instructions: CALL, MOVFF, GOTO, LFSR, MOVSF
and Movss and two three-word instructions: MOVEFL and MOVSFL. In all cases, the second and the
third word of the instruction always has 1111 as its four Most Significant bits; the other 12 bits are
literal data, usually a data memory address.

The use of 1111 in the four MSbs of an instruction specifies a special form of NOP. If the instruction
is executed in proper sequence, immediately after the first word, the data in the second word is
accessed and used by the instruction sequence. If the first word is skipped for some reason and the
second word is executed by itself, a NOP is executed instead. This is necessary for cases when the
two-word instruction is preceded by a conditional instruction that changes the PC.

Table 7-3 and Table 7-4 show more details of how two-word instructions work. Table 7-5 and Table
7-6 show more details of how three-word instructions work.

Important: See the “PIC18 Instruction Execution and the Extended Instruction Set”
section for information on two-word instructions in the extended instruction set.

Table 7-3. Two-Word Instructions (Case 1)

0110 0110 0000 0000 TSTFSZ REG1 ; 1s RAM location 07
1100 0001 0101 0011 MOVFF REG1,REG2 ; No, skip this word
1111 0100 0101 0110 ; Execute this word as NOP
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continued

0010 0100 0000 0000

ADDWF REG3

Table 7-4. Two-Word Instructions (Case 2)

; 1s RAM location 0?

0110
1100
1111
0010

0110
0001
0100
0100

0000 0000
0101 0011
0101 0110
0000 0000

TSTFSZ REG1
MOVFFEF REG1,REG2

ADDWF REG3

Table 7-5. Three-Word Instructions (Case 1)

; 1s RAM location 0°?

0110
0000
1111
1111
0010

0110
0000
0100
0100
0100

0000 0000
0110 0000
1000 1100
0101 0110
0000 0000

TSTFSZ REG1
MOVFFL REG1l,REG2

ADDWF REG3

Table 7-6. Three-Word Instructions (Case 2)

; 1s RAM location 07

0110
0000
1111
1111
0010

0110
0000
0100
0100
0100

0000 0000
0110 0000
1000 1100
0101 0110
0000 0000

7.5 STATUS Register

The STATUS register contains the arithmetic status of the ALU. As with any other SFR, it can be the
operand for any instruction. If the STATUS register is the destination for an instruction that affects
the Z, DC, C, OV or N bits, the results of the instruction are not written; instead, the STATUS register
is updated according to the instruction performed. Therefore, the result of an instruction with the
STATUS register as its destination may be different than intended. As an example, CLRF STATUS will

TSTFSZ REG1
MOVFFL REG1,REG2

ADDWF REG3

’

’

’

’

’

’

’

7

’

’

7

’

’

continue code

; Yes, execute this word

; 2nd word of instruction

continue code

Yes, skip this word

; Execute this word as NOP

Execute this word as NOP

; continue code

; No, execute this word

; 2nd word of instruction

3rd word of instruction

continue code

set the Z bit and leave the remaining Status bits unchanged (‘000u uluu’).

It is recommended that only BCF, BSF, SWAPF, MOVFF and MOVWF instructions are used to alter the
STATUS register, because these instructions do not affect the Z, C, DC, OV or N bits in the STATUS
register. For other instructions that do not affect Status bits, see the instruction set summaries.

7.6 Call Shadow Register
When CALL instruction is used, the WREG, BSR and STATUS are automatically saved in hardware and

Important: The C and DC bits operate as the Borrow and Digit Borrow bits, respectively, in

subtraction.

can be accessed using the WREG_CSHAD, BSR_CSHAD and STATUS_CSHAD registers.
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Important: The contents of these registers need to be handled correctly to avoid
erroneous code execution.

7.7 Register Definitions: System Arbiter
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7.7.1 ISRPR

Name: ISRPR
Address: 0x03A

Interrupt Service Routine Priority Register

Bit 7 6 5 4 3 2 1 0
| | | | | | PR[2:0] |
Access R/W R/W R/W
Reset 1 1 1

Bits 2:0 - PR[2:0] Interrupt Service Routine Priority Selection

111 System Arbiter Priority Level: 7 (Lowest Priority)
110 System Arbiter Priority Level: 6
101 System Arbiter Priority Level: 5
100 System Arbiter Priority Level: 4
011 System Arbiter Priority Level: 3
010 System Arbiter Priority Level: 2
001 System Arbiter Priority Level: 1
000 System Arbiter Priority Level: 0 (Highest Priority)
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7.7.2 MAINPR

Name: MAINPR
Address: 0x039

Main Routine Priority Register

Bit 7 6 5 4 3 2 1 0
| | | | | PR[2:0] |
Access R/W R/W R/W
Reset 1 1 1

Bits 2:0 - PR[2:0] Main Routine Priority Selection

111 System Arbiter Priority Level: 7 (Lowest Priority)
110 System Arbiter Priority Level: 6
101 System Arbiter Priority Level: 5
100 System Arbiter Priority Level: 4
011 System Arbiter Priority Level: 3
010 System Arbiter Priority Level: 2
001 System Arbiter Priority Level: 1
000 System Arbiter Priority Level: 0 (Highest Priority)

@ MICROCHIP



7.7.3 DMAXxPR

Name: DMAXPR
Address:  0x03B,0x03C,0x03D,0x03E

DMAX Priority Register

Bit 7 6 5 4 3 2 1 0
| | | | | PR[2:0] |
Access R/W R/W R/W
Reset 1 1 1

Bits 2:0 - PR[2:0] DMAX Priority Selection

111 System Arbiter Priority Level: 7 (Lowest Priority)
110 System Arbiter Priority Level: 6
101 System Arbiter Priority Level: 5
100 System Arbiter Priority Level: 4
011 System Arbiter Priority Level: 3
010 System Arbiter Priority Level: 2
001 System Arbiter Priority Level: 1
000 System Arbiter Priority Level: 0 (Highest Priority)
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7.7.4 SCANPR

Name: SCANPR
Address: O0xO3F

Scanner Priority Register

Bit 7 6 5 4 3 2 1 0
| | | | | PR[2:0] |
Access R/W R/W R/W
Reset 1 1 1

Bits 2:0 - PR[2:0] Scanner Priority Selection

111 System Arbiter Priority Level: 7 (Lowest Priority)
110 System Arbiter Priority Level: 6
101 System Arbiter Priority Level: 5
100 System Arbiter Priority Level: 4
011 System Arbiter Priority Level: 3
010 System Arbiter Priority Level: 2
001 System Arbiter Priority Level: 1
000 System Arbiter Priority Level: 0 (Highest Priority)
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7.7.5 PRLOCK

Name: PRLOCK
Address: 0x038

Priority Lock Register

Bit 7 6 5 4 3 2 1 0
| | | | | | PRLOCKED |
Access R/W
Reset 0

Bit 0 - PRLOCKED PR Register Lock

1 Priority registers are locked and cannot be written; Peripherals have access to the memory
0 Priority registers can be modified by write operations; Peripherals do not have access to the memory
Important:

1. The PRLOCKED bit can only be set or cleared after the unlock sequence.

2. If the Configuration Bit PRTWAY = 1, the PRLOCKED bit cannot be cleared after it has
been set. A device Reset will clear the bit and allow one more set.
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7.7.6 PROD

Name: PROD
Address: 0x4F3

Timer Register
Product Register Pair

Bit 15 14 13 12 11 10 9 8
| PROD[15:8]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| PRODI7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset X X X X X X X X

Bits 15:0 - PROD[15:0] PROD Most Significant

Notes: The individual bytes in this multibyte register can be accessed with the following register

names:

+ PRODH: Accesses the high byte PROD[15:8]
* PRODL: Accesses the low byte PRODI[7:0]
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7.7.7 STATUS

Name: STATUS
Address: 0x4D8

STATUS Register

Bit 7 6 5 4 3 2 1 0
| | T | PD | N | ov | Z | bDC | C |
Access R R R/W R/W R/W R/W R/W
Reset 1 1 0 0 0 0 0

Bit 6 - TO Time-Out
Reset States: POR/BOR =1
All Other Resets = q

Value Description
1 Set at power-up or by execution of the CLRWDT or SLEEP instruction
0 A WDT time-out occurred

Bit 5 - PD Power-Down
Reset States: POR/BOR =1
All Other Resets = q

VEINS Description
1 Set at power-up or by execution of the CLRWDT instruction
0 Cleared by execution of the SLEEP instruction

Bit 4 - N Negative
Used for signed arithmetic (two's complement); indicates if the result is negative (ALU MSb = 1).
Reset States: POR/BOR =0
All Other Resets =u

Value Description
1 The result is negative
0 The result is positive

Bit 3 - OV Overflow
Used for signed arithmetic (two's complement); indicates an overflow of the 7-bit magnitude, which
causes the sign bit (bit 7) to change state.
Reset States: POR/BOR =0
All Other Resets = u

Value Description
1 Overflow occurred for current signed arithmetic operation
0 No overflow occurred

Bit2-Z Zero

Reset States: POR/BOR =0
All Other Resets = u
Value Description
1 The result of an arithmetic or logic operation is zero
0 The result of an arithmetic or logic operation is not zero

Bit 1 - DC Digit Carry / Borrow
ADDWF, ADDLW, SUBLW, SUBWF instructions("
Reset States: POR/BOR =0
All Other Resets = u
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Value Description

1 A carry-out from the 4th low-order bit of the result occurred
0 No carry-out from the 4th low-order bit of the result

Bit0- C Carry/Borrow
ADDWF, ADDLW, SUBLW, SUBWF instructions(!-2)
Reset States: POR/BOR =0
All Other Resets =u

Value Description

1 A carry-out from the Most Significant bit of the result occurred
0 No carry-out from the Most Significant bit of the result occurred

Notes:

1. For Borrow, the polarity is reversed. A subtraction is executed by adding the two's complement
of the second operand.

2. For Rotate (RRCF, RLCF) instructions, this bit is loaded with either the high or low-order bit of the
Source register.
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7.8 Register Summary - System Arbiter Control

[hddress| — Name [ Bitpos | 7|6 |5 | 4 | 3 | 2 | 1 | o |
7:0

0x38 PRLOCK
0x39 MAINPR 7:0
0x3A ISRPR 7:0
0x3B DMA1PR 7:0
0x3C DMA2PR 7:0
0x3D DMA3PR 7:0
Ox3E DMA4PR 7:0
Ox3F SCANPR 7:0
0x40
Reserved
0x0372
0x0373 STATUS_CSHAD 7:0
0x0374 WREG_CSHAD 7:0
0x0375 BSR_CSHAD 7:0
0x0376 Reserved
0x0377 STATUS_SHAD 7.0
0x0378 WREG_SHAD 7:0
0x0379 BSR_SHAD 7:0
0x037A PCLAT_SHAD 7:0
15:8
0x037C  FSRO_SHAD 70
- 15:8
0x037E FSR1_SHAD 7:0
15:8
0x0380  FSR2_SHAD 70
- 15:8
0x0382 PROD_SHAD 7:0
15:8
0x0384
Reserved
0x04D7
0x04D8 STATUS 7:0
0x04D9
Reserved
0x04F2
0x04F3 PROD 7:0
15:8
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PR[2:0]
PR[2:0]
PR[2:0]
PR[2:0]
PR[2:0]
PR[2:0]
PR[2:0]
TO PD N ov z DC
WREG[7:0]
BSR[5:0]
TO PD N ov z DC
WREG[7:0]
BSR[5:0]
PCLATH[7:0]
PCLATU[4:0]
FSRL[7:0]
FSRH[5:0]
FSRL[7:0]
FSRH[5:0]
FSRL[7:0]
FSRH[5:0]
PRODI[7:0]
PROD[15:8]
TO PD N ov z DC
PRODI[7:0]
PROD[15:8]

PRLOCKED

43



8.2

8.3

8.4

8.5

Device Configuration

Configuration Settings

The Configuration settings allow the user to set up the device with several choices of oscillators,
Resets and memory protection options. These are implemented at 0x300000 - 0x300019.

Important: The DEBUG Configuration bit is managed automatically by device
development tools including debuggers and programmers. For normal device operation,
this bit needs to be maintained as a ‘1.

Enhanced Code Protection

Enhanced code protection allows the device to be protected from unauthorized access. Internal
access to the program memory is unaffected by any code protection setting. The following code
protection configurations are available on this device:

User ID

32 words in the memory space (0x200000 - 0x20003F) are designated as ID locations where the
user can store checksum or other code identification numbers. These locations are readable and
writable during normal execution. See the “User ID, Device ID and Configuration Settings Access,
DIA and DCI” section in the "NVM - Nonvolatile Memory Module" chapter for more information
on accessing these memory locations. For more information on checksum calculation, see the
“PIC18-Q20 Family Programming Specification” (DS40002327).

Device ID and Revision ID
The 16-bit device ID word is located at 0x3FFFFE and the 16-bit revision ID is located at Ox3FFFFC.
These locations are read-only and cannot be erased or modified.

Development tools, such as device programmers and debuggers, may be used to read the Device ID,
Revision ID and Configuration bits. Refer to the “NVM - Nonvolatile Memory Module” chapter for
more information on accessing these locations.

Register Definitions: Configuration Settings
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8.5.1 CONFIG1

Name: CONFIG1
Address: 30 0000h

Configuration Byte 1

Bit 7 6 5 4 3 2 1 0
| | RSTOSC[2:0] | | FEXTOSC[2:0] |
Access R/W R/W R/W R/W R/W R/W
Reset 1 1 1 1 1 1

Bits 6:4 - RSTOSC[2:0] Power-up Default Value for COSC
This value is the Reset default value for COSC and selects the oscillator first used by user software.
Refer to COSC operation.

Value Description

111
110
101
100
011
010
001
000

EXTOSC operating per FEXTOSC bits

HFINTOSC with HFFRQ =4 MHz and CDIV = 4:1. Resets COSC/NOSCtob'110"
LFINTOSC

SOSC

Reserved

EXTOSC with 4x PLL, with EXTOSC operating per FEXTOSC bits

Reserved

HFINTOSC with HFFRQ = 64 MHz and CDIV = 1:1. Resets COSC/NOSCtob'110"'

Bits 2:0 - FEXTOSC[2:0] External Oscillator Mode Selection

111
110
101
100
011
010
001
000

ECH (external clock) above 8 MHz

ECM (external clock) for 500 kHz to 8 MHz
ECL (external clock) below 500 kHz
Oscillator not enabled

HS (crystal oscillator) up to 32 MHz

HS (crystal oscillator) up to 24 MHz

HS (crystal oscillator) up to 16 MHz

HS (crystal oscillator) up to 8 MHz

@ MICROCHIP

45



8.5.2 CONFIG2

Name: CONFIG2
Address: 300001h

Configuration Byte 2

Bit 7 6 5 4 3 2 1 0
| FCMENS | FCMENP [ FCMEN | | CSWEN | BBEN PRTWAY | CLKOUTEN |
Access  R/W R/W RIW R/W R/W R/W R/W
Reset 1 1 1 1 1 1 1

Bit 7 - FCMENS Fail-Safe Clock Monitor Enable - Secondary Oscillator Enable
Value Description
1 Fail-Safe Clock Monitor enabled; the timer will flag the FSCMS bit and OSFIF interrupt on SOSC failure
0 Fail-Safe Clock Monitor disabled

Bit 6 - FCMENP Fail-Safe Clock Monitor Enable - Primary Oscillator Enable

Value Description
1 Fail-Safe Clock Monitor enabled; the timer will flag the FSCMP bit and OSFIF interrupt on EXTOSC failure
0 Fail-Safe Clock Monitor disabled

Bit 5 - FCMEN Fail-Safe Clock Monitor Enable

VEINS Description
1 Fail-Safe Clock Monitor enabled
0 Fail-Safe Clock Monitor disabled

Bit 3 - CSWEN Clock Switch Enable

Value Description
1 Writing to NOSC and NDIV is allowed
0 The NOSC and NDIV bits cannot be changed by user software

Bit 2- BBEN Boot Block Enable(

Value Description
1 Boot Block disabled
0 Book Block enabled

Bit 1 - PRIWAY PRLOCKED One-Way Set Enable

VEINS Description
1 PRLOCKED bit can be cleared and set only once; Priority registers remain locked after one clear/set cycle
0 PRLOCKED bit can be set and cleared repeatedly (subject to the unlock sequence)

Bit 0 - CLKOUTEN Clock Out Enable
If FEXTOSC = 0xx, then this bit is ignored.

Otherwise:
Value Description
1 CLKOUT function is disabled; I/0 or oscillator function on OSC2
0 CLKOUT function is enabled; Fosc/4 clock appears at OSC2
Note:

1. Once protection is enabled through ICSP or a self-write, it can only be reset through a Bulk Erase.
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8.5.3 CONFIG3

Name: CONFIG3
Address: 30 0002h

Configuration Byte 3

Bit 7 6 5 4 3 2 1 0

| BOREN[1:0] | TPBOREN | IVTTWAY | MVECEN | PWRTS[1:0] | MCLRE |
Access  R/W R/W RIW R/W R/W R/W R/W R/W
Reset 1 1 1 1 1 1 1 1

Bits 7:6 - BOREN[1:0] Brown-out Reset Enable
When enabled, Brown-out Reset Voltage (Vgor) is set by the BORV bit.

11 Brown-out Reset enabled, SBOREN bit is ignored

10 Brown-out Reset enabled while running, disabled in Sleep; SBOREN is ignored
01 Brown-out Reset enabled according to SBOREN

00 Brown-out Reset disabled

Bit 5 - LPBOREN Low-Power BOR Enable

Value Description

1 Low-Power Brown-out Reset is disabled
0 Low-Power Brown-out Reset is enabled

Bit 4 - IVTIWAY IVTLOCK One-Way Set Enable

VEINS Description
1 IVTLOCK bit can be cleared and set only once; IVT registers remain locked after one clear/set cycle
0 IVTLOCK bit can be set and cleared repeatedly (subject to the unlock sequence)

Bit 3 - MVECEN Multi-Vector Enable

Value Description
1 Multi-vector is enabled; Vector table used for interrupts
0 Legacy interrupt behavior

Bits 2:1 - PWRTS[1:0] Power-up Timer Selection

Value Description

11 PWRT is disabled

10 PWRT is set at 64 ms
01 PWRT is set at 16 ms
00 PWRT is set at 1 ms

Bit 0 - MCLRE Master Clear (MCLR) Enable

VEIS Condition Description

X If LVP =1 RA3 pin function is MCLR

1 If LVP =0 MCLR pin is MCLR

0 If LVP =0 MCLR pin function is a port defined function
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8.5.4 CONFIG4

Name: CONFIG4
Address: 30 0003h

Configuration Byte 4

Bit 7 6 5 4 3 2 1 0
| XINST | DEBUG | LV | STVREN | PPSTWAY | BORV[1:0] |
Access  R/W R/W RIW R/W R/W R/W R/W
Reset 1 1 1 1 1 1 1

Bit 7 - XINST Extended Instruction Set Enable

1 Extended Instruction Set and Indexed Addressing mode disabled (Legacy mode)
0 Extended Instruction Set and Indexed Addressing mode enabled

Bit 6 - DEBUG Debugger Enable

Value Description
1 Background debugger disabled
0 Background debugger enabled

Bit 5 - LVP Low-Voltage Programming Enable
The LVP bit cannot be written (to zero) while operating from the LVP programming interface. The
purpose of this rule is to prevent the user from dropping out of LVP mode while programming from
LVP mode or accidentally eliminating LVP mode from the Configuration state.

VEINS Description
1 Low-Voltage Programming enabled. MCLR/Vpp pin function is MCLR. The MCLRE Configuration bit is ignored.
0 High Voltage on MCLR/Vpp must be used for programming

Bit 4 - STVREN Stack Overflow/Underflow Reset Enable

Value Description
1 Stack Overflow or Underflow will cause a Reset
0 Stack Overflow or Underflow will not cause a Reset

Bit 3 - PPSTWAY PPSLOCKED One-Way Set Enable

Value Description

1 The PPSLOCK bit can be cleared and set only once after an unlocking sequence is executed; once PPSLOCK is
set, all future changes to PPS registers are prevented

0 The PPSLOCK bit can be set and cleared as needed (unlocking sequence is required)

Bits 1:0 - BORV[1:0] Vpp Domain Brown-out Reset Voltage Selection

11 Brown-out Reset Voltage (VgoR) set to 1.90V
10 Brown-out Reset Voltage (VgoR) set to 2.45V
01 Brown-out Reset Voltage (VgoR) set to 2.7V

00 Brown-out Reset Voltage (VgoR) set to 2.85V
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8.5.5 CONFIG5

Name: CONFIG5
Address: 30 0004h

Configuration Byte 5

Bit 7 6 5 4 3 2 1 0
| | WDTE[1:0] WDTCPS[4:0] |
Access R/W RIW R/W R/W R/W R/W R/W
Reset 1 1 1 1 1 1 1

Bits 6:5 - WDTE[1:0] WDT Operating Mode

Value Description

11 WDT enabled regardless of Sleep; SEN bit in WDTCONO is ignored

10 WDT enabled while Sleep = 0, suspended when Sleep = 1; SEN bit in WDTCONO is ignored
01 WDT enabled/disabled by SEN bit in WDTCONO

00 WDT disabled, SEN bit in WDTCONO is ignored

Bits 4:0 - WDTCPS[4:0] WDT Period Select

WDTCONO[WDTPS] at POR
WDTCPS . . Typical Time Out | Software Control of WDTPS?
Value Divider Ratio (Fin = 31 kHz)

11111 01011 1:65536 216 2s Yes
11110t0 10011 11110t0 10011 1:32 25 1ms No
10010 10010 1:8388608 223 2565 No
10001 10001 1:4194304 222 128s No
10000 10000 1:2097152 221 64s No
01111 01111 1:1048576 220 32s No
01110 01110 1:524288 219 16s No
01101 01101 1:262144 218 8s No
01100 01100 1:131072 2V 4s No
01011 01011 1:65536 216 2s No
01010 01010 1:32768 215 1s No
01001 01001 1:16384 214 512 ms No
01000 01000 1:8192 213 256 ms No
00111 00111 1:4096 212 128 ms No
00110 00110 1:2048 2" 64 ms No
00101 00101 1:1024 210 32ms No
00100 00100 1:512 29 16 ms No
00011 00011 1:256 28 8ms No
00010 00010 1:128 27 4 ms No
00001 00001 1:64 26 2ms No
00000 00000 1:32 2° 1ms No
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8.5.6 CONFIG6

Name: CONFIG6
Address: 30 0005h

Configuration Byte 6

Bit 7 6 5 4 3 2 1 0
| | | WDTCCS[2:0] | WDTCWS[2:0] |
Access RIW R/W R/W R/W R/W R/W
Reset 1 1 1 1 1 1

Bits 5:3 - WDTCCS[2:0] WDT Input Clock Selector

Value Condition Description

x WDTE = 00 These bits have no effect

111 WDTE # 00 Software control

110 to WDTE # 00 Reserved

011

010 WDTE # 00 WDT reference clock is the SOSC

001 WDTE # 00 WDT reference clock is the 32 kHz MFINTOSC
000 WDTE # 00 WDT reference clock is the 31.0 kHz LFINTOSC

Bits 2:0 - WDTCWS[2:0] WDT Window Select

WDTCON1[WINDOW] at POR

_ Software Control of
WDTCWS Window Delay Percent of Window Opening WINDOW
Value . "
Time Percent of Time
n/a

111 111 100 Yes
110 110 n/a 100
101 101 25 75
100 100 37.5 62.5
011 011 50 50 No
010 010 62.5 37.5
001 001 75 25
000 000 87.5 12.5

@ MICROCHIP

Keyed Access Required?

No

Yes

50



8.5.7 CONFIG7

Name: CONFIG7
Address: 30 0006h

Configuration Byte 7

Bit 7 6 5 4 3 2 1 0
| | | | | | VDDIO3MD | VDDIO2MD |
Access R/W R/W
Reset 1 1

Bit 1 - VDDIO3MD Vpp o3 Operating Mode

1 Vppioz is in the Standard Operating Range of 1.62V-5.5V
0 Vppios is in the Low-voltage Operating Range of 0.95V-1.62V

Bit 0 - VDDIO2MD Vpp o, Operating Mode

1 Vppioz is in the Standard Operating Range of 1.62V-5.5V
0 Vppioz is in the Low-voltage Operating Range of 0.95V-1.62V
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8.5.8 CONFIG8

Name: CONFIG8
Address: 300007h

Configuration Byte 8

Bit 7 6 5 4 3 2 1 0
| BBSIZE[7:0] |
Access  R/W R/W R/W R/W RIW R/W R/W R/W
Reset 1 1 1 1 1 1 1 1

Bits 7:0 - BBSIZE[7:0] Boot Block Size Selection(!)

Table 8-1. Boot Block Size

Boot Block Size (words
BBEN BBSIZE End Address of
Boot Block PIC18Fx4Q20 PIC18Fx5Q20 PIC18Fx6Q20
! N/A A

XXXXXXXX

01111111 00 7FFFh N/A 16384
0 01111110 00 7EFFh N/A 16256
0 01000000 00 40FFh N/A 8320
0 00111111 00 3FFFh N/A 8192
0 00111110 00 3EFFh N/A 8064
0 00100000 00 20FFh N/A 4224
0 00011111 00 1FFFh 4096
0 00011110 00 1EFFh 3968
0 00000011 00 03FFh 512
0 00000010 00 02FFh 384
0 00000001 00 O1FFh 256
0 00000000 00 OOFFh 128

Note:

1. BBSIZE[7:0] bits can only be changed when BBEN = 1. Once BBEN = 0, BBSIZE[7:0] can only be
changed through a Bulk Erase.
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8.5.9 CONFIGY9

Name: CONFIG9
Address: 30 0019h

Configuration Byte 9

Bit 7 6 5 4 3 2 1 0
| SAFSZ[7:0] |
Access  R/W R/W R/W R/W RIW R/W R/W R/W
Reset 1 1 1 1 1 1 1 1

Bits 7:0 - SAFSZ[7:0] SAF Block Size Selection(1:2)

Table 8-2. SAF Block Size

SAF Block Size 2
WRTSAF SAFLOCK | SAFSZ[7:0] SAFBulk | SAF Self
PIC18Fx4Q20 | PIC18Fx5Q20 | PIC18Fx6Q20 Erase write

1 1 1111 1111 Storage Area Flash disabled Yes Yes
1 1 1111 1110 Last 128 words of PFM Yes Yes
1 1 1111 110x Last 256 words of PFM Yes Yes
1 1 1111 10xx Last 384 words of PFM Yes Yes
1 1 1111 Oxxx Last 512 words of PFM Yes Yes
1 1 1110 xxxx Last 640 words of PFM Yes Yes
1 1 110x xxxx Last 768 words of PFM Yes Yes
1 1 10xx XXXX Last 896 words of PFM Yes Yes
1 1 0XXX XXXX Last 1024 words of PFM Yes Yes
0 1 1111 1111 Storage Area Flash disabled Yes No
0 1 1111 1110 Last 128 words of PFM Yes No
0 1 1111 110x Last 256 words of PFM Yes No
0 1 1111 10xx Last 384 words of PFM Yes No
0 1 1111 Oxxx Last 512 words of PFM Yes No
0 1 1110 xxxx Last 640 words of PFM Yes No
0 1 110x xxxx Last 768 words of PFM Yes No
0 1 10xx XXXX Last 896 words of PFM Yes No
0 1 0XXX XXXX Last 1024 words of PFM Yes No
x 0 1111 1111 Storage Area Flash disabled No No
x 0 1111 1110 Last 128 words of PFM No No
x 0 1111 110x Last 256 words of PFM No No
x 0 1111 10xx Last 384 words of PFM No No
x 0 1111 0xxx Last 512 words of PFM No No
x 0 1110 xxxx Last 640 words of PFM No No
x 0 110x xxxx Last 768 words of PFM No No
x 0 10xx XXXX Last 896 words of PFM No No
x 0 0XXX XXXX Last 1024 words of PFM No No
Notes:

1. When SAFLOCK = 0, once a SAFSZ bit is programmed to 0 through ICSP or a self-write, it can
never be erased to a ‘1’, not even through a Bulk Erase.

2. When SAFLOCK = 1, once a SAFSZ bit is programmed to 0 through ICSP or a self-write, it can only
be reset though a Bulk Erase.
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8.5.10 CONFIG10

Name: CONFIG10
Address: 30 0008h

Configuration Byte 10

Bit 7 6 5 4 3 2 1 0
| WRTAPP | | | WRTSAF | WRTD WRTC | WRTB |
Access R/W R/W R/W R/W R/W
Reset 1 1 1 1 1

Bit 7 - WRTAPP Application Block Write Protection(V
Value Description
1 Application Block is not write-protected
0 Application Block is write-protected

Bit 3 - WRTSAF Storage Area Flash (SAF) Write Protection(1-3)

Value Description
1 SAF is not write-protected
0 SAF is write-protected

Bit 2- WRTD Data EEPROM Write Protection(

VEINS Description
1 Data EEPROM is not write-protected
0 Data EEPROM is write-protected

Bit 1 - WRTC Configuration Register Write Protection(V)

Value Description
1 Configuration registers are not write-protected
0 Configuration registers are write-protected

Bit 0 - WRTB Boot Block Write Protection (1.2)

Value Description

1 Boot Block is not write-protected
0 Boot Block is write-protected
Notes:
1. Once protection is enabled through ICSP™ or a self-write, it can only be reset through a Bulk
Erase.

Applicable only if BBEN = 0.
Applicable only if Storage Area Flash (SAF) is enabled (SAFSZ # OxFF).
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8.5.11 CONFIG11

Name: CONFIG11
Address: 30 0009h

Configuration Byte 11

Bit 7 6 5 4 3 2 1 0
| | | | | | |
Access R/W
Reset 1

Bit 0 - CP User Program Flash Memory (PFM) Code Protection(?

1 User PFM code protection is disabled
0 User PFM code protection is enabled
Notes:
1. Since device code protection takes effect immediately, this Configuration Byte should be written
last.

2. Once protection is enabled, it can only be reset through a Bulk Erase.
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8.5.12 CONFIG12

Name: CONFIG12
Address: 30 000Ah

Configuration Byte 12

Bit 7 6 5 4 3 2 1 0
| | | | | | _CD |
Access R/W
Reset 1

Bit 0 - CPD Data EEPROM Code Protection(?

1 Data EEPROM code protection is disabled
0 Data EEPROM code protection is enabled
Notes:

1. Since device code protection takes effect immediately, this Configuration Byte will be written last.
2. Once protection is enabled, it can only be reset through a Bulk Erase.
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8.5.13 CONFIG14

Name: CONFIG14
Address: 300018h

Configuration Byte 14

Bit 7 6 5 4 3 2 1 0
| | | | | | SAFLOCK |
Access R/W
Reset 1

Bit 0 - SAFLOCK SAF Lock Enable(™

1 SAF Lock disabled
0 SAF Lock enabled; SAF areas are locked, SAFSZ bits can only be set to ‘0" but cannot be erased to ‘1’
A\ CAUTION

1. This is a one-way bit. Once cleared it cannot be set again. Reset through Bulk Erase and
self-erase are also not possible.
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8.6 Register Summary - Configuration Settings

pdress) ) Name  sithos L7 L e L s L L s L2 Lo

0300000h CONFIG1 RSTOSC[2:0] FEXTOSC[2:0]
0300001h CONFIG2 7.0 FCMENS FCMENP FCMEN CSWEN BBEN PR1WAY CLKOUTEN
0300002h CONFIG3 7:0 BOREN[1:0] LPBOREN IVTTWAY MVECEN PWRTS[1:0] MCLRE
0300003h CONFIG4 7:0 XINST DEBUG LVP STVREN PPSTWAY BORVI[1:0]
0300004h CONFIG5 7:0 WDTE[1:0] WDTCPS[4:0]
0300005h CONFIG6 7:0 WDTCCS[2:0] WDTCWSI[2:0]
0300006h CONFIG7 7:0 VDDIO3MD  VDDIO2MD
0300007h CONFIG8 7:0 BBSIZE[7:0]
0300008h CONFIG10 7:0 WRTAPP WRTSAF WRTD WRTC WRTB
0300009h CONFIG11 7:0 CcP
030000Ah CONFIG12 7:0 CPD
030000Bh

Reserved
0300017h
0300018h CONFIG14 7:0 SAFLOCK
0300019h CONFIGY 7:0 SAFSZ[7:0]

8.7 Register Definitions: Device ID and Revision ID
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8.7.1 Device ID

Name: DEVICEID
Address: Ox3FFFFE

Device ID Register

Bit 15 14 13 12 11 10 9 8

| DEV[15:8] |
Access R R R R R R R R
Reset q q q q q q q q
Bit 7 6 5 4 3 2 1 0

| DEV[7:0] |
Access R R R R R R R R
Reset q q q q q q q q

Bits 15:0 - DEV[15:0] Device ID

PIC18F04Q20 7AEOh
PIC18F05Q20 7AAOh
PIC18F06Q20 7A60h
PIC18F14Q20 7ACOh
PIC18F15Q20 7A80h
PIC18F16Q20 7A40h
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8.7.2 Revision ID

Name: REVISIONID
Address: Ox3FFFFC

Revision ID Register

Bit 15 14 13 12 11 10 9
| 1010[3:0] | MJRREV[5:2]
Access R R R R R R
Reset 1 0 1 0 q q q
Bit 7 6 5 4 3 2 1
| MJRREV[1:0] | MNRREV[5:0]
Access R R R R R R R
Reset q q q q q q q

Bits 15:12 - 1010[3:0] Read as ‘b1010
These bits are fixed with value *b1010 for all devices in this family.

Bits 11:6 - MJRREV[5:0] Major Revision ID
These bits are used to identify a major revision (AQ, BO, CO, etc.).
Revision A= *b00 0000
Revision B= ‘b00 0001

Bits 5:0 - MNRREV[5:0] Minor Revision ID
These bits are used to identify a minor revision.
Revision AO = *‘b00 0000
Revision BO = ‘b00 0000
Revision B1 = ‘b00 0001

Tip: For example, the REVISIONID register value for revision B1 will be 0xA041.
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8.8 Register Summary - DEVID/REVID

Chddress|—Name Loitpos] 7 | 6|5 | 4 |5 | |5

7:0 MJRREV[1:0] MNRREV[5:0]
Ox3FFFFC REVISIONID
X 15:8 1010[3:0] MJRREV[5:2]
7:0 DEV[7:0]
OX3FFFFE DEVICEID
15:8 DEV[15:8]
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9.1

Memory Organization
There are three types of memory in PIC18 microcontroller devices:

* Program Memory

+ Data RAM

+ Data EEPROM

In Harvard architecture devices, the data and program memories use separate buses that allow for

concurrent access of the two memory spaces. The data EEPROM, for practical purposes, can be
regarded as a peripheral device, since it is addressed and accessed through a set of control registers.

Additional detailed information on the operation of the Program Flash Memory and data EEPROM
memory is provided in the “NVM - Nonvolatile Memory Module” section.

Program Memory Organization

PIC18 microcontrollers implement a 21-bit Program Counter, which is capable of addressing a 2
Mbyte program memory space. Accessing a location between the upper boundary of the physically
implemented memory and the 2 Mbyte address will return all ‘0's (a NOP instruction).

Refer to the following tables for device memory maps and code protection Configuration bits
associated with the various sections of PFM.

The Reset vector address is at 000000h. The PIC18-Q20 devices feature a vectored interrupt
controller with a dedicated interrupt vector table stored in the program memory. Refer to the “VIC -
Vectored Interrupt Controller Module” chapter for more details.
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Figure 9-1. Program and Data Memory Map

Device
Address
PIC18Fx4Q20 PIC18Fx5Q20 PIC18Fx6Q20
00 0000h Program Flash Memory
00 ;gFFh (8KwW)® Program Flash
Memory
00 4000h (16 Kw)® Program Flash
to Memory
00 7FFFh (32 kw)®
00 8000h
to
00 FFFFh Not
(2)
01 (:200[1 Present Not
2,
01 FFFFh Present® Not
02 0000h Present®
to
1F FFFFh
20 0000h
to User IDs (32 Words)®
20 003Fh
20 0040h
to Reserved
2B FFFFh
2C 0000h
to Device Information Area (DIA)®®
2C 00FFh
2C 0100h
to Reserved
2F FFFFh
30 0000h
to Configuration Bytes®
30 0019h
30 001Ah
to Reserved
37 FFFFh
38 0000h
to Data EEPROM (256 Bytes)
38 00FFh
38 0100h
to Reserved
3B FFFFh
3C 0000h
to Device Configuration Information®*®
3C 0008h
3C 0009h
to Reserved
3F FFFBh
3F FFFCh
to Revision ID (1 Word)®*®
3F FFFDh
3F FFFEh
to Device ID (1 Word)®*9
3F FFFFh
Note 1: A configurable Storage Area Flash is implemented as part of the User Flash, if enabled.
2: The addresses do not roll over. The region is read as ‘0’.
3: Not code-protected.
4. Hard-coded in silicon.
5: This region cannot be written by the user and it's not affected by a Bulk Erase.

9.1.1 Memory Access Partition

In the PIC18-Q20 devices, the program memory can be further partitioned into the following sub-

blocks:
+ Application block
+ Boot block

+ Storage Area Flash (SAF) block

Refer to the "Program Flash Memory Partition" table for more details.
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9.1.1.1 Application Block

Application block is where the user’s firmware resides by default. Default settings of the
Configuration bits (BBEN = 1 and SAFSZ = 0xFF) assign all memory in the program Flash memory
area to the application block. The WRTAPP Configuration bit is used to write-protect the application
block.

9.1.1.2 Boot Block

Boot block is an area in program memory that is ideal for storing bootloader code. Code placed in
this area can be executed by the CPU. The boot block can be write-protected, independent of the
main application block. The Boot Block is enabled by the BBEN Configuration bit and size is based on
the value of the BBSIZE Configuration bits. The WRTB Configuration bit is used to write-protect the
Boot Block.

9.1.1.3 Storage Area Flash

Storage Area Flash (SAF) is the area in program memory that can be used as data storage. The SAF
block size is configurable using the SAFSZ configuration bits. Refer to the "Device Configuration"
chapter for more information about the available SAF block size selections using the SAFSZ
configuration bits. If enabled, the code placed in this area cannot be executed by the CPU. The
SAF block is placed at the end of memory and the size of this area is dependent on the SAF Block
Size Selection configuration bits.

The WRTSAF Configuration bit is used to write-protect the SAF and the SAFLOCK Configuration bit is
used to make the SAF one-time programmable. Enabling the SAFLOCK bit makes the selected SAF
size write-protected regardless of the WRTSAF bit setting.

Important: If write-protected locations are written to, memory is not changed and the
WRERR bit is set.

Table 9-1. Program Flash Memory Partition

Region Address BBEN =1 BBEN =1 BBEN =0 BBEN =0
SAFSZ = 0xFF SAFSZ # OxFF SAFSZ = OxFF SAFSZ # 0xFF

00 0000h

Last B.o.c;t. Block Boot Block Boot Block
Memory Address(!
Last Boot Block
Memory+A1ddress(1) Application Block

Program Flash e _
Iélemory Last Program Application Block

Memory Address
@) / Beginning of
SAF Block - 1

Application Block

Application Block

Beginning of SAF
Block®
Storage Area Flash Storage Area Flash

Last Program Block Block

Memory Address(?
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Notes:
1. Last Boot Block address is based on BBSIZE Configuration bits.

2. Last Program Memory address is based on "Program and Data Memory Map" table above, as
well as the SAFSZ Configuration bits.

3. Refer to the “Device Configuration” chapter for BBEN, BBSIZE and SAFSZ definitions.

A configurable Storage Area Flash block is implemented at the end of user Flash memory, if
enabled, and its size is selected using the SAFSZ Configuration bits.

9.1.2 Program Counter

The Program Counter (PC) specifies the address of the instruction to fetch for execution. The PC

is 21 bits wide and is contained in three separate 8-bit registers. The low byte, known as the PCL
register, is both readable and writable. The high byte, or PCH register, contains the PC[15:8] bits; it
is not directly readable or writable. Updates to the PCH register are performed through the PCLATH
register. The upper byte is called PCU. This register contains the PC[20:16] bits; it is also not directly
readable or writable. Updates to the PCU register are performed through the PCLATU register.

The contents of PCLATH and PCLATU are transferred to the Program Counter by any operation that
writes PCL. Similarly, the upper two bytes of the Program Counter are transferred to PCLATH and
PCLATU by an operation that reads PCL. This is useful for computed offsets to the PC (see the
Computed GOTO section).

The PC addresses bytes in the program memory. To prevent the PC from becoming misaligned with
word instructions, the Least Significant bit of PCL is fixed to a value of ‘0". The PC increments by two
to address sequential instructions in the program memory.

The CALL, RCALL, GOTO and program branch instructions write to the Program Counter directly. For
these instructions, the contents of PCLATH and PCLATU are not transferred to the Program Counter.

9.1.3 Return Address Stack

The return address stack allows any combination of up to 127 program calls and interrupts to occur.
The PC is pushed onto the stack when a CALL or RCALL instruction is executed or an interrupt is
Acknowledged. The PC value is pulled off the stack on a RETURN, RETLW or a RETFIE instruction.
PCLATU and PCLATH are not affected by any of the RETURN or CALL instructions.

The Stack Pointer is readable and writable and the address on the top of the stack is readable and
writable through the Top-of-Stack (TOS) Special File registers. Data can also be pushed to or popped
from the stack using these registers.

A CALL type instruction causes a push onto the stack; the Stack Pointer is first incremented and
the location pointed to by the Stack Pointer is written with the contents of the PC (already pointing
to the instruction following the CALL). A RETURN type instruction causes a pop from the stack; the
contents of the location pointed to by the STKPTR are transferred to the PC and then the Stack
Pointer is decremented.

The Stack Pointer is initialized to 0x00 after all Resets.

9.1.3.1 Top-of-Stack Access

Only the top of the return address stack (TOS) is readable and writable. A set of three registers,
TOSU:TOSH:TOSL, hold the contents of the stack location pointed to by the STKPTR register (see
Figure 9-2). This allows users to implement a software stack if necessary. After a CALL, RCALL or
interrupt, the software can read the pushed value by reading the TOSU:TOSH:TOSL registers. These
values can be placed on a user defined software stack. At return time, the software can return these
values to TOSU:TOSH:TOSL and do a return.

The user must disable the Global Interrupt Enable (GIE) bits while accessing the stack to prevent
inadvertent stack corruption.
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Figure 9-2. Return Address Stack and Associated Registers

Return Address Stack <20:0>

1111111
1111110
1111101
[ ] [ ]
* ° STKPTR<6: 0>

Top-of-Stack Registers ° ° .

0000010
TOSU TOSH TOSL . .
[ ooh | [ 1An | [ 34h || o o
0000011

——» Top-of-Stack 001A34h 0000010 -————

000D58h 0000001

0000000

9.1.3.2 Return Stack Pointer
The STKPTR register contains the Stack Pointer value. The Stack Overflow (STKOVF) Status bit and
the Stack Underflow (STKUNF) Status bit can be accessed using the PCONO register. The value of the
Stack Pointer can be zero through 127. On Reset, the Stack Pointer value will be zero. The user may
read and write the Stack Pointer value. After the PC is pushed onto the stack 128 times (without
popping any values off the stack), the STKOVF bit is set. The STKOVF bit is cleared by software or by
a POR. The action that takes place when the stack becomes full depends on the state of the Stack
Overflow Reset Enable (STVREN) Configuration bit.

If STVREN is set (default), a Reset will be generated and a Stack Overflow will be indicated by the
STKOVF bit. This includes cALL and CALLW instructions, as well as stacking the return address during
an interrupt response. The STKOVF bit will remain set and the Stack Pointer will be set to zero.

If STVREN is cleared, the STKOVF bit will be set on the 128™ push and the Stack Pointer will remain at
127, but no Reset will occur. Any additional pushes will overwrite the 1275t push, but the STKPTR will
remain unchanged.

Setting STKOVF = 1 in software will change the bit but will not generate a Reset.

The STKUNF bit is set when a stack pop returns a value of ‘0’. The STKUNF bit is cleared by software
or by POR. The action that takes place when the stack becomes full depends on the state of the
Stack Overflow Reset Enable (STVREN) Configuration bit.

If STVREN is set (default) and the stack has been popped enough times to unload the stack, the next
pop will return a value of ‘0" to the PC, it will set the STKUNF bit, and a Reset will be generated. This
condition can be generated by the RETURN, RETLW and RETFIE instructions.

If STVREN is cleared, the STKUNF bit will be set, but no Reset will occur.

Important: Returning a value of ‘0’ to the PC on an underflow has the effect of
vectoring the program to the Reset vector, where the stack conditions can be verified and
appropriate actions can be taken. This is not the same as a Reset, as the contents of the
SFRs are not affected.

9.1.3.3 PUSH and POP Instructions

Since the Top-of-Stack is readable and writable, the ability to push values onto the stack and pull
values off the stack without disturbing normal program execution is a desirable feature. The PIC18
instruction set includes two instructions, PUSH and POP, that permit the TOS to be manipulated
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9.1.3.4

9.14

9.1.4.1

under software control. TOSU, TOSH and TOSL can be modified to place data or a return address on
the stack.

The pUSH instruction places the current PC value onto the stack. This increments the Stack Pointer
and loads the current PC value onto the stack.

The pOP instruction discards the current TOS by decrementing the Stack Pointer. The previous value
pushed onto the stack then becomes the TOS value.

Fast Register Stack

There are three levels of fast stack registers available - one for CALL type instructions and two for
interrupts. A fast register stack is provided for the STATUS, WREG and BSR registers, to provide a
“fast return” option for interrupts. It is loaded with the current value of the corresponding register
when the processor vectors for an interrupt. All interrupt sources will push values into the stack
registers. The values in the registers are then loaded back into their associated registers if the
RETFIE, FAST instruction is used to return from the interrupt. Refer to the “Call Shadow Register”
section for interrupt call shadow registers.

The following example shows a source code example that uses the Fast Register Stack during a
subroutine call and return.

Example 9-1. Fast Register Stack Code Example

CALL SUB1, FAST ;STATUS, WREG, BSR SAVED IN FAST REGISTER STACK

SUB1:

RETURN, FAST ;RESTORE VALUES SAVED IN FAST REGISTER STACK

Look-up Tables in Program Memory

There may be programming situations that require the creation of data structures, or Look-up
Tables, in program memory. For PIC18 devices, Look-up Tables can be implemented in two ways:
+ Computed GOTO

+ Table reads

Computed GOTO

A computed GOTO is accomplished by adding an offset to the Program Counter. An example is
shown in the following code example.

A Look-up Table can be formed with an ADDWF PCL instruction and a group of RETLW nn
instructions. The W register is loaded with an offset into the table before executing a call to that
table. The first instruction of the called routine is the ADDWF PCL instruction. The next instruction
executed will be one of the RETLW nn instructions that returns the value ‘nn’ to the calling function.

The offset value (in WREG) specifies the number of bytes that the Program Counter will advance and
must be multiples of two (LSb = 0).

In this method, only one data byte may be stored in each instruction location and room on the
return address stack is required.

Example 9-2. Computed GOTO Using an Offset Value

RLNCF OFFSET, W ; W must be an even number, Max OFFSET = 127

CALL TABLE

ORG nn00h ; 00 in LSByte ensures no addition overflow
TABLE:

ADDWF PCL ; Add OFFSET to program counter
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RETLW A ; Value @ OFFSET=0
RETLW B ; Value @ OFFSET=1
RETLW c ; Value @ OFFSET=2

9.1.4.2 Program Flash Memory Access

A more compact method of storing data in program memory allows two bytes of data to be stored in
each instruction location.

Look-up Table data may be stored two bytes per program word by using table reads and writes.

The Table Pointer (TBLPTR) register specifies the byte address and the Table Latch (TABLAT) register
contains the data that are read from or written to program memory. Data are transferred to or from
program memory one byte at a time.

Table read and table write operations are discussed further in the “Table Read Operations” and
“Table Write Operations” sections in the “NVM - Nonvolatile Memory Module” chapter.

9.2 Device Information Area

The Device Information Area (DIA) is a dedicated region in the program memory space. The DIA
contains the calibration data for the internal temperature indicator module, the Microchip Unique
Identifier words, and the Fixed Voltage Reference voltage readings measured in mV.

The complete DIA table is shown below, followed by a description of each region and its
functionality. The data are mapped from 2C0000h to 2C003Fh. These locations are read-only and
cannot be erased or modified. The data are programmed into the device during manufacturing.

Table 9-2. Device Information Area

MUIO
MUI1
MUI2
MUI3

2C0000n-2C0011h MUI4 Microchip Unique Identifier (9 Words)
MUI5
MUl6
MUI7
MUI8

2C0012h-2C0013h MUI9 Reserved (1 Word)
EUIO
EUIN
EUI2

2C0014h-2C0023h Es:j Optional External Unique Identifier (8 Words)
EUI5
EUI6
EUI7

2C0024h-2C0025h TSLR1(M Gain = 216X 256 (1,y range setting)

2C0026h-2C0027h TSLR2(M Temperature indicator ADC reading at 90°C (low range setting)
2C0028h-2C0029h TSLR3(M Offset (low range setting)

0.1C x 256 (

2C002Ah-2C002Bh TSHR1@ Gain =
count

high range setting)
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9.2.1

9.2.2

9.2.3

........... continued

Address Range Name of Region Standard Device Information

2C002Ch-2C002Dh TSHR2(2) Temperature indicator ADC reading at 90°C (high range setting)
2C002Eh-2C002Fh TSHR3( Offset (high range setting)
2C0030h-2C0031h FVRA1X ADC FVR1 Output voltage for 1x setting (in mV)
2C0032h-2C0033h FVRA2X ADC FVR1 Output Voltage for 2x setting (in mV)
2C0034h-2C0035h FVRA4X ADC FVR1 Output Voltage for 4x setting (in mV)
2C0036h-2C0037h FVRC1X Comparator FVR2 output voltage for 1x setting (in mV)
2C0038h-2C0039h FVRC2X Comparator FVR2 output voltage for 2x setting (in mV)
2C003Ah-2C003Bh FVRC4X Comparator FVR2 output voltage for 4x setting (in mV)
2C003Ch-2C003Fh Unassigned (2 Words)

Notes:

1. TSLR: Address 2C0024h-2C0029h store the measurements for the low range setting of the temperature sensor at Vpp =
3V, Vggrt = 2.048V from FVR1.

2. TSHR: Address 2C002Ah-2C002Fh store the measurements for the high range setting of the temperature sensor at Vpp
=3V, Vgget = 2.048V from FVR1.

Microchip Unique Identifier (MUI)

This family of devices is individually encoded during final manufacturing with a Microchip Unique
Identifier (MUI). The MUI cannot be user-erased. This feature allows for manufacturing traceability
of Microchip Technology devices in applications where this is required. It may also be used by the
application manufacturer for a number of functions that require unverified unique identification,
such as:

« Tracking the device
« Unique serial number

The MUI is stored in read-only locations, located between 2C0000h to 2C0013h in the DIA space. The
DIA table lists the addresses of the identifier words.

Important: For applications that require verified unique identification, contact the
Microchip Technology sales office to create a Serialized Quick Turn Programming option.

External Unique Identifier (EUI)

The EUI data are stored at locations 2C0014h-2C0023h in the program memory region. This region
is an optional space for placing application specific information. The data are coded per customer
requirements during manufacturing. The EUI cannot be erased by a Bulk Erase command.

Important: Data are stored in this address range on receiving a request from the
customer. The customer may contact the local sales representative or Field Applications
Engineer and provide them the unique identifier information that is required to be stored
in this region.

Standard Parameters for the Temperature Sensor

The purpose of the temperature indicator module is to provide a temperature-dependent voltage
that can be measured by an analog module. The DIA table contains standard parameters for the
temperature sensor for low and high range. The values are measured during test and are unique to
each device. The calibration data can be used to plot the approximate sensor output voltage, Vrsense
vs. Temperature curve. The “Temperature Indicator Module” chapter explains the operation of the
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9.24

9.3

Temperature Indicator module and defines terms such as the low range and high range settings of
the sensor.

Fixed Voltage Reference Data

The DIA stores measured FVR voltages for this device in mV for different buffer settings of 1x, 2x
or 4x at program memory locations. For more information on the FVR, refer to the “FVR - Fixed
Voltage Reference” chapter.

Device Configuration Information

The Device Configuration Information (DCI) is a dedicated region in the program memory mapped
from 3C0000h to 3C0009h. The data stored in these location is read-only and cannot be erased.
Refer to the table below for the complete DCl table address and description. The DCI holds
information about the device, which is useful for programming and Bootloader applications.

The erase size is the minimum erasable unit in the PFM, expressed as rows. The total device Flash
memory capacity is (Erase size * Number of user-erasable pages).

Table 9-3. Device Configuration Information for PIC18FxxQ20 Devices

Address Description Units
PIC18F04/14Q20 PIC18F05/15Q20 PIC18F06/16Q20

3C 0000h ERSIZ Erase page size 128 Words

Number of write

3C 0002h WLSIZ 0 Words

latches per row

Number of user-

3C 0004h URSIZ 64 128 256 Pages

erasable pages
Data EEPROM

3C 0006h EESIZ 256 Bytes

memory size

3C 0008h PCNT Pin count 14/20 14/20 14/20 Pins

9.4

Data Memory Organization

Important: The operation of some aspects of data memory are changed when the PIC18
extended instruction set is enabled. See the PIC18 Instruction Execution and the Extended
Instruction Set section for more information.

The data memory in PIC18 devices is implemented as static RAM. The memory space is divided
into as many as 64 banks with 256 bytes each. The Data Memory Map table below shows the data
memory organization for all devices in the device family.

The data memory contains Special Function Registers (SFRs) and General Purpose Registers (GPRs).
The SFRs are used for control and status of the controller and peripheral functions, while GPRs

are used for data storage and scratchpad operations in the user’s application. Any read of an
unimplemented location will read as ‘0'.

The value in the Bank Select Register (BSR) determines which bank is being accessed. The instruction
set and architecture allow operations across all banks. The entire data memory may be accessed

by Direct, Indirect or Indexed Addressing modes. Addressing modes are discussed later in this
subsection.

To ensure that commonly used registers (SFRs and select GPRs) can be accessed in a single cycle,
PIC18 devices implement an Access Bank. This is a virtual 256-byte memory space that provides fast
access to SFRs and the top half of GPR Bank 5 without using the Bank Select Register. The Access
Bank section provides a detailed description of the Access RAM.
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Figure 9-3. Data Memory Map

Bank | _ BSR | aqdi70] PIC18F
addr[13:8] x4Q20 | x5Q20 | x6Q20
0 'b00 0000 [ Ox00-OxFF
1 | 'b00 0001 | OX00-OXFF
2 | 'boo 0010 | Ox00-OXFF
3 | 'b00 0011 | OX00-OXFF
4 |b00 0100 | 0x00-0x5F
'b00 0100 | OX60-OXFF
g | 'b00 0101 | 0X00-OX5F
'b00 0101 | OX60-OXFF
6 | 'b00 0110 | Ox00-OXFF
7 | 'b00 0111 | OX00-OXFF
8 | 'b00 1000 | OX00-OXFF
9 | 'boo 1001 | Ox00-OXFF
10 | 'b00 1010 | OX00-OXFF
11 | 'b00 1011 | OX00-OxFF
12 | 'b00 1100 | OX00-OXFF
13 | 'b00 1101 | OX00-OXFF
14 | 'b00 1110 | OX00-OXFF
15 | 'b00 1111 | OX00-OXFF
16 | 'b01 0000 [ OX00-OXFF
17 | 'b01 0001 | OX00-OxFF
18 | 'b01 0010 | OX00-OXFF
19 | 'bo1 0011 | OX00-OxFF
20 | 'b01 0100 | OX00-OXFF
21 | 'b01 0101 | OX00-OxFF
22 | 'b01 0110 | OX00-OXFF
23 | 'b01 0111 | OX00-OXFF
24 | 'b01 1000 | OX00-OXFF
25 | 'b01 1001 | OX00-OxFF
26 | 'b01 1010 | OX00-OXFF
27 | 'b01 1011 | OX00-OXFF
28 | 'b01 1100 | OX00-OXFF
29 | 'b01 1101 | OX00-OXFF
30 | 'b01 1110 | OX00-OXFF
31 | 'b01 1111 | OX00-OxFF
32 | 'b10 0000 | OX00-OXFF
33 | 'b10 0001 | OX00-OxFF
34 'b10 0010 | OX00-OxFF
35 | 'b10 0011 | OX00-OxFF
36 | 'b10 0100 | OX00-OXFF
37 | 'b10 0101 | OX00-OxFF
38 | 'b10 0110 | OX00-OXFF
to - -
63 | 'b11 1111 | OX00-OxFF
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Virtual Access Bank
Access RAM 0x00-0x5F
0x60-0xFF

GPR

Buffer RAM
Unimplemented
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9.4.1 Bank Select Register

To rapidly access the RAM space in PIC18 devices, the memory is split using the banking scheme.
This divides the memory space into contiguous banks of 256 bytes each. Depending on the
instruction, each location can be addressed directly by its full address or by an 8-bit low-order
address and a bank pointer.

Most instructions in the PIC18 instruction set make use of the bank pointer known as the Bank
Select Register (BSR). This SFR holds the Most Significant bits of a location’s address; the instruction
itself includes the eight Least Significant bits. The BSR can be loaded directly by using the MOVLB
instruction.

The value of the BSR indicates the bank in data memory being accessed; the eight bits in the
instruction show the location in the bank and can be thought of as an offset from the bank’s lower
boundary. The relationship between the BSR’s value and the bank division in data memory is shown
in Figure 9-4.

When writing the firmware in assembly, the user must ensure that the proper bank is selected
before performing a data read or write. When using the C compiler to write the firmware, the BSR is
tracked and maintained by the compiler.

While any bank can be selected, only those banks that are actually implemented can be read or
written to. Writes to unimplemented banks are ignored, while reads from unimplemented banks will
return ‘0". Refer to Figure 9-3 for a list of implemented banks.

Figure 9-4. Use of the Bank Select Register (Direct Addressing)

Rev. 300001088
0212812019

BSR(M Data Memory From Opcode
! 0 0000h 00h 7 0
Bank 0
[ofofofofofo]1]0] een 2] 22 2] 2] 2] 2] ]
00h
Bank 1 N
Bank Select FFh
0200h 00h
Bank 2
FFh <
0300h
Bank 3
through J
A Bank61 <~
3E00h 00h
Bank 62
FFh
3F00h 00h
Bank 63
3FFFh FFh

Note 1: The Access RAM bit of the instruction can be used to force an override of the selected bank (BSR value) to
the registers of the Access Bank.

9.4.2 Access Bank

While the use of the BSR with an embedded 8-bit address allows users to address the entire range of
data memory, it also means that the user must ensure that the correct bank is selected. Otherwise,
data may be read from or written to the wrong location. Verifying and/or changing the BSR for each
read or write to data memory can become inefficient.

To streamline access for the most commonly used data memory locations, the data memory is
configured with a virtual Access Bank, which allows users to access a mapped block of memory
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9.5

9.5.1

9.5.2

without specifying a BSR. The Access Bank consists of the first 96 bytes of memory in Bank 5
(0500n-055Fh) and the last 160 bytes of memory in Bank 4 (0460h-04FFh). The upper half is
known as the “Access RAM"” and is composed of GPRs. The lower half is where the device's SFRs
are mapped. These two areas are mapped contiguously as the virtual Access Bank and can be
addressed in a linear fashion by an 8-bit address (see the Data Memory Map section).

The Access Bank is used by core PIC18 instructions that include the Access RAM bit (the ‘a’ parameter
in the instruction). When ‘@’ is equal to ‘1, the instruction uses the BSR and the 8-bit address
included in the opcode for the data memory address. When ‘a’ is ‘0’, the instruction ignores the BSR
and uses the Access Bank address map.

Using this “forced” addressing allows the instruction to operate on a data address in a single cycle
without updating the BSR first. Access RAM also allows for faster and more code efficient context
saving and switching of variables.

The mapping of the Access Bank is slightly different when the extended instruction set is enabled
(XINST Configuration bit = 1). This is discussed in more detail in the Mapping the Access Bank in
Indexed Liberal Offset Mode section.

Data Addressing Modes

Important: The execution of some instructions in the core PIC18 instruction set are
changed when the PIC18 extended instruction set is enabled. See the Data Memory and
the Extended Instruction Set section for more information.

Information in the data memory space can be addressed in several ways. For most instructions,
the Addressing mode is fixed. Other instructions may use up to three modes, depending on which
operands are used and whether or not the extended instruction set is enabled.

The Addressing modes are:

* Inherent
+ Literal

+ Direct

+ Indirect

An additional Addressing mode, Indexed Literal Offset, is available when the extended instruction
set is enabled (XINST Configuration bit = 1). Its operation is discussed in greater detail in the Indexed
Addressing with Literal Offset section.

Inherent and Literal Addressing

Many PIC18 control instructions do not need any argument at all; they either perform an operation
that globally affects the device or they operate implicitly on one register. This Addressing mode is
known as Inherent Addressing. Examples include SLEEP, RESET and DAW.

Other instructions work in a similar way but require an additional explicit argument in the opcode.
This is known as Literal Addressing mode because they require some literal value as an argument.
Examples include ADDLwW and MOVLW, which, respectively, add or move a literal value to the W
register. Other examples include cALL and GOTO, which include a program memory address.

Direct Addressing
Direct Addressing specifies all or part of the source and/or destination address of the operation
within the opcode itself. The options are specified by the arguments accompanying the instruction.

In the core PIC18 instruction set, bit-oriented and byte-oriented instructions use some version of
Direct Addressing by default. All of these instructions include some 8-bit literal address as their Least
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9.5.3

9.5.3.1

Significant Byte. This address specifies either a register address in one of the banks of data RAM
(see the Data Memory Organization section) or a location in the Access Bank (see the Access Bank
section) as the data source for the instruction.

The Access RAM bit ‘a’ determines how the address is interpreted. When ‘a’ is ‘1’, the contents of
the BSR (see the Bank Select Register section) are used with the address to determine the complete
12-bit address of the register. When ‘a' is ‘0’, the address is interpreted as being a register in the
Access Bank.

The destination of the operation’s results is determined by the destination bit ‘d’. When ‘d’ is ‘1’, the
results are stored back in the source register, overwriting its original contents. When ‘d' is '0’, the
results are stored in the W register. Instructions without the ‘d’ argument have a destination that is
implicit in the instruction; their destination is either the target register being operated on or the W
register.

Indirect Addressing

Indirect Addressing allows the user to access a location in data memory without giving a fixed
address in the instruction. This is done by using File Select Registers (FSRs) as pointers to the
locations which are to be read or written. Since the FSRs are themselves located in RAM as Special
File Registers, they can also be directly manipulated under program control. This makes FSRs very
useful in implementing data structures, such as tables and arrays in data memory.

The registers for Indirect Addressing are also implemented with Indirect File Operands (INDFs) that
permit automatic manipulation of the pointer value with auto-incrementing, auto-decrementing
or offsetting with another value. This allows for efficient code, using loops, such as the following
example of clearing an entire RAM bank.

Example 9-3. How to Clear RAM (Bank 1) Using Indirect Addressing

LFSR FSR0O,100h ; Set FSRO to beginning of Bankl

NEXT:
CLRF POSTINCO ; Clear location in Bankl then increment FSRO
BTFSS FSROH, 1 ; Has high FSRO byte incremented to next bank?
BRA NEXT ; NO, clear next byte in Bankl

CONTINUE: ; YES, continue

FSR Registers and the INDF Operand

At the core of Indirect Addressing are three sets of registers: FSRO, FSR1 and FSR2. Each represent

a pair of 8-bit registers, FSRnH and FSRnL. Each FSR pair holds the full address of the RAM location.
The FSR value can address the entire range of the data memory in a linear fashion. The FSR register
pairs, then, serve as pointers to data memory locations.

Indirect Addressing is accomplished with a set of Indirect File Operands, INDFO through INDF2.
These can be thought of as “virtual” registers; they are mapped in the SFR space but are not
physically implemented. Reading or writing to a particular INDF register actually accesses its
corresponding FSR register pair. A read from INDF1, for example, reads the data at the address
indicated by FSRT1H:FSR1L. Instructions that use the INDF registers as operands actually use the
contents of their corresponding FSR as a pointer to the instruction’s target. The INDF operand is just
a convenient way of using the pointer.

Because Indirect Addressing uses a full address, the FSR value can target any location in any bank
regardless of the BSR value. However, the Access RAM bit must be cleared to zero to ensure that the
INDF register in Access space is the object of the operation instead of a register in one of the other
banks. The assembler default value for the Access RAM bit is zero when targeting any of the indirect
operands.
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9.5.3.2 FSR Registers and POSTINC, POSTDEC, PREINC and PLUSW
In addition to the INDF operand, each FSR register pair also has four additional indirect operands.
Like INDF, these are “virtual” registers that cannot be directly read or written. Accessing these
registers actually accesses the location to which the associated FSR register pair points and also
performs a specific action on the FSR value. They are:

+ POSTDEC: Accesses the location to which the FSR points, then automatically decrements the FSR
by 1 afterwards

+ POSTINC: Accesses the location to which the FSR points, then automatically increments the FSR
by 1 afterwards

* PREINC: Automatically increments the FSR by one, then uses the location to which the FSR points
in the operation

+  PLUSW: Adds the signed value of the W register (range of -127 to 128) to that of the FSR and uses
the location to which the result points in the operation.

In this context, accessing an INDF register uses the value in the associated FSR register without
changing it. Similarly, accessing a PLUSW register gives the FSR value an offset in the W register;
however, neither W nor the FSR is actually changed in the operation. Accessing the other virtual
registers changes the value of the FSR register.

Figure 9-5. Indirect Addressing

Rev. 30-000100A
471812017

Data Memory
0000h 00h
Using an instruction with one of the ADDWE, INDF1, 0 Bank 0
indirect addressing registers as the 0100h g(';r?
operand.... Bank 1
FFh
0200h 00h
...uses the 14-bit address stored in FSR1H:FSRIL Bank 2 FFh <
the FSR pair associated with that ’ 0300h
register.... 7 0 7 0
Bank 3
[ [x[2[2]2[x]2[o] [1]1]ofo[1]1]o[o] ough |
- J A Bank 61 A

...to determine the data memory
location to be used in that operation.
In this case, the FSR1 pair contains
3ECCh. This means the contents of

location 3ECF3h will be added to thgt 3E00h 00h
of the W register and stored back in | Bank 62
3ECCh. FFh
3FO00h 00h
Bank 63
3FFFh FFh

Operations on the FSRs with POSTDEC, POSTINC and PREINC affect the entire register pair; that is,
rollovers of the FSRnL register from FFh to 00h carry over to the FSRnH register. On the other hand,
results of these operations do not change the value of any flags in the STATUS register (e.g., Z, N, OV,
etc.).

The PLUSW register can be used to implement a form of Indexed Addressing in the data memory
space. By manipulating the value in the W register, users can reach addresses that are fixed

offsets from pointer addresses. In some applications, this can be used to implement some powerful
program control structure, such as software stacks, inside of data memory.
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9.5.3.3 Operations by FSRs on FSRs

9.6

9.6.1

9.6.2

Indirect Addressing operations that target other FSRs or virtual registers represent special cases. For
example, using an FSR to point to one of the virtual registers will not result in successful operations.
As a specific case, assume that FSROH:FSROL contains the address of INDF1. Attempts to read the
value of the INDF1 using INDFO as an operand will return 00h. Attempts to write to INDF1 using
INDFO as the operand will result in a NOP.

On the other hand, using the virtual registers to write to an FSR pair may not occur as planned. In
these cases, the value will be written to the FSR pair but without any incrementing or decrementing.
Thus, writing to either the INDF2 or POSTDEC2 register will write the same value to FSR2H:FSR2L.

Since the FSRs are physical registers mapped in the SFR space, they can be manipulated through all
direct operations. Users need to proceed cautiously when working on these registers, particularly if
their code uses Indirect Addressing.

Similarly, operations by Indirect Addressing are permitted on all other SFRs. Users need to exercise
the appropriate caution that they do not inadvertently change settings that might affect the
operation of the device.

Data Memory and the Extended Instruction Set

Enabling the PIC18 extended instruction set (XINST Configuration bit = 1) significantly changes
certain aspects of data memory and its addressing. Specifically, the use of the Access Bank for many
of the core PIC18 instructions is different; this is due to the introduction of a new Addressing mode
for the data memory space.

What does not change is just as important. The size of the data memory space is unchanged, as well
as its linear addressing. The SFR map remains the same. Core PIC18 instructions can still operate

in both Direct and Indirect Addressing mode; inherent and literal instructions do not change at all.
Indirect addressing with FSRO and FSR1 also remain unchanged.

Indexed Addressing with Literal Offset

Enabling the PIC18 extended instruction set changes the behavior of Indirect Addressing using the
FSR2 register pair within Access RAM. Under the proper conditions, instructions that use the Access
Bank - that is, most bit-oriented and byte-oriented instructions - can invoke a form of Indexed
Addressing using an offset specified in the instruction. This special Addressing mode is known as
Indexed Addressing with Literal Offset or Indexed Literal Offset mode.

When using the extended instruction set, this Addressing mode requires the following:
* The use of the Access Bank is forced (‘@' = 0) and
+ The file address argument is less than or equal to 5Fh.

Under these conditions, the file address of the instruction is not interpreted as the lower byte of an
address (used with the BSR in Direct Addressing) or as an 8-bit address in the Access Bank. Instead,
the value is interpreted as an offset value to an Address Pointer, specified by FSR2. The offset and
the contents of FSR2 are added to obtain the target address of the operation.

Instructions Affected by Indexed Literal Offset Mode

Any of the core PIC18 instructions that can use Direct Addressing are potentially affected by the
Indexed Literal Offset Addressing mode. This includes all byte-oriented and bit-oriented instructions,
or almost one-half of the standard PIC18 instruction set. Instructions that only use Inherent or
Literal Addressing modes are unaffected.

Additionally, byte-oriented and bit-oriented instructions are not affected if they do not use the
Access Bank (Access RAM bit is ‘1") or include a file address of 60h or above. Instructions meeting
these criteria will continue to execute as before. A comparison of the different possible Addressing
modes when the extended instruction set is enabled is shown in the following figure.
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9.6.3

Those who desire to use byte-oriented or bit-oriented instructions in the Indexed Literal Offset
mode need to note the changes to assembler syntax for this mode. This is described in more detail
in the “Extended Instruction Syntax” section.

Figure 9-6. Comparing Addressing Options for Bit-Oriented and Byte-Oriented Instructions (Extended Instruction
Set Enabled)

EXAMPLE INSTRUCTION: ADDWF, £, d, a(Opcode: 0010 0lda ffff ffff)

0000h

When ‘a’ = 0 and f 2 60h Bank 0 -3
The instruction executes in 0400h
Direct Forced mode. ‘f is inter- Bank 4 00h
preted as a location in the 0460h
Access RAM between 060h Access 60h
and OFFh. This is the same as 04FFh SFRs
locations 460h to 4FFh
(Bank4) of data memory. FFh
Locations below 60h are not Bank 5-63 Access RAM
available in this Addressing
mode. 3FFFh
Data Memory
When ‘a’=0and f<5Fh 0000h
. . . Bank0-3
The instruction executes in
Indexed Literal Offset mode. f’ 0400h
is interpreted as an offset to the Bank 4
address value in FSR2. The 0460h
two are added together to Access
obtain the address of the target %‘éggﬂ SFRs
register for the instruction. The Aé‘;er\fs
address can be anywhere in 0560h
the data memory space. Bank 5-63 [0010 0lda [ ££ff ffff |
Note that in this mode, the
correct syntax is now: l pr | FoROL l
3FFFh
ADDWF [k], d Data Memory
where ‘K’ is the same as f.
0000h
When ‘a’ = 1 (all values of f) Bank 0 -3
The instruction executes in 0400n
Direct mode (also known as Bank 4
Direct Long mode). ‘f’ is inter- 0460h
preted as a location in one of Asc;gss
the 63 banks of the data 04FFh S BSR
memory space. The bank is
designated by the Bank Bank 10
Select Register (BSR). The Bank 5-63 <
_ address can be_m any [00T0 olaa [ £eif £ief ]
implemented bank in the data 3FFFh
memory space. Data Memory

Mapping the Access Bank in Indexed Literal Offset Mode

The use of Indexed Literal Offset Addressing mode effectively changes how the first 96 locations of
Access RAM (00h to 5Fh) are mapped. Rather than containing just the contents of the top section of
Bank 5, this mode maps the contents from a user defined “window” that can be located anywhere in
the data memory space. The value of FSR2 establishes the lower boundary of the addresses mapped
into the window, while the upper boundary is defined by FSR2 plus 95 (5Fh). Addresses in the Access
RAM above 5Fh are mapped as previously described (see the Access Bank section). An example of
Access Bank remapping in this Addressing mode is shown in the following figure.
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Figure 9-7. Remapping the Access Bank with Indexed Literal Offset Addressing

EXAMPLE: 000 Banko-3
ADDWF, £, d, a 0400h
FSR2H:FSR2L = 0x0220 Bank 4
0460h
Locations in the region Access
from the FSR2 pointer 05001 SFRs 00h
(A20h) to the pointer plus Bank 10 Window
05Fh (A7Fh) are mapped Bank 5-9 60h
to the Access RAM SFRs
(000h-05Fh). 0A20h. -~~~ Bank 10____] .
Special File Registers at 0A7FhL 77777 Window | Access RAM FFh
460h through 4FFh are Bank 10
mapped to 60h through
FFh, as usual.
Bank 4 addresses below Bank 11 - 63
5Fh can still be addressed
by using the BSR.
3FFFh
Data Memory

Remapping of the Access Bank applies only to operations using the Indexed Literal Offset mode.
Operations that use the BSR (Access RAM bit is ‘1) will continue to use Direct Addressing as before.

9.6.4 PIC18 Instruction Execution and the Extended Instruction Set

Enabling the extended instruction set adds additional commands to the existing PIC18 instruction
set. These instructions are executed as described in the “Extended Instruction Set” section.

9.7 Register Definitions: Memory Organization
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9.7.1 PCL

Name: PCL
Address: 0x4F9

Low byte of the Program Counter Register

Bit 7 6 5 4 3 2 1 0
| PCL[7:0]
Access  R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 - PCL[7:0] Provides direct read and write access to the Program Counter
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9.7.2 PCLAT
Name: PCLAT
Address:  Ox4FA
Program Counter Latches

Holding register for bits [21:9] of the Program Counter (PC). Reads of the PCL register transfer the
upper PC bits to the PCLAT register. Writes to PCL register transfer the PCLAT value to the PC.

Bit 15 14 13 12 11 10 9 8
| | | | PCLATU[4:0]
Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| PCLATH[7:0]
Access  R/W R/W RIW R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 12:8 - PCLATU[4:0] Upper PC Latch Register
Holding register for Program Counter [21:17]

Bits 7:0 - PCLATH[7:0] High PC Latch Register
Holding register for Program Counter [16:8]
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9.7.3 TOS
Name: TOS
Address: 0x4FD
Top-of-Stack Register

Contents of the stack pointed to by the STKPTR register. This is the value that will be loaded into the
Program Counter upon a RETURN or RETFIE instruction.

Bit 23 22 21 20 19 18 17 16
| | | | TOS[20:16]
Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
TOS[15:8]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
TOS[7:0]
Access R/W R/W R/W R/W R/W RIW R/W RIW
Reset 0 0 0 0 0 0 0 0

Bits 20:0 - TOS[20:0] Top-of-Stack

Notes: The individual bytes in this multibyte register can be accessed with the following register
names:

+ TOSU: Accesses the upper byte TOS[20:16]
+ TOSH: Accesses the high byte TOS[15:8]
+ TOSL: Accesses the low byte TOS[7:0]
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9.7.4 STKPTR

Name: STKPTR
Address: O0x4FC

Stack Pointer Register

Bit 7 6 5 4 3 2 1 0
| | STKPTR[6:0]
Access R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0

Bits 6:0 - STKPTR[6:0] Stack Pointer Location
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9.7.5 WREG

Name: WREG
Address: O0x4E8

Working Data Register

Bit 7 6 5 4 3 2 1 0
| WREG[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset X X X X X X X X

Bits 7:0 - WREG[7:0]
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9.7.6 INDF
Name: INDFx
Address: Ox4EF,0x4E7,0x4DF
Indirect Data Register

This is a virtual register. The GPR/SFR register addressed by the FSRx register is the target for all
operations involving the INDFx register.

Bit 7 6 5 4 3 2 1 0
| INDF[7:0]
Access  R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 - INDF[7:0] Indirect data pointed to by the FSRx register
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9.7.7 POSTDEC
Name: POSTDECx
Address: 0x4ED,0x4E5,0x4DD
Indirect Data Register with post decrement

This is a virtual register. The GPR/SFR register addressed by the FSRx register is the target for all
operations involving the POSTDECX register. FSRx is decrememted after the read or write operation.

Bit 7 6 5 4 3 2 1 0
| POSTDEC[7:0]
Access  R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 - POSTDEC[7:0]
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9.7.8 POSTINC
Name: POSTINCx
Address: Ox4EE,0x4E6,0x4DE
Indirect Data Register with post increment

This is a virtual register. The GPR/SFR register addressed by the FSRx register is the target for all
operations involving the POSTINCx register. FSRx is incremented after the read or write operation.

Bit 7 6 5 4 3 2 1 0
| POSTINC[7:0]
Access  R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 - POSTINC[7:0]
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9.7.9 PREINC
Name: PREINCx
Address: 0x4EC,0x4E4,0x4DC
Indirect Data Register with pre-increment

This is a virtual register. The GPR/SFR register addressed by the FSRx register plus 1 is the target
for all operations involving the PREINCx register. FSRx is incremented before the read or write

operation.
Bit 7 6 5 4 3 2 1 0
| PREINC[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 - PREINC[7:0]
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9.7.10 PLUSW
Name: PLUSWx
Address: 0x4EB,0x4E3,0x4DB
Indirect Data Register with WREG offset

This is a virtual register. The GPR/SFR register addressed by the sum of the FSRx register plus the
signed value of the W register is the target for all operations involving the PLUSWx register.

Bit 7 6 5 4 3 2 1 0
| PLUSW[7:0]
Access  R/W R/W R/W R/W RIW R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 - PLUSW[7:0]
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9.7.11 FSR

Name: FSRx
Address: 0x4E9,0x4E1,0x4D9

Indirect Address Register

The FSR value is the address of the data to which the INDF register points.

Bit 15 14 13 12 11 10 9 8
| | | FSRH[5:0]
Access R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| FSRL[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 13:8 - FSRH[5:0] Most Significant address of INDF data

Bits 7:0 - FSRL[7:0] Least Significant address of INDF data
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9.7.12 BSR
Name: BSR
Address: 0x4EO
Bank Select Register
The BSR indicates the data memory bank of the GPR address.

Bit 7 6 5 4 3 2 1 0
| | | BSR[5:0]
Access R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0

Bits 5:0 - BSR[5:0] Most Significant bits of the data memory address
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9.8 Register Summary - Memory Organization

I S T R

0x04D9 FSR2
0x04DB PLUSW2
0x04DC PREINC2
0x04DD POSTDEC2
0x04DE POSTINC2
0x04DF INDF2
0x04E0 BSR
0x04E1 FSR1
Ox04E3 PLUSW1
Ox04E4 PREINC1
0x04E5 POSTDEC1
0x04E6 POSTINC1
Ox04E7 INDF1
Ox04E8 WREG
0x04E9 FSRO
0x04EB PLUSWO
Ox04EC PREINCO
0x04ED POSTDECO
Ox04EE POSTINCO
Ox04EF INDFO
0x04F0

Reserved
0x04F8
0x04F9 PCL
0x04FA PCLAT
0x04FC STKPTR
0x04FD TOS
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15:8
7:0
7:0
7:0
7:0
7:0
7:0
7:0

15:8
7:0
7:0
7:0
7:0
7:0
7:0
7:0

15:8
7:0
7:0
7:0
7:0
7:0

7:0
7:0
15:8
7:0
7:0
15:8
23:16

I R N R

FSRL[7:0]
FSRH[5:0]

PLUSW[7:0]

PREINC[7:0]
POSTDEC[7:0]
POSTINC[7:0]

INDF[7:0]
BSR[5:0]
FSRL[7:0]
FSRH[5:0]

PLUSW[7:0]

PREINC[7:0]
POSTDEC[7:0]
POSTINC[7:0]

INDF[7:0]
WREG[7:0]
FSRL[7:0]
FSRH[5:0]

PLUSW[7:0]

PREINC[7:0]
POSTDEC[7:0]
POSTINC[7:0]

INDF[7:0]

PCL[7:0]
PCLATH[7:0]
PCLATU[4:0]
STKPTR[6:0]
TOS[7:0]
TOS[15:8]
TOS[20:16]
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10.

10.1

NVM - Nonvolatile Memory Module

The Nonvolatile Memory (NVM) module provides run-time read and write access to the Program
Flash Memory (PFM), Data Flash Memory (DFM) and Configuration bits. PFM includes the program
memory and user ID space. DFM is also referred to as EEPROM which is accessed one byte at a time
and the erase before write is automatic.

The Table Pointer provides read-only access to the PFM, DFM and Configuration bits. The NVM
controls provide both read and write access to PFM, DFM and Configuration bits.

Reads and writes to and from the DFM are limited to single byte operations, whereas those for PFM
are 16-bit word or 128-word page operations. The page buffer memory occupies one full bank of
RAM space located in the RAM bank following the last occupied GPR bank. Refer to the “Memory
Organization” chapter for more details about the buffer RAM.

The registers used for control, address and data are as follows:
+ NVMCONQO - Operation start and active status

+ NVMCONT1 - Operation type and error status

+ NVMLOCK - Write-only register to guard against accidental writes
+ NVMADR - Read/write target address (multibyte register)

+  NVMDAT - Read/write target data (multibyte register)

« TBLPTR - Table Pointer PFM target address for reads and buffer RAM address for writes
(multibyte register)

+ TABLAT - Table Pointer read/write target data (single byte register)

The write and erase times are controlled by an on-chip timer. The write and erase voltages are
generated by an on-chip charge pump rated to function over the operating voltage range of the
device.

PFM and DFM can be protected in two ways: code protection and write protection. Code protection
(Configuration bit CP) disables read and write access through an external device programmer.

Write protection prevents user software writes to NVM areas tagged for protection by the WRTn
Configuration bits. Code protection does not affect the self-write and erase functionality, whereas
write protection does. Attempts to write a protected location will set the WRERR bit. Code protection
and write protection can only be reset on a Bulk Erase performed by an external programmer.

The Bulk Erase command is used to completely erase different memory regions. The area to be
erased is selected using a bit field combination. The Bulk Erase command can only be issued
through an external programmer. There is no run time access for this command.

If the device is code-protected and a Bulk Erase command for the configuration memory is
issued, all other memory regions are also erased. Refer to the appropriate Family Programming
Specification for more details.

Operations

NVM write operations are controlled by selecting the desired action with the NVMCMD bits and then
starting the operation by executing the unlock sequence. NVM read operations are started by setting
the GO bit after setting the read operation. Available NVM operations are shown in the following
table.

Table 10-1. NVM Operations

NVMCMD Operation Source/Destination
—m—mm—m-

No Read byte = word NVM to NVMDAT No
001 No Read and Post Increment byte  word NVM to NVMDAT No No
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........... continued

NVMCMD Operation Source/Destination
—m—mm—m-

010 Read Page page NVM to Buffer RAM

011 Yes Write byte  word NVMDAT to NVM Yes Yes
100 Yes Write and Post Increment byte  word NVMDAT to NVM Yes Yes
101 Yes Write Page — page Buffer RAM to NVM Yes Yes
110 Yes Erase Page — page n/a Yes Yes
111 No Reserved (No Operation) — — — No No

Important: When the GO bit is set, writes operations are blocked on all NVM registers.
The GO bit is cleared by hardware when the operation is complete. The GO bit cannot be
cleared by software.

10.2 Unlock Sequence

As an additional layer of protection against memory corruption, a specific code execution unlock
sequence is required to initiate a write or erase operation. All interrupts need to be disabled before
starting the unlock sequence to ensure proper execution.

Example 10-1. Unlock Sequence in C

NVMLOCK 0x55;
NVMLOCK = OxAA;
NVMCONObits.GO = 1;

10.3 Program Flash Memory (PFM)

The Program Flash Memory is readable, writable and erasable over the entire Vpp range.

A 128-word PFM page is the only size that can be erased by user software. A Bulk Erase operation
cannot be issued from user code. A read from program memory is executed either one byte, one
word or a 128-word page at a time. A write to program memory can be executed as either 1 or 128
words at a time.

Writing or erasing program memory will cease instruction fetches until the operation is complete.
The program memory cannot be accessed during the write or erase, so code cannot execute. An
internal programming timer controls the write time of program memory writes and erases.

A value written to program memory does not need to be a valid instruction. Executing a program
memory location that forms an invalid instruction results in a NOP.

It is important to understand the PFM memory structure for erase and programming operations.
Program memory word size is 16 bits wide.

After a page has been erased, all or a portion of this page can be programmed. Data can be written
directly into PFM one 16-bit word at a time using the NVMADR, NVMDAT and NVMCON1 controls
or as a full page from the buffer RAM. The buffer RAM is directly accessible as any other SFR/GPR
register and also may be loaded via sequential writes using the TABLAT and TBLPTR registers.
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Important: To modify only a portion of a previously programmed page, the contents of
the entire page must be read and saved in the buffer RAM prior to the page erase. The
Read Page operation is the easiest way to do this. The page needs to be erased so that the
new data can be written into the buffer RAM to reprogram the page of PFM. However, any
unprogrammed locations can be written using the single word Write operation without first
erasing the page.

10.3.1 Page Erase

The erase size is always 128 words. Only through the use of an external programmer can larger
areas of program memory be Bulk Erased. Word erase in the program memory is not supported.

When initiating an erase sequence from user code, a page of 128 words of program memory is
erased. The NVMADR[21:8] bits point to the page being erased. The NVMADR[7:0] bits are ignored.
The NVMCONO and NVMCON1 registers command the erase operation. The NVMCMD bits are set
to select the erase operation. The GO bit is set to initiate the erase operation as the last step in the
unlock sequence.

The NVM unlock sequence described in the Unlock Sequence section must be used; this guards
against accidental writes. Instruction execution is halted during the erase cycle. The erase cycle is
terminated by the internal programming timer.

The sequence of events for erasing a page of PFM is:

Set the NVMADR registers to an address within the intended page.

Set the NVMCMD control bits to *‘b110 (Page Erase).

Disable all interrupts.

Perform the unlock sequence as described in the Unlock Sequence section.

Set the GO bit to start the PFM page erase.

Monitor the GO bit or NVMIF interrupt flag to determine when the erase has completed.
Interrupts can be enabled after the GO bit is clear.

8. Setthe NVMCMD control bits to ‘b000.

NouhkwbnN-=

If the PFM address is write-protected, the GO bit will be cleared, the erase operation will not take
place, and the WRERR bit will be set.

While erasing the PFM page, the CPU operation is suspended and then resumes when the operation
is complete. Upon erase completion, the GO bit is cleared in hardware, the NVMIF is set, and an
interrupt will occur (if the NVMIE bit is set and interrupts are enabled).

The buffer RAM data are not affected by erase operations and the NVMCMD bits will remain
unchanged throughout the erase opeation.
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Figure 10-1. PFM Page Erase Flowchart

Start Erase Operation

Load the NVMADR register with
address in the page to be erased

!

Set NVM Command to erase
(NVMCMD = *b110)

!

Disable interrupts
(GIE=0)

!

Execute unlock sequence
including setting the GO bit

!

CPU stalls while erase executes

!

Enable interrupts
(GIE=1)

!

Clear NVM Command
(NVMCMD = 'b000)

End Erase Operation

Example 10-2. Erasing a Page of Program Flash Memory in C

// Code sequence to erase one page of PFM
// PFM target address is specified by PAGE ADDR

// Save interrupt enable bit value
uint8 t GIEBitValue = INTCONObits.GIE;

// Load NVMADR with the base address of the memory page
NVMADR = PAGE_ADDR;

NVMCON1bits.CMD = 0x06; // Set the page erase command
INTCONObits.GIE = 0; // Disable interrupts

J) === Required Unlock Sequence ————————-

NVMLOCK = 0x55;

NVMLOCK = O0xAA;

NVMCONObits.GO = 1; // Start page erase

Y i

while (NVMCONObits.GO) ; // Wait for the erase operation to complete

// Verify erase operation success and call the recovery function if needed
if (NVMCONlbits.WRERR) {

ERASE FAULT RECOVERY () ;
}

INTCONObits.GIE = GIEBitValue; // Restore interrupt enable bit value
NVMCON1lbits.CMD = 0x00; // Disable writes to memory
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Important:

« If a write or erase operation is terminated by an unexpected Reset, the WRERR bit will be
set and the user can check to decide whether a rewrite of the location(s) is needed.

« If a write or erase operation is attempted on a write-protected area, the WRERR bit will
be set.

+ If a write or erase operation is attempted on an invalid address location, the WRERR
bit is set (refer to the Program and Data Memory Map in the “Memory Organization”
chapter for more information on valid address locations).

10.3.2 Page Read

10.3.3

@ MICROCHIP

PFM can be read one word or 128-word page at a time. A page is read by setting the NVMADR
registers to an address within the target page and setting the NVMCMD bits to ‘b010. The page
content is then transferred from PFM to the buffer RAM by starting the read operation by setting the
GO bit.

The sequence of events for reading a 128-word page of PFM is:

Set the NVMADR registers to an address within the intended page.

Set the NVMCMD control bits to ‘b010 (Page Read).

Set the GO bit to start the PFM page read.

Monitor the GO bit or NVMIF interrupt flag to determine when the read has completed.

A wnh =

Example 10-3. Reading a Page of Program Flash Memory in C

// Code sequence to read one page of PFM to Buffer Ram
// PFM target address is specified by PAGE ADDR

// Load NVMADR with the base address of the memory page
NVMADR = PAGE_ADDR;

NVMCONlbits.CMD = 0x02; // Set the page read command

NVMCONObits.GO = 1; // Start page read
while (NVMCONObits.GO) ; // Wait for the read operation to complete

Word Read

A single 16-bit word is read by setting the NVMADR registers to the target address and setting the
NVMCMD bits to *‘b000. The word is then transferred from PFM to the NVMDAT registers by starting
the read operation by setting the GO bit.

The sequence of events for reading a word of PFM is:

Set the NVMADR registers to the target address.

Set the NVMCMD control bits to *b000 (Word Read).

Set the GO bit to start the PFM word read.

Monitor the GO bit or NVMIF interrupt flag to determine when the read has completed.

Hwnh =

Example 10-4. Reading a Word from Program Flash Memory in C

// Code sequence to read one word from PFM
// PFM target address is specified by WORD ADDR

// Variable to store the word value from desired location in PFM
uintlé t Wordvalue;
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// Load NVMADR with the desired word address
NVMADR = WORD ADDR;

NVMCON1bits.CMD = 0x00; // Set the word read command
NVMCONObits.GO = 1; // Start word read

while (NVMCONObits.GO) ; // Wait for the read operation to complete
WordValue = NVMDAT; // Store the read value to a variable

10.3.4 Page Write

A page is written by first loading the buffer registers in the buffer RAM. All buffer registers are then
written to PFM by setting the NVMADR to an address within the intended address range of the target
PFM page, setting the NVMCMD bits to ‘b101, and then executing the unlock sequence and setting
the GO bit.

If the PFM address in the NVMADR is write-protected, or if NVMADR points to an invalid location, the
GO bit is cleared without any effect, and the WRERR bit is set.

CPU operation is suspended during a page write cycle and resumes when the operation is complete.
The page write operation completes in one extended instruction cycle. When complete, the GO bit
is cleared by hardware and NVMIF is set. An interrupt will occur if NVMIE is also set. The buffer
registers and NVMCMD bits are not changed throughout the write operation.

The internal programming timer controls the write time. The write/erase voltages are generated by
an on-chip charge pump and rated to operate over the voltage range of the device.

Important: Individual bytes of program memory may be modified, provided that the
modification does not attempt to change any NVM bit from a ‘0’ to a ‘1’. When modifying
individual bytes with a page write operation, it is necessary to load all buffer registers with
either OXFF or the existing contents of memory before executing a page write operation.
The fastest way to do this is by performing a page read operation.

In this device a PFM page is 128 words (256 bytes). This is the same size as one bank of general
purpose RAM (GPR). This area of GPR space is dedicated as a buffer area for NVM page operations.
The buffer areas for each device in the family are shown in the following table:

Table 10-2. NVM Buffer Banks

PIC18Fx6Q20 21
PIC18Fx5Q20 13
PIC18Fx4Q20 9

There are several ways to address the data in the GPR buffer space:
+ Using the TBLRD and TBLWT instructions

+ Using the indirect FSR registers
+ Direct read and writes to specific GPR locations

Neglecting the bank select bits, the 8 address bits of the GPR buffer space correspond to the 8 LSbs
of each PFM page. In other words, there is a one-to-one correspondence between the NVMADRL
register and the FSRxL register, where the x in FSRx is 0, 1 or 2.

The sequence of events for programming a page of PFM is:

1. Set the NVMADR registers to an address within the intended page.
2. Setthe NVMCMD to ‘b110 (Erase Page).
3. Disable all interrupts.
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Perform the unlock sequence as described in the Unlock Sequence section.

Set the GO bit to start the PFM page erase.

Monitor the GO bit or NVMIF interrupt flag to determine when the erase has completed.
Set NVMCMD to ‘b101 (Page Write).

Perform the unlock sequence.

9. Setthe GO bit to start the PFM page write.

10. Monitor the GO bit or NVMIF interrupt flag to determine when the write has completed.

© N o vk

11. Interrupts can be enabled after the GO bit is clear.
12. Set the NVMCMD control bits to *b000.

Example 10-5. Writing a Page of Program Flash Memory in C

// Code sequence to write a page of PFM
// Input[] is the user data that needs to be written to PFM
// PFM target address is specified by PAGE ADDR

#define PAGESIZE 128 // PFM page size

// Save Interrupt Enable bit Value
uint8 t GIEBitValue = INTCONObits.GIE;

// The BufferRAMStartAddr will be changed based on the device, refer
// to the "Memory Organization" chapter for more details
uintl6_t bufferRAM __ at (BufferRAMStartAddr) ;

// Defining a pointer to the first location of the Buffer RAM
uintlé_t *bufferRamPtr = (uintlé6_t*) & bufferRAM;

//Copy application buffer contents to the Buffer RAM

for (uint8 t i = 0; i < PAGESIZE; i++) {
*bufferRamPtr++ = Input[i];

}

// Load NVMADR with the base address of the memory page
NVMADR = PAGE ADDR;

NVMCON1bits.CMD = 0x06; // Set the page erase command
INTCONObits.GIE = 0; // Disable interrupts
J)==mmmmm== Required Unlock Sequence ——-—-——-——-

NVMLOCK = 0x55;
NVMLOCK = 0xAA;

NVMCONQObits.GO = 1; // Start page erase
Y
while (NVMCONObits.GO) ; // Wait for the erase operation to complete

// Verify erase operation success and call the recovery function if needed
if (NVMCONlbits.WRERR) {

ERASE_FAULT RECOVERY () ;
}

// NVMADR is already pointing to target page

NVMCON1lbits.CMD = 0x05; // Set the page write command
VS Required Unlock Sequence ————————-—

NVMLOCK = 0x55;

NVMLOCK = OxAA;

NVMCONObits.GO = 1; // Start page write
Y e
while (NVMCONObits.GO) ; // Wait for the write operation to complete

// Verify write operation success and call the recovery function if needed
if (NVMCONlbits.WRERR) {

WRITE FAULT RECOVERY () ;
}

INTCONObits.GIE
NVMCON1lbits.CMD

GIEBitValue; // Restore interrupt enable bit value
0x00; // Disable writes to memory
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10.3.5 Word Write

PFM can be written one word at a time to a pre-erased memory location. Refer to the “Word Modify”
section for more information on writing to a prewritten memory location.

A single word is written by setting the NVMADR to the target address and loading NVMDAT with
the desired word. The word is then transferred to PFM by setting the NVMCMD bits to *b011 then
executing the unlock sequence and setting the GO bit.

The sequence of events for programming single word to a pre-erased location of PFM is:
Set the NVMADR registers to the target address.

Load the NVMDAT with desired word.

Set the NVMCMD control bits to *b011 (Word Write).

Disable all interrupts.

Perform the unlock sequence as described in the Unlock Sequence section.

Set the GO bit to start the PFM word write.

Monitor the GO bit or NVMIF interrupt flag to determine when the write has completed.
Interrupts can be enabled after the GO bit is clear.

Set the NVMCMD control bits to *b000.

e N u A W=

Example 10-6. Writing a Word of Program Flash Memory in C

// Code sequence to program one word to a pre-erased location in PFM
// PFM target address is specified by WORD ADDR
// Target data are specified by WordValue

// Save interrupt enable bit value
uint8 t GIEBitValue = INTCONObits.GIE;

// Load NVMADR with the target address of the word
NVMADR = WORD ADDR;

NVMDAT = WordValue; // Load NVMDAT with the desired value
NVMCON1bits.CMD = 0x03; // Set the word write command
INTCONObits.GIE = 0; // Disable interrupts

e Required Unlock Sequence —-————————

NVMLOCK = 0x55;

NVMLOCK = 0xAA;

NVMCONObits.GO = 1; // Start word write

Y e

while (NVMCONObits.GO) ; // Wait for the write operation to complete

// Verify word write operation success and call the recovery function if needed
if (NVMCONlbits.WRERR) {

WRITE FAULT RECOVERY () ;
}

INTCONObits.GIE
NVMCON1bits.CMD

GIEBitValue; // Restore interrupt enable bit value
0x00; // Disable writes to memory

10.3.6 Word Modify
Changing a word in PFM requires erasing the word before it is rewritten. However, the PFM cannot
be erased by less than a page at a time. Changing a single word requires reading the page, erasing
the page, and then rewriting the page with the modified word. The NVM command set includes page
operations to simplify this task.
The steps necessary to change one or more words in PFM space are as follows:
1. Setthe NVMADR registers to the target address.
2. Setthe NVMCMD to ‘b010 (Page Read).

3. Set the GO bit to start the PFM read into the GPR buffer.
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Monitor the GO bit or NVMIF interrupt flag to determine when the read has completed.
Make the desired changes to the GPR buffer data.

Set NVMCMD to ‘b110 (Page Erase).

Disable all interrupts.

© N o vk

Perform the unlock sequence as described in the Unlock Sequence section.

9. Setthe GO bit to start the PFM page erase.

10. Monitor the GO bit or NVMIF interrupt flag to determine when the erase has completed.
11. Set NVMCMD to ‘b101 (Page Write).

12. Perform the unlock sequence.

13. Set the GO bit to start the PFM page write.

14. Monitor the GO bit or NVMIF interrupt flag to determine when the write has completed.
15. Interrupts can be enabled after the GO bit is clear.

16. Set the NVMCMD control bits to *b000.

Example 10-7. Modifying a Word in Program Flash Memory in C

// Code sequence to modify one word in a programmed page of PFM

// The variable with desired value is specified by ModifiedWord

// PFM target address is specified by WORD ADDR

// PFM page size is specified by PAGESIZE

// The Buffer RAM start address is specified by BufferRAMStartAddr. This value
// will be changed based on the device, refer to the "Memory Organization"
//chapter for more details.

// Save Interrupt Enable bit Value
uint8_t GIEBitValue = INTCONObits.GIE;

uintl6_t bufferRAM __ at (BufferRAMStartAddr) ;

// Defining a pointer to the first location of the Buffer RAM
uintlé t *bufferRamPtr = (uintl6 t*) & bufferRAM;

// Load NVMADR with the base address of the memory page
NVMADR = WORD_ADDR;

NVMCON1lbits.CMD = 0x02; // Set the page read command
INTCONObits.GIE = 0; // Disable interrupts

NVMCONObits.GO = 1; // Start page read

while (NVMCONObits.GO) ; // Wait for the read operation to complete
// NVMADR is already pointing to target page

NVMCON1lbits.CMD = 0x06; // Set the page erase command

J === Required Unlock Sequence ——--——-——-

NVMLOCK = 0x55;

NVMLOCK = O0xAA;

NVMCONQObits.GO = 1; // Start page erase

Y

while (NVMCONObits.GO) ; // Wait for the erase operation to complete

// Verify erase operation success and call the recovery function if needed
if (NVMCONlbits.WRERR) {

ERASE_FAULT_ RECOVERY () ;
}

//Modify Buffer RAM for the given word to be written to PFM

uint8 t offset = (uint8 t) ((WORD_ADDR & ((PAGESIZE * 2) - 1)) / 2);
bufferRamPtr += offset;

*bufferRamPtr = ModifiedWord;

// NVMADR is already pointing to target page

NVMCON1lbits.CMD = 0x05; // Set the page write command

J)==mmmmm== Required Unlock Sequence ——-—-——-——-

NVMLOCK = 0x55;

NVMLOCK = O0xAA;

NVMCONQObits.GO = 1; // Start page write

Y

while (NVMCONObits.GO) ; // Wait for the write operation to complete
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// Verify write operation success and call the recovery function if needed
if (NVMCONlbits.WRERR) {

WRITE FAULT RECOVERY () ;
}

INTCONObits.GIE = GIEBitValue; // Restore interrupt enable bit value
NVMCON1bits.CMD = 0x00; // Disable writes to memory

10.3.7 Write Verify

Depending on the application, good programming practice can dictate that the value written to the
memory shall be verified against the original value. This can be used in applications where excessive
writes can stress bits near the specification limit. Since program memory is stored as a full page, the
stored program memory contents are compared with the intended data stored in the buffer RAM
after the last write is complete.

Figure 10-2. Program Flash Memory Write Verify Flowchart
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10.3.8 Unexpected Termination of Write Operation
If a write is terminated by an unplanned event, such as loss of power or an unexpected Reset, the
memory location just programmed needs to be verified and reprogrammed, if needed. If the write
operation is interrupted by a MCLR Reset or a WDT Time-out Reset during normal operation, the
WRERR bit will be set. The user can then decide whether a rewrite of the location(s) is needed.

10.3.9 User ID, Device ID, Configuration Settings Access, DIA and DCI
The NVMADR value determines which NVM address space is accessed. The User IDs and

Configuration areas allow read and write access, whereas Device and Revision IDs are limited to
read-only.

Reading and writing User ID space is identical to reading and writing PFM space as described in the
preceding paragraphs.

Writing to the Configuration bits is performed in the same manner as writing to the Data Flash
Memory (DFM). Configuration settings are modified one byte at a time with the NVM Read and
Write operations. When a Write operation is performed on a Configuration byte, an erase byte is
performed automatically before the new byte is written. Any code protection settings that are not
enabled will remain not enabled after the Write operation, unless the new values enable them.
However, any code protection settings that are enabled cannot be disabled by a self-write of the
configuration space. The user can modify the configuration space by following these steps:

1. Read the target Configuration byte by setting the NVMADR with the target address.
2. Retrieve the Configuration byte with the Read operation (NVMCMD = ‘1000).

3. Modify the Configuration byte in NVMDAT register.
4

Write the NVMDAT register to the Configuration byte using the Write operation (NVMCMD =
‘b011) and unlock sequence.

10.3.10 Table Pointer Operations

To read and write program memory, there are two operations that allow the processor to move
bytes between the program memory space and the data RAM:

+ Table Read (TBLRD¥*)
+ Table Write (TBLWT*)

The SFR registers associated with these operations include:
+ TABLAT register

+ TBLPTR registers

The program memory space is 16 bits wide, while the data RAM space is eight bits wide. The TBLPTR
registers determine the address of one byte of the NVM memory. Table reads move one byte of data
from NVM space to the TABLAT register, and table writes move the TABLAT data to the buffer RAM
ready for a subsequent write to NVM space with the NVM controls.

10.3.10.1 Table Pointer Register

The Table Pointer (TBLPTR) register addresses a byte within the program memory. The TBLPTR
comprises three SFR registers: Table Pointer Upper Byte, Table Pointer High Byte and Table Pointer
Low Byte (TBLPTRU:TBLPTRH:TBLPTRL). These three registers join to form a 22-bit wide pointer (bits
0 through 21). The bits 0 through 20 allow the device to address up to 2 Mbytes of program memory
space. Bit 21 allows access to the Device ID, the User ID, Configuration bits as well as the DIA and
DCl.

The Table Pointer register, TBLPTR, is used by the TBLRD and TBLWT instructions. These instructions
can increment and decrement TBLPTR, depending on specific appended characters shown in the
following table. The increment and decrement operations on the TBLPTR affect only bits 0 through
20.
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Table 10-3. Table Pointer Operations with TBLRD and TBLWT Instructions

Example Operation on Table Pointer

TBLRD* . o

TBLWT* TBLPTR is not modified

TBLRD*+ o .
TBLWT*+ TBLPTR is incremented after the read/write
TBLRD*— ) ;
TBLWT* - TBLPTR is decremented after the read/write
TBLRD+* o )
TBLWT+* TBLPTR is incremented before the read/write

10.3.10.2 Table Latch Register

The Table Latch (TABLAT) is an 8-bit register mapped into the SFR space. The Table Latch register
receives one byte of NVM data resulting from a TBLRD* instruction and is the source of the 8-bit
data sent to the holding register space as a result of a TBLWT* instruction.

10.3.10.3 Table Read Operations

The table read operation retrieves one byte of data directly from program memory pointed to by the
TBLPTR registers and places it into the TABLAT register. The following figure shows the operation of a
table read.

Figure 10-3. Table Read Operation

Instruction: TBLRD*

Table Pointer" Program Memory Table Latch (8-bit)
TBLPTRU | TBLPTRH | TBLPTRL TABLAT
N J

Program Memory
(TBLPTR)

Note: 1. The Table Pointer register points to a byte in program memory.

10.3.10.4 Table Write Operations
The table write operation stores one byte of data from the TABLAT register into a buffer RAM
register. The following figure shows the operation of a table write from the TABLAT register to the
buffer RAM space. The procedure to write the contents of the buffer RAM into program memory is
detailed in the “Page Write"” section.
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Figure 10-4. Table Write Operation

Table Pointer!”

Instruction: TBLWT *

Program Memory

TBLPTRU

TBLPTRH

TBLPTRL

\

A

J

Program Memory
(TBLPTR[MSbs])

GPR Space

Table Latch (8-bit)

TABLAT

Note 1: During table writes the Table Pointer does not point directly to program memory. TBLPTRL
actually points to an address within the buffer registers. TBLPTRU:TBLPTRH points to program memory
where the entire buffer space will eventually be written with the NVM commands.

Table operations work with byte entities. Tables containing data, rather than program instructions,
are not required to be word-aligned. Therefore, a table can start and end at any byte address. If a
table write is being used to write executable code into program memory, program instructions will

need to be word-aligned.

10.3.10.5 Table Pointer Boundaries

The TBLPTR register is used in reads of the Program Flash Memory. Writes using the TBLPTR register
go into a buffer RAM from which the data can eventually be transferred to Program Flash Memory

using the NVMADR register and NVM commands.

When a TBLRD instruction is executed, all 22 bits of the TBLPTR determine which byte is read from

program memory directly into the TABLAT register.

When a TBLWT instruction is executed, the byte in the TABLAT register is written not to Flash memory
but to a buffer register in preparation for a program memory write. All the buffer registers form a
write block of size 128 words/256 bytes. The LSbs of the TBLPTR register determine to which specific
address within the buffer register block the write affects. The size of the write block determines the

number of LSbs that are affected. The MSbs of the TBLPTR register have no effect during TBLWT

operations.

When a program memory page write is executed, the entire buffer register block is written to

the Flash memory at the address determined by the MSbs of the NVMADR register. The LSbs are
ignored during Flash memory writes.

The following figure illustrates the relevant boundaries of the TBLPTR register based on NVM

operations.
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Figure 10-5. Table Pointer Boundaries Based on Operation

24 TBLPTRU 16 15 TBLPTRH 8 7 TBLPTRL 0

A NVMADRU NVMADRH TBLPTRL A
Page Erase/Write Table Write
NVMADR[21:8] TBLPTR[7:0]

Table Read - TBLPTR[21:0]

Note:

1. Refer to the “Memory Organization” chapter for more details about the size of the buffer
registers block.

10.3.10.6 Reading the Program Flash Memory
The TBLRD instruction retrieves data from program memory at the location to which the TBLPTR
register points and places it into the TABLAT SFR register. Table reads from program memory
are performed one byte at a time. The instruction set includes incrementing the TBLPTR register
automatically for the next table read operation.

The CPU operation is suspended during the read and resumes operation immediately after. From
the user point of view, the value in the TABLAT register is valid in the next instruction cycle.

The internal program memory is typically organized by words. The Least Significant bit of the
address selects between the high and low bytes of the word. The following figure illustrates the
interface between the internal program memory and the TABLAT register.

Figure 10-6. Reads from Program Flash Memory

Program Flash Memory

(Even Byte Address) (Odd Byte Address)
TBLPTR = xxxxx1 TBLPTR = xxxxx0
Instruction FETCH TBLRD TABLAT
Register (IR) Read Register
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Figure 10-7. Program Flash Memory Read Flowchart

<Start Read Operation>

Select Byte Address
(TBLPTR Register)

v

Initiate Read Operation
(TBLRD)

v

Data read now
in TABLAT register

<End Read Operation>

Example 10-8. Reading a Program Flash Memory Word

MOVLW CODE_ADDR UPPER ; Load TBLPTR with the base
MOVWE TBLPTRU ; address of the word
MOVLW CODE_ADDR_HIGH

MOVWEF TBLPTRH

MOVLW CODE_ADDR_LOW

MOVWEF TBLPTRL

READ WORD:
TBLRD*+ ; read into TABLAT and increment
MOVF TABLAT, W ; get data
MOVWE WORD_EVEN
TBLRD*+ ; read into TABLAT and increment
MOVEW TABLAT, W ; get data
MOVF WORD_ODD

10.4 Data Flash Memory (DFM)

The Data Flash Memory is a nonvolatile memory array, also referred to as EEPROM. The DFM is
mapped above program memory space. The DFM can be accessed using the Table Pointer or NVM
Special Function Registers (SFRs). The DFM is readable and writable during normal operation over
the entire Vpp range.

The DFM can only be read and written one byte at a time. When interfacing to the data memory
block, the NVMDATL register holds the 8-bit data for read/write and the NVMADR register holds the
address of the DFM location being accessed.

The DFM is rated for high erase/write cycle endurance. A byte write automatically erases the
location and writes the new data (erase-before-write). The write time is controlled by an internal
programming timer; it will vary with voltage and temperature as well as from device-to-device. Refer
to the data EEPROM memory parameters in the “Electrical Specifications” chapter for the limits.

10.4.1 Reading the DFM
To read a DFM location, the user must write the address to the NVMADR register, set the NVMCMD
bits for a single read operation (NVMCMD = ‘b000), and then set the GO control bit. The data are
available on the very next instruction cycle. Therefore, the NVMDATL register can be read by the next
instruction. NVMDATL will hold this value until another read operation or until it is written to by the
user (during a write operation).
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Note: Only byte reads are supported for DFM. Reading DFM with the Read Page operation is not
supported.

The sequence of events for reading a byte of DFM is:

1. Setthe NVMADR registers to an address within the intended page.

2. Setthe NVMCMD control bits to *b000 (Byte Read).

3. Setthe GO bit to start the DFM byte read.

4. Monitor the GO bit or NVMIF interrupt flag to determine when the read has completed.

This process is also shown in the following flowchart.

Figure 10-8. DFM Read Flowchart

Start Read Operation

Y

Set DFM Byte Address
(NVMADR = Address)

Y

Set NVM Read Command
(NVMCMD = 'b000)

Y

Initiate Read
(GO=1)

Y

Data read now in NVMDATL

Y

End Read Operation

Example 10-9. Reading a Byte from Data Flash Memory in C

// Code sequence to read one byte from DFM
// DFM target address is specified by DFM ADDR

// Variable to store the byte value from desired location in DFM
uint8 t ByteValue;

// Load NVMADR with the desired byte address
NVMADR = DFM_ADDR;

NVMCON1bits.CMD = 0x00; // Set the byte read command
NVMCONObits.GO = 1; // Start byte read

while (NVMCONObits.GO) ; // Wait for the read operation to complete
ByteValue = NVMDATL; // Store the read value to a variable

10.4.2 Writing to DFM
To write a DFM location, the address must first be written to the NVMADR register, the data written
to the NVMDATL register, and the Write operation command set in the NVMCMD bits. The sequence
shown in Unlock Sequence must be followed to initiate the write cycle. Multibyte Page writes are not
supported for the DFM.
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The write will not begin if the NVM unlock sequence is not exactly followed for each byte. It is
strongly recommended to disable interrupts during this code segment.

When not actively writing to the DFM, the NVMCMD bits need to be kept clear at all times as an extra
precaution against accidental writes. The NVMCMD bits are not cleared by hardware.

After a write sequence has been initiated, NVMCONO, NVMCON1, NVMADR and NVMDAT cannot be
modified.

Each DFM write operation includes an implicit erase cycle for that byte. CPU execution continues in
parallel and at the completion of the write cycle, the GO bit is cleared in hardware and the NVM
Interrupt Flag (NVMIF) bit is set. The user can either enable the interrupt or poll the bit. NVMIF must
be cleared by software.

The sequence of events for programming one byte of DFM is:

Set NVMADR registers with the target byte address.

Load NVMDATL register with desired byte.

Set the NVMCMD control bits to ‘b011 (Byte Write).

Disable all interrupts.

Perform the unlock sequence as described in the Unlock Sequence section.

Set the GO bit to start the DFM byte write.

Monitor the GO bit or NVMIF interrupt flag to determine when the write has been completed.
Interrupts can be enabled after the GO bit is cleared.

Set the NVMCMD control bits to *b000.

W o N AWM=

Example 10-10. Writing a Byte to Data Flash Memory in C

// Code sequence to write one byte to a DFM
// DFM target address is specified by DFM ADDR
// Target data are specified by ByteValue

// Save interrupt enable bit value
uint8 t GIEBitValue = INTCONObits.GIE;

// Load NVMADR with the target address of the byte
NVMADR = DFM ADDR;

NVMDATL = ByteValue; // Load NVMDAT with the desired value
NVMCON1lbits.CMD = 0x03; // Set the byte write command
INTCONObits.GIE = 0; // Disable interrupts

/=== Required Unlock Sequence ————————-—

NVMLOCK = 0x55;

NVMLOCK = O0xAA;

NVMCONObits.GO = 1; // Start byte write

A

while (NVMCONObits.GO) ; // Wait for the write operation to complete

// Verify byte write operation success and call the recovery function if needed
if (NVMCONlbits.WRERR) {

WRITE FAULT RECOVERY () ;
}

INTCONObits.GIE
NVMCON1bits.CMD

GIEBitValue; // Restore interrupt enable bit value
0; // Disable writes to memory

10.4.3 Erasing the DFM
The DFM does not support the Page Erase operation. However, the DFM can be erased by writing
OxFF to all locations in the memory that need to be erased. The simple code example bellow shows
how to erase 'n’ number of bytes in DFM. Refer to the “Memory Organization” chapter for more
details about the DFM size and valid address locations.
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Example 10-11. Erasing n Bytes of Data Flash Memory in C

// Code sequence to erase n bytes of DFM
// DFM target start address is specified by PAGE ADDR
// Number of bytes to be eares is specified by n

// Save interrupt enable bit value
uint8 t GIEBitValue = INTCONObits.GIE;

// Load NVMADR with the target address of the byte
NVMADR = DFM ADDR;

NVMDATL = OxFF; // Load NVMDATL with OxFF
NVMCON1lbits.CMD = 0x04; // Set the write and post increment command
INTCONObits.GIE = 0; // Disable interrupts

for (uint8 t i = 0; 1 < n; i++}(
NVMLOCK 0x55;
NVMLOCK OxAA;
NVMCONObits.GO = 1;

}

// Verify byte erase operation success and call the recovery function if needed
if (NVMCONlbits.WRERR) {

ERASE FAULT RECOVERY () ;
}

INTCONObits.GIE
NVMCON1lbits.CMD

GIEBitValue; // Restore interrupt enable bit value
0; // Disable writes to memory

10.4.4 DFM Write Verify

Depending on the application, good programming practice can dictate that the value written to the
memory shall be verified against the original value. This can be used in applications where excessive
writes can stress bits near the specification limit to ensure that the intended values are written
correctly to the specified memory locations.

10.4.5 Operation During Code-Protect and Write-Protect

The DFM can be code-protected using the CP Configuration bit. In-Circuit Serial Programming read
and write operations are disabled when code protection is enabled. However, internal reads operate
normally. Internal writes operate normally, provided that write protection is not enabled.

If the DFM is write-protected or if NVMADR points at an invalid address location, attempts to set the
GO bit will fail and the WRERR bit will be set.

10.4.6 Protection Against Spurious Writes
A write sequence is valid only when both the following conditions are met. This prevents spurious
writes that might lead to data corruption.

1. All NVM read, write and erase operations are enabled with the NVMCMD control bits. It is
suggested to have the NVMCMD bits cleared at all times except during memory writes. This
prevents memory operations if any of the control bits are set accidentally.

2. The NVM unlock sequence must be performed each time before all operations except the
memory read operation.

10.5 Register Definitions: NVM
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10.5.1 NVMCONO

Name: NVMCONO
Address: 0x058

Nonvolatile Memory Control Register 0

Bit 7 6 5 4 3 2 1 0
| | | | | | | GO |
Access R/S/HC
Reset 0

Bit 0 - GO Start Operation Control
Start the operation specified by the NVMCMD bits

1 Start operation (must be set after UNLOCK sequence for all operations except READ)
0 Operation is complete
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10.5.2 NVMCON1

Name: NVMCON1
Address: 0x059

Nonvolatile Memory Control Register 1

Bit 7 6 5 4 3 2 1 0
WRERR | | | | | NVMCMDI[2:0] |
Access  R/C/HS R/W R/W R/W
Reset 0 0 0 0

Bit 7 - WRERR NVM Write Error
Reset States: POR=0
All other Resets =u

1
A write operation was interrupted by a Reset,

or a write or erase operation was attempted on a write-protected area,
or a write or erase operation was attempted on an unimplemented area,
or a write or erase operation was attempted while locked,
or a page operation was directed to a DFM area

0 All write/erase operations have completed successfully

Bits 2:0 - NVMCMDI[2:0] NVM Command

Table 10-4. NVM Operations

NVMCMD Operation Source/Destination
—m—mm—m-

000 Read byte  word NVM to NVMDAT

001 No Read and Post Increment byte  word NVM to NVMDAT No No
010 No Read Page — page NVM to Buffer RAM No No
011 Yes Write byte  word NVMDAT to NVM Yes Yes
100 Yes Write and Post Increment byte  word NVMDAT to NVM Yes Yes
101 Yes Write Page — page Buffer RAM to NVM Yes Yes
110 Yes Erase Page — page n/a Yes Yes
111 No Reserved (No Operation) — — — No No
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10.5.3 NVMLOCK

Name: NVMLOCK
Address: 0x05A

Nonvolatile Memory Write Restriction Control Register

NVM write and erase operations require writing 0x55 then 0xAA to this register immediately before
the operation execution.

Bit 7 6 5 4 3 2 1 0

| NVMLOCK[7:0]
Access WO WO WO WO WO WO WO WO
Reset 0 0 0 0 0 0 0 0

Bits 7:0 - NVMLOCK][7:0]
Reading this register always returns ‘0".
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10.5.4 NVMADR

Name: NVMADR
Address: 0x05B

Nonvolatile Memory Address Register

Bit 23 22 21 20 19 18 17 16
| | | NVMADR[21:16]
Access R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
| NVMADRI15:8]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
NVMADR[7:0]
Access RIW R/W RIW R/W RIW R/W RIW RIW
Reset 0 0 0 0 0 0 0 0

Bits 21:0 - NVMADR[21:0] NVM Address

Notes: The individual bytes in this multibyte register can be accessed with the following register
names:

+ NVMADRU: Accesses the upper byte NVMADR[21:16]
+ NVMADRH: Accesses the high byte NVMADR[15:8]
* NVMADRL: Accesses the low byte NVMADR[7:0]

@ MICROCHIP

113



10.5.5 NVMDAT

Name: NVMDAT
Address: O0xO5E

Nonvolatile Memory Data Register

Bit 15 14 13 12 11 10 9 8
| NVMDAT[15:8]
Access  R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| NVMDAT[7:0]
Access  R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 15:0 - NVMDAT[15:0] NVM Data

Notes: The individual bytes in this multibyte register can be accessed with the following register

names:

+ NVMDATH: Accesses the high byte NVMDAT[15:8]
* NVMDATL: Accesses the low byte NVMDAT[7:0]
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10.5.6 TBLPTR

Name: TBLPTR
Address: 0x4F6

Table Pointer Register

Bit 23 22 21 20 19 18 17 16
| | | TBLPTR21 | TBLPTR[20:16] |
Access RIW R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
| TBLPTR[15:8] |
Access R/W R/W RIW R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
TBLPTR[7:0]
Access R/W R/W RIW R/W RIW R/W RIW RIW
Reset 0 0 0 0 0 0 0 0

Bit 21 - TBLPTR21 NVM Most Significant Address bit

1 Access Configuration, User ID, Device ID, and Revision ID spaces
0 Access Program Flash Memory space

Bits 20:0 - TBLPTR[20:0] NVM Address bits

Notes: The individual bytes in this multibyte register can be accessed with the following register
names:

+ TBLPTRU: Accesses the upper byte TBLPTR[21:16]
« TBLPTRH: Accesses the high byte TBLPTR[15:8]
« TBLPTRL: Accesses the low byte TBLPTR[7:0]
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10.5.7 TABLAT

Name: TABLAT
Address: O0x4F5

Table Latch Register

Bit 7 6 5 4 3 2 1 0
| TABLAT[7:0]
Access  R/W R/W R/W R/W RIW R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 - TABLAT[7:0] The value of the NVM memory byte returned from the address contained in TBLPTR
after a TBLRD command or the data written to the latch by a TBLWT command.
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10.6

Register Summary - NVM

[hdress | Name | bicpos-

0x58
0x59
O0x5A

0x5B
O0x5E
0x60

0x04F4
0x04F5

0x04F6

NVMCONO
NVMCON1
NVMLOCK

NVMADR

NVMDAT

Reserved

TABLAT

TBLPTR

@ MICROCHIP

7:0 WRERR
7:0
7:0
15:8
23:16
7:0
15:8

7:0
7:0
15:8

23:16 TBLPTR21

1253 I I R N T N A NN

NVMCMDI2:0]
NVMLOCK[7:0]

NVMADR[7:0]
NVMADR[15:8]
NVMADR[21:16]
NVMDAT[7:0]
NVMDAT[15:8]

TABLAT[7:0]
TBLPTR[7:0]
TBLPTR[15:8]

TBLPTR[20:16]
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11.
11.1

11.2

11.3

VIC - Vectored Interrupt Controller Module

Overview

The Vectored Interrupt Controller (VIC) module reduces the numerous peripheral interrupt request
signals to a single interrupt request signal to the CPU. This module includes the following major
features:

+ Interrupt Vector Table (IVT) with a unique vector for each interrupt source

+ Fixed and ensured interrupt latency

+ Programmable base address for IVT with lock

+ Two user-selectable priority levels - High priority and low priority

« Two levels of context saving

+ Interrupt state Status bits to indicate the current execution status of the CPU

The VIC module assembles all of the interrupt request signals and resolves the interrupts based
on both a fixed natural order priority (i.e., determined by the IVT) and a user-assigned priority (i.e.,
determined by the IPRx registers), thereby eliminating scanning of interrupt sources.
Interrupt Control and Status Registers

The devices in this family implement the following registers for the interrupt controller:

+ INTCONO, INTCON1 Control Registers

* PIRx - Peripheral Interrupt Status Registers

+ PIEx - Peripheral Interrupt Enable Registers

* IPRx - Peripheral Interrupt Priority Registers

+ IVTBASE Address Registers

+ IVTLOCK Register

Global interrupt control functions and external interrupts are controlled from the INTCONO register.
The INTCON1 register contains the status flags for the interrupt controller.

The PIRx registers contain all of the interrupt request flags. Each source of interrupt has a Status
bit, which is set by the respective peripherals or an external signal, and is either cleared via software
or automatically cleared by hardware upon clearing of the interrupt condition, depending on the
peripheral and bit.

The PIEx registers contain all of the interrupt enable bits. These control bits are used to individually
enable interrupts from the peripherals or external signals.

The IPRx registers are used to set the interrupt priority level for each source of interrupt. Each user
interrupt source can be assigned to either a high or low priority.

The IVTBASE register is user-programmable and is used to determine the start address of the IVT
and the IVTLOCK register is used to prevent any unintended writes to the IVTBASE register.

There are two other Configuration bits that control the way the interrupt controller can be
configured: The MVECEN and the IVTTWAY bits.

The MVECEN bit determines whether the IVT is used to determine the interrupt priorities. The
IVTTWAY bit determines the number of times the IVTLOCKED bit can be cleared and set after a
device Reset. See the Interrupt Vector Table Address Calculation section for details.

Interrupt Vector Table

The interrupt controller supports an IVT that contains the vector address location for each interrupt
request source.
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11.3.1

11.3.2

11.3.3

The IVT resides in program memory, starting at the address location determined by IVTBASE. The IVT
contains one vector for each source of interrupt. Each interrupt vector location contains the starting
address of the associated Interrupt Service Routine (ISR). The MVECEN Configuration bit controls the
availability of the vector table.

Interrupt Vector Table Base Address (IVTBASE)

The start address of the vector table is user-programmable through the IVTBASE. The user must
ensure the start address is such that it can encompass the entire vector table inside the program
memory.

Each vector address is a 16-bit word (or two address locations on PIC18 devices). For 'n’ interrupt
sources, there are ‘2n’ address locations necessary to hold the table, starting from IVTBASE as the
first location. Thus, the starting address needs to be chosen such that the address range from
IVTBASE to “IVTBASE+2n-1" can be encompassed within the program Flash memory.

For example, if the highest vector number was 81, IVTBASE needs to be chosen such that
“IVTBASE+0xA1" is less than the last memory location in program Flash memory.

A programmable vector table base address is useful in situations to switch between different sets of
vector tables, depending on the application. It can also be used when the application program needs
to update the existing vector table (vector address values).

Important: Itis required that the user assign an even address to IVTBASE for correct
operation.

Interrupt Vector Table Contents
MVECEN =0

When MVECEN = 0, the address location pointed to by IVTBASE has a GOTO instruction for a high-
priority interrupt. Similarly, the corresponding low-priority vector also has a GOTo instruction, which
is executed in case of a low-priority interrupt.

MVECEN =1

When MVECEN = 1, the value in the vector table of each interrupt points to the address location
of the first instruction of the Interrupt Service Routine, hence: ISR Location = Interrupt Vector Table
entry << 2.

Interrupt Vector Table Address Calculation
MVECEN =0

When the MVECEN Configuration bit is cleared, the address pointed to by IVTBASE is used as
the high-priority interrupt vector address. The low-priority interrupt vector address is offset eight
instruction words from the address in IVTBASE.

For PIC18 devices, IVTBASE defaults to 000008h, hence the high-priority interrupt vector address will
be 000008h and the low-priority interrupt vector address will be 000018h.

MVECEN =1

Each interrupt has a unique vector number associated with it, as defined in the IVT. This vector
number is used for calculating the location of the interrupt vector for a particular interrupt source.

Interrupt Vector Address = IVTBASE + (2*Vector Number). This calculated interrupt vector address
value is stored in the IVTAD register when an interrupt is received.

User-assigned software priority, when assigned using the IPRx registers, does not affect address
calculation and is only used to resolve concurrent interrupts.
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Important: If for any reason the address of the ISR cannot be fetched from the vector
table, it will cause the system to reset and clear the Memory Execution Violation flag in the
Power Control register. This can occur due to any one of the following:

+ The entry for the interrupt in the vector table lies outside the executable program
memory area

+ ISR pointed by the vector table lies outside the executable program memory area

Table 11-1. IVT Calculations Summary

IVT Address Calculation Interrupt Priority INTCONO Register, IPEN Bit
0 1
0 IVTBASE High-priority IVTBASE
Multivector Enable, L iority IVTBASE + 8 d
MVECEN Configuration bit ow-priority words
1 IVTBASE + 2*(Vector Number)

11.3.4 Access Control for IVTBASE Registers

The interrupt controller has an IVTLOCKED bit, which can be set to avoid inadvertent changes to the
contents of IVTBASE. Setting and clearing this bit requires a special sequence as an extra precaution
against inadvertent changes.

To allow writes to IVTBASE, the interrupts must be disabled (GIEH = 0) and the IVTLOCKED bit must
be cleared. The user must follow the sequence shown below to clear the IVTLOCKED bit.

Example 11-1. IVT Unlock Sequence

; Disable Interrupts:
BCF INTCONO, GIE;

; Bank to IVTLOCK register
BANKSEL IVTLOCK;
MOVLW 55h;

; Required sequence, next 4 instructions
MOVWE IVTLOCK;
MOVLW AAh;
MOVWFEF IVTLOCK;

; Clear IVTLOCKED bit to enable writes
BCF IVTLOCK, IVTLOCKED;

; Enable Interrupts
BSF INTCONO, GIE;

The user must follow the following sequence to set the IVTLOCKED bit.

Example 11-2. IVT Lock Sequence

; Disable Interrupts:
BCF INTCONO, GIE;

; Bank to IVTLOCK register
BANKSEL IVTLOCK;
MOVLW 55h;

; Required sequence, next 4 instructions
MOVWE IVTLOCK;
MOVLW AAh;
MOVWFEF IVTLOCK;

; Set IVTLOCKED bit to enable writes
BSF IVTLOCK, IVTLOCKED;
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; Enable Interrupts
BSF INTCONO, GIE;

When the IVTTWAY Configuration bit is set, the I'TLOCKED bit can be cleared and set only once after
a device Reset. The unlock operation will have no effect after the lock sequence is used to set the
IVTLOCKED bit. Unlocking is inhibited until a system Reset occurs.

11.4 Interrupt Priority

The final priority level for any pending source of interrupt is determined first by the user-assigned
priority of that source in the IPRx register, then by the natural order priority within the IVT. The
sections below detail the operation of interrupt priorities.

11.4.1 User (Software) Priority

User-assigned interrupt priority is enabled by setting IPEN. Each peripheral interrupt source can be
assigned a high- or low-priority level by the user. The user-assignable interrupt priority control bits
for each interrupt are located in the IPRx registers, which are device-specific and can be found in the
respective data sheet for each device.

The interrupts are serviced based on a predefined interrupt priority scheme detailed below.

1. Interrupts set by the user as a high-priority interrupt have higher precedence of execution.
High-priority interrupts will override a low-priority request when:

a. A low-priority interrupt has been requested or its request is already pending.

b. Alow- and high-priority interrupt are triggered concurrently (i.e., on the same instruction
cycle).(M

c. Alow-priority interrupt was requested and the corresponding Interrupt Service Routine is
currently executing. In this case, the lower priority interrupt routine will be interrupted then
complete executing after the high-priority interrupt has been serviced.(?

2. Interrupts set by the user as low priority have a lower priority of execution and are preempted by
any high-priority interrupt.

3. Interrupts defined with the same software priority cannot preempt or interrupt each other.
Concurrent pending interrupts with the same user priority are resolved using the natural order

priority (when vectored interrupts are enabled) or in the order the interrupt flag bits are polled in
the ISR (when vectored interrupts are disabled).

Important:

1. When a high-priority interrupt preempts a concurrent low-priority interrupt, GIEL
may be cleared in the high-priority Interrupt Service Routine. If GIEL is cleared, the
low-priority interrupt will NOT be serviced, even if it was originally requested. The
corresponding interrupt flag needs to be cleared in user code.

2. When a high-priority interrupt is requested while a low-priority Interrupt Service
Routine is executing, GIEL may be cleared in the high-priority Interrupt Service Routine.
The pending low-priority interrupt will resume, even if GIEL is cleared.

11.4.2 Natural Order (Hardware) Priority

When vectored interrupts are enabled and more than one interrupt with the same user specified
priority level is requested, the priority conflict is resolved by using a method called “Natural Order
Priority”. Natural order priority is a fixed priority scheme that is based on the IVT.
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Table 11-2. Interrupt Vector Priority Table

Vector
Number

0x0
0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8
0x9
OxA
0xB
0xC
0xD
OxE
OxF
0x10
0x11
0x12
0x13
0x14
0x15
0x16
0x17
0x18
0x19
Ox1A
0x1B
0x1C
0x1D
Ox1E
Ox1F
0x20
0x21
0x22
0x23
0x24
0x25
0x26

Interrupt
source

Software Interrupt
INTO
INT1
INT2
DMAT1SCNT (Direct Memory Access)
DMA1DCNT
DMA10R
DMA1A
DMA2SCNT (Direct Memory Access)
DMA2DCNT
DMA20R
DMA2A
DMA3SCNT
DMA3DCNT
DMA3OR
DMA3A
DMAA4SCNT
DMA4DCNT
DMA40R
DMA4A
NVM
CRC (Cyclic Redundancy Check)
SCAN
ACT (Active Clock Tuning)
CSW (Clock Switching)
OSF (Oscillator Fail)
VDDIO2
VDDIO3
I0C (Interrupt-On-Change)
TMRO
TMR1
TMR1G
TMR2
TMR4
TU16A (Universal Timer 16A)
TU16B (Universal Timer 16B)
CCP1 (Capture/Compare/PWM)
CCP2 (Capture/Compare/PWM)
PWM1RINT

Vector
Number

(cont.)

0x27
0x28
0x29
Ox2A
0x2B
0x2C
0x2D
Ox2E
Ox2F
0x30
0x31
0x32
0x33
0x34
0x35
0x36
0x37
0x38
0x39
0x3A
0x3B
0x3C
0x3D
O0x3E
0x3F
0x40
0x41
0x42
0x43
0x44
0x45
0x46
0x47
0x48 - 0x4B
0x4C
0x4D
Ox4E
Ox4F
0x50

Interrupt
source

(cont.)

PWM1GINT
PWM2RINT
PWM2GINT

CWG1 (Complementary Waveform Generator)
CLC1 (Configurable Logic Cell)

CLC2
CLC3
CLC4

IOCV (Interrupt-On-Change Virtual Ports)

U1TRX
U1TX
u1
U1E
U2RX
U2TX
U2
U2E

SPITRX (Serial Peripheral Interface)

SPINTX
SPI1
12C1RX
2C1TX
12C1
I12C1E
I3C1RX
3C1TX
13C1
I3C1E
I3C1R
I3C2RX
13C2TX
13C2
I3C2E
I3C2R

HLVD (High/Low-Voltage Detect)
AD (ADC Conversion Complete)
ADT (ADC Threshold)

The natural order priority scheme goes from high-to-low with increasing vector numbers, with 0
being the highest priority and decreasing from there.

For example, when two concurrently occurring interrupt sources that are both designated high
priority, using the IPRx register will be resolved using the natural order priority (i.e., the interrupt
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with a lower corresponding vector number will preempt the interrupt with the higher vector
number).

The ability for the user to assign every interrupt source to high- or low-priority levels means that the
user program can give an interrupt with a low natural priority, a higher overall priority level.

11.5 Interrupt Operation

All pending interrupts are indicated by their respective flag bit being equal to a ‘1" in the PIRx
register. All pending interrupts are resolved using the priority scheme explained in the Interrupt
Priority section.

Once the interrupt source to be serviced is resolved, the program execution vectors to the resolved
interrupt vector addresses, as explained in Interrupt Vector Table section. The vector number is
also stored in the WREG register. Most of the flag bits are required to be cleared by the application
software, but in some cases, device hardware clears the interrupt automatically. Some flag bits

are read-only in the PIRX registers. These flags are a summary of the source interrupts, and the
corresponding interrupt flags of the source must be cleared.

Avalid interrupt can be either a high- or low-priority interrupt when in the main routine or a
high-priority interrupt when in a low-priority Interrupt Service Routine. Depending on the order of
interrupt requests received and their relative timing, the CPU will be in a state of execution indicated
by the STAT bit.

The state machine shown in Figure 11-1 and the subsequent sections detail the execution of
interrupts when received in different orders.

Important: The state of GIEH/L is not changed by the hardware when servicing an
interrupt. The internal state machine is used to keep track of execution states. These
bits can be manipulated in the user code, resulting in transferring execution to the main
routine and ignoring existing interrupts.
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Figure 11-1. Vectored Interrupts State Transition Diagram
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11.5.1 Serving a High- or Low-Priority Interrupt While the Main Routine Code Is Executing

When a high- or low-priority interrupt is requested while the main routine code is executing, the
main routine execution is halted and the ISR is addressed. Upon a return from the ISR (by executing
the RETFIE instruction), the main routine resumes execution.

Figure 11-2. Interrupt Execution: High/Low-Priority Interrupt While Executing Main Routine

ISR Code Executing

( >RETFIE Executed

Main Code Main Code Executing X Main Code Execution Halted >< Main Code Executing

Interrupt

Interrupt  Interrupt
received cleared

11.5.2 Serving a High-Priority Interrupt While a Low-Priority Interrupt Is Pending

A high priority interrupt request will always take precedence over any interrupt of a lower priority.
The high-priority interrupt is acknowledged first, then the low-priority interrupt is acknowledged.
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Upon a return from the high-priority ISR (by executing the RETFIE instruction), the low-priority
interrupt is serviced.

If any other high-priority interrupts are pending and enabled, they are serviced before servicing the
pending low-priority interrupt. If no other high-priority interrupt requests are active, the low-priority

interrupt is serviced.

Figure 11-3. Interrupt Execution: High-Priority Interrupt with a Low-Priority Interrupt Pending

High ISR High ISR

\
=
Q‘ RETFIE Executed

\
f / \
Low ISR Low ISR
\ ) RETFIE Executed

Main Code Main routine __ __ _Main Code Execution Halted _ __ :>< Main routine
High Priority

Int t

nterrup! High Interrupt  High Interrupt

received cleared

Low Priority |

Interrupt Low Interrupt Low Interrupt

received cleared

11.5.3 Preempting Low-Priority Interrupts
Low-priority interrupts can be preempted by high-priority interrupts. While in the low-priority ISR, if
a high-priority interrupt arrives, the high-priority interrupt request is generated and the low-priority
ISR is suspended, while the high-priority ISR is executed.

After the high-priority ISR is complete and if any other high-priority interrupt requests are not active,
the execution returns to the preempted low-priority ISR.

Figure 11-4. Interrupt Execution: High-Priority Interrupt Preempting Low-Priority Interrupts

Rev. 10002678
1220%

; [ \
High ISR { High ISR }
Low Interrupt pending, RETFIE Executed

High Interrupt received

Low ISR < Low ISR XLowER Execution Halted Low ISR
(' RETFIE Executed

\
Main Code Main routine >< __ __ _Main Code Execution Halted __ __ :>< Main routine
High Priority

Interrupt High Interrupt ~ High Interrupt

received cleared

Low Priority

|

nterrupt Low Interrupt Low Interrupt

received cleared
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11.5.4 Simultaneous High- and Low-Priority Interrupts

When both high- and low-priority interrupts are active in the same instruction cycle (i.e.,
simultaneous interrupt events), both the high- and low-priority requests are generated. The high-
priority ISR is serviced first before servicing the low-priority interrupt.

Figure 11-5. Interrupt Execution: Simultaneous High- and Low-Priority Interrupts

mmmmmmmmm
zzzzzzz

) / \
High ISR { High ISR )
/ RETFIE Executed
Low ISR Low ISR
\ ) RETFIE Executed
) N/ ~— ~— - — - — — — — — — —
Main Code Main routine >< _ __ _Main Code Execution Halted __ __ :>< Main routine
High Priority
|
nterrupt High Interrupt High Interrupt
received cleared
Low Priority |
|
nterrupt Low Interrupt Low Interrupt
received cleared

11.6 Context Saving

The interrupt controller supports a two-level deep context saving system (main routine context and
low ISR context). Refer to the state machine shown in Figure 11-6 for details.

The Program Counter (PC) is saved on the dedicated device PC stack. The CPU registers saved
include STATUS, WREG, BSR, FSR0/1/2, PRODL/H and PCLATH/U.

After WREG has been saved to the context registers, the resolved vector number of the interrupt
source to be serviced is copied into WREG. Context save and restore operation is completed by the
interrupt controller based on the current state of the interrupts and the order in which they were
sent to the CPU.

Context save/restore works the same way in both states of MVECEN. When IPEN = 0, there is only
one level of interrupt active. Hence, only the main context is saved when an interrupt is received.

11.6.1 Accessing Shadow Registers

The interrupt controller automatically saves the context information in the shadow registers. Both
the saved context values (i.e., main routine and low ISR) can be accessed using the same set of
shadow registers. By clearing SHADLO, the CPU register values saved for main routine context can
be accessed. Low ISR context is automatically restored to the CPU registers upon exiting the high
ISR. Similarly, the main context is automatically restored to the CPU registers upon exiting the low
ISR.

The shadow registers are readable and writable, so if the user desires to modify the context, then
the corresponding shadow register needs to be modified and the value will be restored when exiting
the ISR. Depending on the user’s application, other registers may also need to be saved.
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Figure 11-6. Context Save State Machine Diagram
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11.7 Returning from Interrupt Service Routine (ISR)

The Return from Interrupt (RETFIE) instruction is used to mark the end of an ISR.

When the RETFIE 1 instruction is executed, the PC is loaded with the saved PC value from the top
of the PC stack. Saved context is also restored with the execution of this instruction. Thus, execution
returns to the state of operation that existed before the interrupt occurred.

When the RETFIE 0 instruction is executed, the saved context is not restored back to the registers.

11.8 Interrupt Latency

When MVECEN = 1, there is a fixed latency of three instruction cycles between the completion of
the instruction active when the interrupt occurred and the first instruction of the Interrupt Service
Routine. Figure 11-7, Figure 11-8 and Figure 11-9 illustrate the sequence of events when a peripheral
interrupt is asserted, when the last executed instruction is one-cycle, two-cycle and three-cycle,
respectively.

After the Interrupt Flag Status bit is set, the current instruction completes executing. In the first
latency cycle, the contents of the PC, STATUS, WREG, BSR, FSR0/1/2, PRODL/H and PCLATH/U
registers are context saved, and the IVTBASE + Vector number is calculated. In the second latency
cycle, the PCis loaded with the calculated vector table address for the interrupt source, and the
starting address of the ISR is fetched. In the third latency cycle, the PC is loaded with the ISR address.
All the latency cycles are executed as NOP instructions.

When MVECEN = 0, the interrupt controller requires two clock cycles to vector to the ISR from the
main routine. Note that, as this mode requires additional software to determine which interrupt
source caused the interrupt, the actual latency between the trigger and the beginning of the specific
ISR for each individual interrupt will be longer than two clock cycles and will vary, when not using
vectored interrupts.
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Figure 11-7. Interrupt Timing Diagram: One-Cycle Instruction
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Figure 11-8. Interrupt Timing Diagram: Two-Cycle Instruction
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Figure 11-9. Interrupt Timing Diagram: Three-Cycle Instruction
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11.8.1 Aborting Interrupts

If the last instruction before the interrupt controller vectors to the ISR from the main routine
clears the GIE, PIE, or PIR bit associated with the interrupt, the controller executes one forced NOP
instruction cycle before it returns to the main routine.

Figure 11-10 illustrates the sequence of events when a peripheral interrupt is asserted and then
cleared on the last executed instruction cycle.

If the GIE, PIE or PIR bit associated with the interrupt is cleared prior to vectoring to the ISR, then the
controller continues executing the main routine.

Figure 11-10. Interrupt Timing Diagram: Aborting Interrupts

Rev. 10-000 269D
11412019

© @ ©, ® ®
"o LU UL U U UL UUUYL
Clock

Program( x [ x2 [ x2 [ x4 | xs )

Counter

ol S Vil Sl T L)
Interrupt

Routine ~ ( MAIN X mor X MAIN )

Note: 1. Inst @ X clears the interrupt flag, Example BCF INTCONO, GIE.
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11.9 Interrupt Setup Procedure

1.

When using interrupt priority levels, set IPEN and then select the user-assigned priority level for
the interrupt source by writing the control bits in the appropriate IPRx control register.

Important: At a device Reset, the IPRx registers are initialized such that all user
interrupt sources are assigned to high priority.

Clear the Interrupt Flag Status bit associated with the peripheral in the associated PIRx STATUS
register.

Enable the interrupt source by setting the interrupt enable control bit associated with the source
in the appropriate PIEx register.

If the vector table is used (MVECEN = 1), then set up the start address for the Interrupt Vector
Table using IVTBASE. See the Interrupt Vector Table Contents section for more details.

Once IVTBASE is written to, set the interrupt enable bits in INTCONO.
An example of setting up interrupts and ISRs can be found below.
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11.10

11.11

11.12

Example 11-3. Setting Up Vectored Interrupts Using XC8

// NOTE 1: If IVTBASE is changed from its default value of 0x000008, then the
// "base(...)" argument must be provided in the ISR. Otherwise the vector
// table will be placed at 0x0008 by default regardless of the IVTBASE value.

// NOTE 2: When MVECEN=0 and IPEN=1, a separate argument as "high priority"
// or "low priority" can be used to distinguish between the two ISRs.

// If the argument is not provided, the ISR is considered high priority

// by default.

// NOTE 3: Multiple interrupts can be handled by the same ISR if they are
// specified in the "irqg(...)" argument. Ex: irq(IRQ SW, IRQ HLVD)

void _ interrupt (irg(IRQ_SW), base (0x3008)) SW_ISR(void)

: PIRObits.SWIF = 0; // Clear the interrupt flag
LATCbits.LATCO *= 1; // ISR code goes here

ioid __interrupt(irg(default), base(0x3008)) DEFAULT_ ISR (void)

{ // Unhandled interrupts go here

ioid INTERRUPT Initialize (void)

: INTCONObits.GIEH

1; // Enable high priority interrupts

INTCONObits.GIEL = 1; // Enable low priority interrupts
INTCONObits.IPEN = 1; // Enable interrupt priority
PIEObits.SWIE = 1; // Enable SW interrupt
PIEObits.HLVDIE = 1; // Enable HLVD interrupt
IPRObits.SWIP = 0; // Make SW interrupt low priority
// Change IVTBASE if required

IVTBASEU = 0x00; // Optional

IVTBASEH = 0x30; // Default is 0x000008

IVTBASEL = 0x08;

External Interrupt Pins

Devices may have several external interrupt sources that can be assigned to pins on different ports
based on PPS settings. Refer to the “PPS - Peripheral Pin Select Module” chapter for possible
routing options for these external interrupts. The external interrupt sources are edge-triggered. If
the corresponding INTXEDG bit in INTCONO is set, the interrupt is triggered by a rising edge. If the bit
is clear, the trigger is on the falling edge.

When a valid edge appears on the INTx pin, the corresponding flag bit (INTXF in the PIRx registers) is
set. This interrupt can be disabled by clearing the corresponding enable bit, INTXE. The flag bit INTxF
must be cleared by software in the Interrupt Service Routine before re-enabling the interrupt.

All external interrupts can wake up the processor from Idle or Sleep modes if the INTXE bit was set
prior to going into those modes. If GIE/GIEH bit is set, the processor will branch to the interrupt
vector following wake-up. Interrupt priority is determined by the value contained in the respective
INTXIP interrupt priority bits of the IPRx registers.

Wake-Up from Sleep

The interrupt controller provides a wake-up request to the CPU whenever an interrupt event occurs,
if the interrupt event is enabled. This occurs regardless of whether the part is in Run, Idle/Doze

or Sleep modes. The status of GIE/GIEH and GIEL bits have no effect on the wake-up request. This
wake-up request is asynchronous to all clocks.

Interrupt Compatibility

When the MVECEN bit is cleared, the IVT feature is disabled and interrupts are compatible with
previous high performance 8-bit PIC18 microcontroller devices. In this mode, the IVT priority has no
effect.

@ MICROCHIP

131



When IPEN is also cleared, the interrupt priority feature is disabled and interrupts are compatible

with PIC16 microcontroller midrange devices. All interrupts branch to address 0008h, since the
interrupt priority is disabled.

11.13 Register Definitions: Interrupt Control
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11.13.1 INTCONO

Name: INTCONO
Address: 0x461

Interrupt Control Register O

Bit 7 6 5 4 3 2 1 0

| GIE/GIEH | GIEL [ IPEN | | | INT2EDG | INT1EDG | INTOEDG |
Access R/W R/W RIW R/W R/W R/W
Reset 0 0 0 1 1 1

Bit 7 - GIE/GIEH Global Interrupt Enable

1 IPEN =0 Enables all masked interrupts

0 IPEN =0 Disables all interrupts

1 IPEN =1 Enables all unmasked high-priority interrupts: The bit also needs to be set for enabling low-priority
interrupts

0 IPEN =1 Disables all interrupts

Bit 6 - GIEL Global Low-Priority Interrupt Enable

VIS Condition Description

n IPEN =0 Reserved, read as ‘0’

1 IPEN =1 Enables all unmasked low-priority interrupts, GIEH also needs to be set for low-priority interrupts
0 IPEN =1 Disables all low-priority interrupts

Bit 5 - IPEN Interrupt Priority Enable

1 Enable priority levels on interrupts
0 Disable priority levels on interrupts, all interrupts are treated as high-priority interrupts

Bit 2 - INT2EDG External Interrupt 2 Edge Select

1 Interrupt on rising edge of the INT2 pin
0 Interrupt on falling edge of the INT2 pin

Bit 1 - INT1EDG External Interrupt 1 Edge Select

VIS Description
1 Interrupt on rising edge of the INT1 pin
0 Interrupt on falling edge of the INT1 pin

Bit 0 - INTOEDG External Interrupt O Edge Select

1 Interrupt on rising edge of the INTO pin
0 Interrupt on falling edge of the INTO pin
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11.13.2 INTCON1

Name: INTCON1
Address: 0x462

Interrupt Control Register 1

Bit 7 6 5 4 3 2 1 0
| STAT[1:0] | | | | |
Access R R
Reset 0 0

Bits 7:6 - STAT[1:0] Interrupt State Status

11 High-priority ISR executing, high-priority interrupt was received while a low-priority ISR was executing
10 High-priority ISR executing, high-priority interrupt was received in main routine

01 Low-priority ISR executing, low-priority interrupt was received in main routine

00 Main routine executing
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11.13.3 IVTBASE

IVTBASE
0x466

Name:
Address:

Interrupt Vector Table Base Address Register

Bit 23 22 21 20 19 18 17 16
| | | | IVTBASEU[4:0]
Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
| IVTBASEH[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
IVTBASEL([7:0]
Access RIW R/W RIW R/W RIW R/W RIW RIW
Reset 0 0 0 0 0 0 0 0

Bits 20:16 - IVTBASEU[4:0] Interrupt Vector Table Base Address Most Significant 5 bits
Bits 15:8 - IVTBASEH[7:0] Interrupt Vector Table Base Address Middle 8 bits

Bits 7:0 - IVTBASEL[7:0] Interrupt Vector Table Base Address Least Significant 8 bits
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11.13.4 IVTAD

Name: IVTAD
0x463

Address:

Interrupt Vector Table Address

Bit 23 22 21 20 19 18 17 16
| | IVTADU[4:0]
Access R R R R R
Reset 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
| IVTADH[7:0]
Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
IVTADL[7:0]
Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bits 20:16 - IVTADU[4:0] Interrupt Vector Table Address Most Significant 5 bits

Bits 15:8 - IVTADH[7:0] Interrupt Vector Table Address Middle 8 bits

Bits 7:0 - IVTADL[7:0] Interrupt Vector Table Address Least Significant 8 bits
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11.13.5 IVTLOCK

Name: IVTLOCK
Address: 0x460

Interrupt Vector Table Lock Register

Bit 7 6 5 4 3 2 1 0
| | | | | | | IVTLOCKED |
Access R/W
Reset 0

Bit 0 - IVTLOCKED IVT Registers Lock(1-2)

1 IVTBASE Registers are locked and cannot be written
0 IVTBASE Registers can be modified by write operations
Notes:

1. The IVTLOCKED bit can only be set or cleared after the unlock sequence in Example 11-1.
2. IfIVTTWAY = 1, the IVTLOCKED bit cannot be cleared after it has been set.
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11.13.6 SHADCON

Name: SHADCON
Address: 0x376

Shadow Control Register

Bit 7 6 5 4 3 2 1 0
| | | | | | _SHADLO |
Access R/W
Reset 0

Bit 0 - SHADLO Interrupt Shadow Register Access Switch

1 Access Main Context for Interrupt Shadow registers
0 Access Low-Priority Interrupt Context for Interrupt Shadow registers
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11.13.7 PIEO

Name: PIEO
Address: 0x473

Peripheral Interrupt Enable Register 0

Bit 7 6 5 4 3 2 1 0

| DMATAIE [ DMATORIE [DMATDCNTIE[DMATSCNTIE]  INT2IE INTTIE INTOIE SWIE
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 - DMA1AIE DMA1 Abort Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 6 - DMA1ORIE DMA1 Overrun Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 5 - DMA1DCNTIE DMA1 Destination Count Interrupt Enable

VEINS Description
1 Enabled
0 Disabled

Bit 4 - DMA1SCNTIE DMA1 Source Count Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 3 - INT2IE External Interrupt 2 Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 2 - INT1IE External Interrupt 1 Interrupt Enable

VEINS Description
1 Enabled
0 Disabled

Bit 1 - INTOIE External Interrupt O Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 0 - SWIE Software Interrupt Enable

Value Description
1 Enabled
0 Disabled
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11.13.8 PIE1

Name: PIE1
Address: 0x474

Peripheral Interrupt Enable Register 1

Bit 7 6 5 4 3 2 1 0

| DMA3AIE | DMA3ORIE [DMA3DCNTIE[DMA3SCNTIE| DMA2AIE | DMA20ORIE [DMA2DCNTIE[DMA2SCNTIE|
Access  R/W R/W RIW R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 - DMA3AIE DMA3 Abort Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 6 - DMA3ORIE DMA3 Overrun Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 5 - DMA3DCNTIE DMAS3 Destination Count Interrupt Enable

VEINS Description
1 Enabled
0 Disabled

Bit 4 - DMA3SCNTIE DMAS3 Source Count Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 3 - DMA2AIE DMA2 Abort Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 2 - DMA20ORIE DMA2 Overrun Interrupt Enable

VEINS Description
1 Enabled
0 Disabled

Bit 1 - DMA2DCNTIE DMA2 Destination Count Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 0 - DMA2SCNTIE DMA2 Source Count Interrupt Enable

Value Description
1 Enabled
0 Disabled
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11.13.9 PIE2

Name: PIE2
Address: 0x475

Peripheral Interrupt Enable Register 2

Bit 7 6 5 4 3 2 1 0
| ACTIE [ SCANIE | CRCIE [ NVMIE DMA4AIE | DMA4ORIE [DMA4DCNTIE|DMA4SCNTIE
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 - ACTIE Active Clock Tuning Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 6 - SCANIE Memory Scanner Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 5 - CRCIE CRC Interrupt Enable

VEINS Description
1 Enabled
0 Disabled

Bit 4 - NVMIE NVM Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 3 - DMA4AIE DMA4 Abort Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 2 - DMA4ORIE DMA4 Overrun Interrupt Enable

VEINS Description
1 Enabled
0 Disabled

Bit 1 - DMA4DCNTIE DMA4 Destination Count Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 0 - DMA4SCNTIE DMA4 Source Count Interrupt Enable

Value Description
1 Enabled
0 Disabled
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11.13.10 PIE3

Name: PIE3
Address: 0x476

Peripheral Interrupt Enable Register 3

Bit 7 6 5 4 3 2 1 0
| TMR1IGIE [ TMRIIE | TMROIE [ IOCIE VDDIO3IE | VDDIO2IE OSFIE CSWIE
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 - TMR1GIE TMR1 Gate Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 6 - TMR1IE TMR1 Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 5 - TMROIE TMRO Interrupt Enable

VEINS Description
1 Enabled
0 Disabled

Bit 4 - IOCIE Interrupt-on-Change Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 3 - VDDIO3IE VDDIO3 Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 2 - VDDIO2IE VDDIO2 Interrupt Enable

VEINS Description
1 Enabled
0 Disabled

Bit 1 - OSFIE Oscillator Failure Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 0 - CSWIE Clock Switch Interrupt Enable

Value Description
1 Enabled
0 Disabled
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11.13.11 PIE4

Name: PIE4
Address: 0x477

Peripheral Interrupt Enable Register 4

Bit 7 6 5 4 3 2 1 0
| PWMIIE [ PWMIPIE | CCP2IE [ CCPIIE TU16BIE TU16AIE TMRA4IE TMR2IE
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 - PWM1IE PWM1 Parameter Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 6 - PWM1PIE PWM?1 Period Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 5 - CCP2IE CCP2 Interrupt Enable

VEINS Description
1 Enabled
0 Disabled

Bit 4 - CCP1IE CCP1 Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 3 - TU16BIE 16-bit Universal Timer B Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 2 - TU16AIE 16-bit Universal Timer A Interrupt Enable

VEINS Description
1 Enabled
0 Disabled

Bit 1 - TMR4IE TMR4 Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 0 - TMR2IE TMR2 Interrupt Enable

Value Description
1 Enabled
0 Disabled
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11.13.12 PIES

Name: PIES
Address: 0x478

Peripheral Interrupt Enable Register 5

Bit 7 6 5 4 3 2 1 0
| IOCVIE [ CLC4E | CLC3E [ CLC2E CLCTIE CWGTIE PWM2IE | PWM2PIE
Access  R/W R/W R/W R/W R/W R/W RIW RIW
Reset 0 0 0 0 0 0 0 0

Bit 7 - IOCVIE Virtual Ports Interrupt-on-Change Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 6 - CLC4IE CLC4 Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 5 - CLC3IE CLC3 Interrupt Enable

VEINS Description
1 Enabled
0 Disabled

Bit 4 - CLC2IE CLC2 Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 3 - CLC1IE CLC1 Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 2 - CWG1IE CWG1 Interrupt Enable

VEINS Description
1 Enabled
0 Disabled

Bit 1 - PWM2IE PWM2 Parameter Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 0 - PWM2PIE PWM2 Period Interrupt Enable

Value Description
1 Enabled
0 Disabled
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11.13.13 PIE6

Name: PIE6
Address: 0x479

Peripheral Interrupt Enable Register 6

Bit 7 6 5 4 3 2 1 0
| U2EE | U2IE | U2TXIE [ U2RXIE U1EIE U1IE U1TXIE UTRXIE
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 - U2EIE UART2 Framing Error Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 6 - U2IE UART2 Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 5 - U2TXIE UART2 Transmit Interrupt Enable

VEINS Description
1 Enabled
0 Disabled

Bit 4 - U2RXIE UART 2 Receive Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 3 - U1EIE UART1 Framing Error Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 2 - U1IE UART1 Interrupt Enable

VEINS Description
1 Enabled
0 Disabled

Bit 1 - U1TXIE UART1 Transmit Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 0 - UTRXIE UART 1 Receive Interrupt Enable

Value Description
1 Enabled
0 Disabled
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11.13.14 PIE7

Name: PIE7
Address: 0x47A

Peripheral Interrupt Enable Register 7

Bit 7 6 5 4 3 2 1 0
| | 12CIEIE | 12C1IE | 12CITXIE [ I2CIRXIE | SPIMIE | SPITXIE | SPIRXIE |
Access R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0

Bit 6 - I2C1EIE 12C1 Error Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 5 - 12C1IE 12C1 Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 4 - I2C1TXIE 12C1 Transmit Interrupt Enable

VEINS Description
1 Enabled
0 Disabled

Bit 3 - I2C1RXIE [12C1 Receive Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 2 - SPI1IE SPI1 Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 1 - SPI1TTXIE SPI1 Transmit Interrupt Enable

VEINS Description
1 Enabled
0 Disabled

Bit 0 - SPI1RXIE SPI1 Receive Interrupt Enable

Value Description
1 Enabled
0 Disabled

@ MICROCHIP

146



11.13.15 PIE8

Name: PIES
Address: 0x47B

Peripheral Interrupt Enable Register 8

Bit 7 6 5 4 3 2 1 0
| | | | IBCIRIE | I3CTIEIE | I3C1IE | IBCITXIE | I3CIRXIE |
Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0

Bit 4 - I3C1RIE 13C1 Reset Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 3 - I3C1EIE I13C1 Error Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 2 - I3C1IE 13C1 General Interrupt Enable

VEINS Description
1 Enabled
0 Disabled

Bit 1 - I3C1TXIE 13C1 Transmit Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 0 - I3C1RXIE 13C1 Receive Interrupt Enable

Value Description
1 Enabled
0 Disabled
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11.13.16 PIES

Name: PIE9
Address: 0x47C

Peripheral Interrupt Enable Register 9

Bit 7 6 5 4 3 2 1 0
| ADTIE [ ADIE | HLVDIE | I3C2RIE I3C2EIE I3C2IE I3C2TXIE | I3C2RXIE
Access  R/W R/W R/W R/W R/W R/W R/W RIW
Reset 0 0 0 0 0 0 0 0

Bit 7 - ADTIE ADC Threshold Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 6 - ADIE ADC Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 5 - HLVDIE High/Low-Voltage Detect Enable Flag

VEINS Description
1 Enabled
0 Disabled

Bit 4 - I3C2RIE 13C2 Reset Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 3 - I3C2EIE I13C2 Error Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 2 - I3C2IE 13C2 General Interrupt Enable

VEINS Description
1 Enabled
0 Disabled

Bit 1 - I3C2TXIE 13C2 Transmit Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 0 - I3C2RXIE 13C2 Receive Interrupt Enable

Value Description
1 Enabled
0 Disabled
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11.13.17 PIRO

Name: PIRO
Address: 0x469

Peripheral Interrupt Request Register 0

Bit 7 6 5 4 3 2 1 0

| DMATAIF | DMATORIF [DMATDCNTIFDMATSCNTIF| INT2IF | INT1IF [ INTOIF [ SWIF |
Access  R/W/HS R/W/HS R/W/HS R/W/HS R/W/HS R/W/HS R/W/HS R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 - DMA1AIF DMA1 Abort Interrupt Flag
Value Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred

Bit 6 - DMA1ORIF DMA1 Overrun Interrupt Flag

Value Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred

Bit 5 - DMA1DCNTIF DMA1 Destination Count Interrupt Flag

VEINS Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred

Bit 4 - DMA1SCNTIF DMA1 Source Count Interrupt Flag

Value Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred

Bit 3 - INT2IF External Interrupt 2 Interrupt Flag®

Value Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred

Bit 2 - INT1IF External Interrupt 1 Interrupt Flag®

VEINS Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred

Bit 1 - INTOIF External Interrupt O Interrupt Flag®

Value Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred

Bit 0 - SWIF Software Interrupt Flag

Value Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred
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Notes:

1. Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its
corresponding enable bit or the global enable bit. User software must ensure the appropriate
interrupt flag bits are clear prior to enabling an interrupt.

2. The external interrupt GPIO pin is selected by the INTXPPS register.
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11.13.18 PIR1

Name: PIR1
Address: 0x46A

Peripheral Interrupt Request Register 1

Bit 7 6 5 4 3 2 1 0

| DMA3AIF | DMA3ORIF [DMA3DCNTIF|DMA3SCNTIF| DMA2AIF | DMA20ORIF [DMA2DCNTIFDMA2SCNTIF|
Access  R/W/HS R/W/HS R/W/HS R/W/HS R/W/HS R/W/HS R/W/HS R/W/HS
Reset 0 0 0 0 0 0 0 0

Bit 7 - DMA3AIF DMA3 Abort Interrupt Flag
Value Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred

Bit 6 - DMA3ORIF DMA3 Overrun Interrupt Flag

Value Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred

Bit 5 - DMA3DCNTIF DMAS3 Destination Count Interrupt Flag

VEINS Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred

Bit 4 - DMA3SCNTIF DMAS3 Source Count Interrupt Flag

Value Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred

Bit 3 - DMA2AIF DMA2 Abort Interrupt Flag

Value Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred

Bit 2 - DMA20ORIF DMA2 Overrun Interrupt Flag

VEINS Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred

Bit 1 - DMA2DCNTIF DMA2 Destination Count Interrupt Flag

Value Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred

Bit 0 - DMA2SCNTIF DMA2 Source Count Interrupt Flag

Value Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred

Note:

1. Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its
corresponding enable bit or the global enable bit. User software must ensure the appropriate
interrupt flag bits are clear prior to enabling an interrupt.
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11.13.19 PIR2

Name: PIR2
Address: 0x46B

Peripheral Interrupt Request Register 2

Bit 7 6 5 4 3 2 1 0

| ACTIF | SCANIF | CRCIF | NVMIF | DMA4AIF | DMA4ORIF [DMA4DCNTIFDMA4SCNTIF|
Access  R/W/HS R/W/HS R/W/HS R/W/HS R/W/HS R/W/HS R/W/HS R/W/HS
Reset 0 0 0 0 0 0 0 0

Bit 7 - ACTIF Active Clock Tuning Interrupt Flag
Value Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred

Bit 6 - SCANIF Memory Scanner Interrupt Flag

Value Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred

Bit 5 - CRCIF CRC Interrupt Flag

VEINS Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred

Bit 4 - NVMIF NVM Interrupt Flag

Value Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred

Bit 3 - DMA4AIF DMA4 Abort Interrupt Flag

Value Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred

Bit 2 - DMA4ORIF DMA4 Overrun Interrupt Flag

VEINS Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred

Bit 1 - DMA4DCNTIF DMA4 Destination Count Interrupt Flag

Value Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred

Bit 0 - DMA4SCNTIF DMA4 Source Count Interrupt Flag

Value Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred

Note:

1. Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its
corresponding enable bit or the global enable bit. User software must ensure the appropriate
interrupt flag bits are clear prior to enabling an interrupt.
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11.13.20 PIR3

Name: PIR3
Address: 0x46C

Peripheral Interrupt Request Register 3

Bit 7 6 5 4 3 2 1 0

| TMR1GIF | TMR1IF | TMROIF | I0CIF | VDDIO3IF | VDDIO2IF | OSFIF [ CSWIF |
Access  R/W/HS R/W/HS R/W/HS R R/W/HS R/W/HS R/W/HS R/W/HS
Reset 0 0 0 0 0 0 0 0

Bit 7 - TMR1GIF TMR1 Gate Interrupt Flag
Value Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred

Bit 6 - TMR1IF TMR1 Interrupt Flag

Value Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred

Bit 5 - TMROIF TMRO Interrupt Flag

VEINS Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred

Bit 4 - IOCIF Interrupt-on-Change Interrupt Flag(2

Value Description
1 Interrupt has occurred
0 Interrupt event has not occurred

Bit 3 - VDDIO3IF VDDIO3 Interrupt Flag

Value Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred

Bit 2 - VDDIO2IF VDDIO2 Interrupt Flag

VEINS Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred

Bit 1 - OSFIF Oscillator Failure Interrupt Flag

Value Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred

Bit 0 - CSWIF Clock Switch Interrupt Flag®

Value Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred
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Notes:

1. Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its
corresponding enable bit or the global enable bit. User software must ensure the appropriate
interrupt flag bits are clear prior to enabling an interrupt.

2. 10CIFis a read-only bit. To clear the interrupt condition, all bits in the IOCxF registers must be
cleared.

3. The CSWIF interrupt will not wake the system from Sleep. The system will Sleep until another
interrupt causes the wake-up.
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11.13.21 PIR4

Name: PIR4
Address: 0x46D

Peripheral Interrupt Request Register 4

Bit 7 6 5 4 3 2 1 0
| PWMTIF | PWMIPIF | CCP2IF | CCP1IF | TU16BIF | TUT6AIF | TMR4IF | TMR2IF |
Access R R/W/HS R/W/HS R/W/HS R R R/W/HS R/W/HS
Reset 0 0 0 0 0 0 0 0

Bit 7 - PWM1IF PWM1 Parameter Interrupt Flag(®
Value Description
1 Interrupt has occurred
0 Interrupt event has not occurred

Bit 6 - PWM1PIF PWM1 Period Interrupt Flag

Value Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred

Bit 5 - CCP2IF CCP2 Interrupt Flag

VEINS Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred

Bit 4 - CCP1IF CCP1 Interrupt Flag

Value Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred

Bit 3 - TU16BIF 16-bit Universal Timer B Interrupt Flag

Value Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred

Bit 2 - TU16AIF 16-bit Universal Timer A Interrupt Flag

VEINS Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred

Bit 1 - TMR4IF TMR4 Interrupt Flag

Value Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred

Bit 0 - TMR2IF TMR2 Interrupt Flag

Value Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred
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Notes:

1. Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its
corresponding enable bit or the global enable bit. User software must ensure the appropriate
interrupt flag bits are clear prior to enabling an interrupt.

2. PWM1IFis a read-only bit. To clear the interrupt condition, all bits in the PWM1GIR register must
be cleared.
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11.13.22 PIRS

Name: PIR5
Address: O0x46E

Peripheral Interrupt Request Register 5

Bit 7 6 5 4 3 2 1 0
| IOCVIF | CLC4IF | CLC3IF | CLC2IF | CLCIIF | CWGTIF | PWM2IF | PWM2PIF |
Access R R/W/HS R/W/HS R/W/HS R/W/HS R/W/HS R R/W/HS
Reset 0 0 0 0 0 0 0 0

Bit 7 - IOCVIF Virtual Ports Interrupt-on-Change Interrupt Flag
Value Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred

Bit 6 - CLC4IF CLC4 Interrupt Flag

Value Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred

Bit 5 - CLC3IF CLC3 Interrupt Flag

VEINS Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred

Bit 4 - CLC2IF CLC2 Interrupt Flag

Value Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred

Bit 3 - CLC1IF CLC1 Interrupt Flag

Value Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred

Bit 2 - CWG1IF CWG1 Interrupt Flag

VEINS Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred

Bit 1 - PWM2IF PWM2 Parameter Interrupt Flag®

Value Description
1 Interrupt has occurred
0 Interrupt event has not occurred

Bit 0 - PWM2PIF PWM2 Period Interrupt Flag

Value Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred
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Notes:

1. Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its
corresponding enable bit or the global enable bit. User software must ensure the appropriate
interrupt flag bits are clear prior to enabling an interrupt.

2. PWM2IF is a read-only bit. To clear the interrupt condition, all bits in the PWM2GIR register must
be cleared.
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11.13.23 PIR6

Name: PIR6
Address: O0x46F

Peripheral Interrupt Request Register 6

Bit 7 6 5 4 3 2 1 0
| U2EIF | U2F | U2TXIF | U2RXIF | UTEIF | UNIF | UITXIF | UIRXIF |

Access R R R R R R R R

Reset 0 0 0 0 0 0 0 0

Bit 7 - U2EIF UART2 Framing Error Interrupt Flag3®
Value Description
1 Interrupt has occurred
0 Interrupt event has not occurred

Bit 6 - U2IF UART2 Interrupt Flagt®

Value Description
1 Interrupt has occurred
0 Interrupt event has not occurred

Bit 5 - U2TXIF UART2 Transmit Interrupt Flag4)

VEINS Description
1 Interrupt has occurred
0 Interrupt event has not occurred

Bit 4 - U2RXIF UART 2 Receive Interrupt Flag

Value Description
1 Interrupt has occurred
0 Interrupt event has not occurred

Bit 3 - U1EIF UART1 Framing Error Interrupt Flag(®

Value Description
1 Interrupt has occurred
0 Interrupt event has not occurred

Bit 2 - U1IF UART1 Interrupt Flag(®

VEINS Description
1 Interrupt has occurred
0 Interrupt event has not occurred

Bit 1 - U1TXIF UART1 Transmit Interrupt Flag®

Value Description
1 Interrupt has occurred
0 Interrupt event has not occurred

Bit 0 - UTRXIF UART 1 Receive Interrupt Flag®

Value Description
1 Interrupt has occurred
0 Interrupt event has not occurred
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Notes:

1. Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its
corresponding enable bit or the global enable bit. User software must ensure the appropriate
interrupt flag bits are clear prior to enabling an interrupt.

2. UxIFis a read-only bit. To clear the interrupt condition, all bits in the UxUIR register must be
cleared.

3. UxEIFis a read-only bit. To clear the interrupt condition, all bits in the UXERR register must be
cleared.

4, UxTXIF and UxRXIF are read-only bits and cannot be set/cleared by software.
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11.13.24 PIR7

Name: PIR7
Address: 0x470

Peripheral Interrupt Request Register 7

Bit 7 6 5 4 3 2 1 0

| | 12CTIEIF | 12C1IF | 12CITXIF [ 12CIRXIF | SPIIF | SPITXIF | SPITRXIF |
Access R R R R R R R
Reset 0 0 0 0 0 0 0

Bit 6 - I2C1EIF 12C1 Error Interrupt Flag®
Value Description
1 Interrupt has occurred
0 Interrupt event has not occurred

Bit 5 - 12C1IF 12C1 Interrupt Flag®)

Value Description
1 Interrupt has occurred
0 Interrupt event has not occurred

Bit 4 - I2C1TXIF 12C1 Transmit Interrupt Flag(®

VEINS Description
1 Interrupt has occurred
0 Interrupt event has not occurred

Bit 3 - I2C1RXIF 12C1 Receive Interrupt Flag(®

Value Description
1 Interrupt has occurred
0 Interrupt event has not occurred

Bit 2 - SPI1IF SPI1 Interrupt Flagt®

Value Description
1 Interrupt has occurred
0 Interrupt event has not occurred

Bit 1 - SPI1TXIF SPI1 Transmit Interrupt Flag(3)

VEINS Description
1 Interrupt has occurred
0 Interrupt event has not occurred

Bit 0 - SPI1RXIF SPI1 Receive Interrupt Flag®

Value Description
1 Interrupt has occurred
0 Interrupt event has not occurred
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Notes:

1.

Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its
corresponding enable bit or the global enable bit. User software must ensure the appropriate
interrupt flag bits are clear prior to enabling an interrupt.

SPI1IF is a read-only bit. To clear the interrupt condition, all bits in the SPITINTF register must be
cleared.

SPIMTXIF and SPI1RXIF are read-only bits and cannot be set/cleared by software.

I2C1EIF is a read-only bit. To clear the interrupt condition, all bits in the I2C1ERR register must be
cleared.

I2C1IF is a read-only bit. To clear the interrupt condition, all bits in the I2C1PIR register must be
cleared.

I2C1TXIF and 12C1RXIF are read-only bits. To clear the interrupt condition, the CLRBF bit in
|I2C1STAT1 must be set.
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11.13.25 PIR8

Name: PIR8
Address: 0x471

Peripheral Interrupt Request Register 8

Bit 7 6 5 4 3 2 1 0

| | | | I3CIRIF | I3CTIEIF | I3CUIF | I3CITXIF | I3CIRXIF |
Access R R R R R
Reset 0 0 0 0 0

Bit 4 - I3C1RIF 13C1 Reset Interrupt Flag®
Value Description
1 Interrupt has occurred
0 Interrupt event has not occurred

Bit 3 - I3C1EIF 13C1 Error Interrupt Flag®®

Value Description
1 Interrupt has occurred
0 Interrupt event has not occurred

Bit 2 - I3C1IF 13C1 General Interrupt Flag®

VEINS Description
1 Interrupt has occurred
0 Interrupt event has not occurred

Bit 1 - I3C1TXIF 13C1 Transmit Interrupt Flag(®
Value Description
1 Interrupt has occurred
0 Interrupt event has not occurred

Bit 0 - I3C1RXIF 13C1 Receive Interrupt Flag(®

Value Description

1 Interrupt has occurred

0 Interrupt event has not occurred
Notes:

1. Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its
corresponding enable bit or the global enable bit. User software must ensure the appropriate
interrupt flag bits are clear prior to enabling an interrupt.

I3C1RIF is a read-only bit.

3. I3C1EIFis a read-only bit. To clear the interrupt condition, all bits in the I3C1ERRIRx registers
must be cleared.

4. 13C1IF is a read-only bit. To clear the interrupt condition, all bits in the I3C1PIRx registers must be
cleared.

5. 13C1TXIF is a read-only bit. The interrupt flag is cleared when I3CxTXB Transmit Buffer becomes
full.

6. I3C1RXIFis a read-only bit. The interrupt flag is cleared when I3CxRXB Receive Buffer becomes
empty.
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11.13.26 PIR9

Name: PIR9
Address: 0x472

Peripheral Interrupt Request Register 9

Bit 7 6 5 4 3 2 1 0
| ADTIF | ADIF | HLVDIF | I3C2RIF | I3C2EIF | I3C2IF | I3C2TXIF | I3C2RXIF |

Access  R/W/HS R/W/HS R/W/HS R R R R R

Reset 0 0 0 0 0 0 0 0

Bit 7 - ADTIF ADC Threshold Interrupt Flag
Value Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred

Bit 6 - ADIF ADC Interrupt Flag

Value Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred

Bit 5 - HLVDIF High/Low-Voltage Detect Enable Flag

VEINS Description
1 Interrupt has occurred (must be cleared by software)
0 Interrupt event has not occurred

Bit 4 - I3C2RIF 13C2 Reset Interrupt Flag®

Value Description
1 Interrupt has occurred
0 Interrupt event has not occurred

Bit 3 - I3C2EIF 13C2 Error Interrupt Flag®

Value Description
1 Interrupt has occurred
0 Interrupt event has not occurred

Bit 2 - I3C2IF 13C2 General Interrupt Flag®

VEINS Description
1 Interrupt has occurred
0 Interrupt event has not occurred

Bit 1 - I3C2TXIF 13C2 Transmit Interrupt Flag(®

Value Description
1 Interrupt has occurred
0 Interrupt event has not occurred

Bit 0 - I3C2RXIF 13C2 Receive Interrupt Flag(®

Value Description
1 Interrupt has occurred
0 Interrupt event has not occurred
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Notes:

1.

Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its
corresponding enable bit or the global enable bit. User software must ensure the appropriate
interrupt flag bits are clear prior to enabling an interrupt.

I3C2RIF is a read-only bit.

I3C2EIF is a read-only bit. To clear the interrupt condition, all bits in the I3C1ERRIRX registers
must be cleared.

I3C2IF is a read-only bit. To clear the interrupt condition, all bits in the I3C1PIRx registers must be
cleared.

I3C2TXIF is a read-only bit. The interrupt flag is cleared when I3CxTXB Transmit Buffer becomes
full.

I3C2RXIF is a read-only bit. The interrupt flag is cleared when I3CxRXB Receive Buffer becomes
empty.
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11.13.27 IPRO

Name: IPRO
Address: 0x47D

Peripheral Interrupt Request Register 0

Bit 7 6 5 4 3 2 1 0

| DMATAIP | DMATORIP [DMATDCNTIPIDMATSCNTIP| INT2IP | INT1IP [ INTOIP [ Sswip |
Access  R/W R/W RIW R/W RIW R/W R/W R/W
Reset 1 1 1 1 1 1 1 1

Bit 7 - DMA1AIP DMAT1 Abort Interrupt Priority
Value Description
1 High Priority
0 Low Priority

Bit 6 - DMA1ORIP DMAT1 Overrun Interrupt Priority

Value Description
1 High Priority
0 Low Priority

Bit 5 - DMA1DCNTIP DMA1 Destination Count Interrupt Priority

VEINS Description
1 High Priority
0 Low Priority

Bit 4 - DMA1SCNTIP DMA1 Source Count Interrupt Priority
Value Description
1 High Priority
0 Low Priority

Bit 3 - INT2IP External Interrupt 2 Interrupt Priority

Value Description
1 High Priority
0 Low Priority

Bit 2 - INT1IP External Interrupt 1 Interrupt Priority

VEINS Description
1 High Priority
0 Low Priority

Bit 1 - INTOIP External Interrupt O Interrupt Priority

Value Description
1 High Priority
0 Low Priority

Bit 0 - SWIP Software Interrupt Priority

Value Description
1 High Priority
0 Low Priority
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11.13.28 IPR1

Name: IPR1
Address: 0x47E

Peripheral Interrupt Priority Register 1

Bit 7 6 5 4 3 2 1 0

| DMA3AIP | DMA3ORIP [DMA3DCNTIP[DMA3SCNTIP| DMA2AIP | DMA20ORIP [DMA2DCNTIP[DMA2SCNTIP|
Access  R/W R/W RIW R/W R/W R/W R/W R/W
Reset 1 1 1 1 1 1 1 1

Bit 7 - DMA3AIP DMAS3 Abort Interrupt Priority
Value Description
1 High Priority
0 Low Priority

Bit 6 - DMA3ORIP DMAS3 Overrun Interrupt Priority

Value Description
1 High Priority
0 Low Priority

Bit 5 - DMA3DCNTIP DMA3 Destination Count Interrupt Priority

VEINS Description
1 High Priority
0 Low Priority

Bit 4 - DMA3SCNTIP DMA3 Source Count Interrupt Priority
Value Description
1 High Priority
0 Low Priority

Bit 3 - DMA2AIP DMAZ2 Abort Interrupt Priority

Value Description
1 High Priority
0 Low Priority

Bit 2 - DMA20ORIP DMA2 Overrun Interrupt Priority

VEINS Description
1 High Priority
0 Low Priority

Bit 1 - DMA2DCNTIP DMA2 Destination Count Interrupt Priority

Value Description
1 High Priority
0 Low Priority

Bit 0 - DMA2SCNTIP DMA2 Source Count Interrupt Priority

Value Description
1 High Priority
0 Low Priority
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11.13.29 IPR2

Name: IPR2
Address: 0x47F

Peripheral Interrupt Priority Register 2

Bit 7 6 5 4 3 2 1 0
| ACTIP [ SCANIP | CRCIP [ NVMIP DMA4AIP | DMA4ORIP [DMA4DCNTIP|DMA4SCNTIP
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 1 1 1 1 1 1 1 1

Bit 7 - ACTIP Active Clock Tuning Interrupt Priority
Value Description
1 High Priority
0 Low Priority

Bit 6 - SCANIP Memory Scanner Interrupt Priority
Value Description
1 High Priority
0 Low Priority

Bit 5 - CRCIP CRC Interrupt Priority

VEINS Description
1 High Priority
0 Low Priority

Bit 4 - NVMIP NVM Interrupt Priority

Value Description
1 High Priority
0 Low Priority

Bit 3 - DMA4AIP DMA4 Abort Interrupt Priority

Value Description
1 High Priority
0 Low Priority

Bit 2 - DMA4ORIP DMA4 Overrun Interrupt Priority

VEINS Description
1 High Priority
0 Low Priority

Bit 1 - DMA4DCNTIP DMA4 Destination Count Interrupt Priority

Value Description
1 High Priority
0 Low Priority

Bit 0 - DMA4SCNTIP DMA4 Source Count Interrupt Priority

Value Description
1 High Priority
0 Low Priority
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11.13.30IPR3

Name: IPR3
Address: 0x480

Peripheral Interrupt Priority Register 3

Bit 7 6 5 4 3 2 1 0
| TMRIGIP [ TMR1IP | TMROIP [ 10CIP VDDIO3IP | VDDIO2IP OSFIP CSWIP
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 1 1 1 1 1 1 1 1

Bit 7 - TMR1GIP TMR1 Gate Interrupt Priority
Value Description
1 High Priority
0 Low Priority

Bit 6 - TMR1IP TMR1 Interrupt Priority
Value Description
1 High Priority
0 Low Priority

Bit 5 - TMROIP TMRO Interrupt Priority

VEINS Description
1 High Priority
0 Low Priority

Bit 4 - IOCIP Interrupt-on-Change Interrupt Priority
Value Description
1 High Priority
0 Low Priority

Bit 3 - VDDIO3IP VDDIO3 Interrupt Priority

Value Description
1 High Priority
0 Low Priority

Bit 2 - VDDIO2IP VDDIO?2 Interrupt Priority

VEINS Description
1 High Priority
0 Low Priority

Bit 1 - OSFIP Oscillator Failure Interrupt Priority

Value Description
1 High Priority
0 Low Priority

Bit 0 - CSWIP Clock Switch Interrupt Priority

Value Description
1 High Priority
0 Low Priority
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11.13.31IPR4

Name: IPR4
Address: 0x481

Peripheral Interrupt Priority Register 4

Bit 7 6 5 4 3 2 1 0
| PWMI1IP [ PWMIPIP | CCP2IP [ CCP1IP TU16BIP TU16AIP TMRA4IP TMR2IP
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 1 1 1 1 1 1 1 1

Bit 7 - PWM1IP PWM1 Parameter Interrupt Priority
Value Description
1 High Priority
0 Low Priority

Bit 6 - PWM1PIP PWM1 Period Interrupt Priority
Value Description
1 High Priority
0 Low Priority

Bit 5 - CCP2IP CCP2 Interrupt Priority

VEINS Description
1 High Priority
0 Low Priority

Bit 4 - CCP1IP CCP1 Interrupt Priority
Value Description
1 High Priority
0 Low Priority

Bit 3 - TU16BIP 16-bit Universal Timer B Interrupt Priority

Value Description
1 High Priority
0 Low Priority

Bit 2 - TU16AIP 16-bit Universal Timer A Interrupt Priority

VEINS Description
1 High Priority
0 Low Priority

Bit 1 - TMR4IP TMR4 Interrupt Priority

Value Description
1 High Priority
0 Low Priority

Bit 0 - TMR2IP TMR2 Interrupt Priority

Value Description
1 High Priority
0 Low Priority
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11.13.32 IPR5

Name: IPR5
Address: 0x482

Peripheral Interrupt Priority Register 5

Bit 7 6 5 4 3 2 1 0
| locvip [ cLc4lP | CLG3IP [ CLC2IP CLC1IP CWGTIP PWM2IP | PWM2PIP
Access  R/W R/W RIW R/W RIW R/W R/W RIW
Reset 1 1 1 1 1 1 1 1

Bit 7 - IOCVIP Virtual Ports Interrupt-on-Change Interrupt Priority
Value Description
1 High Priority
0 Low Priority

Bit 6 - CLC4IP CLC4 Interrupt Priority
Value Description
1 High Priority
0 Low Priority

Bit 5 - CLC3IP CLC3 Interrupt Priority

VEINS Description
1 High Priority
0 Low Priority

Bit 4 - CLC2IP CLC2 Interrupt Priority
Value Description
1 High Priority
0 Low Priority

Bit 3 - CLC1IP CLC1 Interrupt Priority

Value Description
1 High Priority
0 Low Priority

Bit 2 - CWG1IP CWG1 Interrupt Priority

VEINS Description
1 High Priority
0 Low Priority

Bit 1 - PWM2IP PWM2 Parameter Interrupt Priority

Value Description
1 High Priority
0 Low Priority

Bit 0 - PWM2PIP PWM2 Period Interrupt Priority

Value Description
1 High Priority
0 Low Priority
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11.13.33 IPR6

Name: IPR6
Address: 0x483

Peripheral Interrupt Priority Register 6

Bit 7 6 5 4 3 2 1 0
| U2EP [ U2IP | U2TXIP [ U2RXIP U1EIP u1Ip UTTXIP UTRXIP
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 1 1 1 1 1 1 1 1

Bit 7 - U2EIP UART2 Framing Error Interrupt Priority
Value Description
1 High Priority
0 Low Priority

Bit 6 - U2IP UART2 Interrupt Priority
Value Description
1 High Priority
0 Low Priority

Bit 5 - U2TXIP UART2 Transmit Interrupt Priority

VEINS Description
1 High Priority
0 Low Priority

Bit 4 - U2RXIP UART 2 Receive Interrupt Priority
Value Description
1 High Priority
0 Low Priority

Bit 3 - UT1EIP UART1 Framing Error Interrupt Priority

Value Description
1 High Priority
0 Low Priority

Bit 2 - U1IP UART1 Interrupt Priority

VEINS Description
1 High Priority
0 Low Priority

Bit 1 - U1TXIP UART1 Transmit Interrupt Priority

Value Description
1 High Priority
0 Low Priority

Bit 0 - UTRXIP UART 1 Receive Interrupt Priority

Value Description
1 High Priority
0 Low Priority
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11.13.34 IPR7

Name: IPR7
Address: 0x484

Peripheral Interrupt Priority Register 7

Bit 7 6 5 4 3 2 1 0

| | 12CIEIP | 12C1IP | 12C1TXIP [ I2CIRXIP | SPIMIP | SPHUTXIP | SPIRXIP |
Access R/W RIW R/W R/W R/W R/W R/W
Reset 1 1 1 1 1 1 1

Bit 6 - I2C1EIP 12C1 Error Interrupt Priority
Value Description
1 High Priority
0 Low Priority

Bit 5 - 12C1IP 12C1 Interrupt Priority

Value Description
1 High Priority
0 Low Priority

Bit 4 - 12C1TXIP 12C1 Transmit Interrupt Priority

VEINS Description
1 High Priority
0 Low Priority

Bit 3 - I2C1RXIP 12C1 Receive Interrupt Priority
Value Description
1 High Priority
0 Low Priority

Bit 2 - SPIM1IP SPI1 Interrupt Priority

Value Description
1 High Priority
0 Low Priority

Bit 1 - SPI1TXIP SPI1 Transmit Interrupt Priority

VEINS Description
1 High Priority
0 Low Priority

Bit 0 - SPI1RXIP SPI1 Receive Interrupt Priority

Value Description
1 High Priority
0 Low Priority
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11.13.35IPR8

Name: IPR8
Address: 0x485

Peripheral Interrupt Priority Register 8

Bit 7 6 5 4 3 2 1 0
| | | | IBCIRIP | I3CIEIP | 13C1IP | I3CITXIP | I3CIRXIP |
Access R/W R/W R/W R/W R/W
Reset 1 1 1 1 1

Bit 4 - I3C1RIP I3C1 Reset Interrupt Priority
Value Description
1 High Priority
0 Low Priority

Bit 3 - I3C1EIP I3C1 Error Interrupt Priority

Value Description
1 High Priority
0 Low Priority

Bit 2 - I3C1IP 13C1 General Interrupt Priority

VEINS Description
1 High Priority
0 Low Priority

Bit 1 - I3C1TXIP I13C1 Transmit Interrupt Priority

Value Description
1 High Priority
0 Low Priority

Bit 0 - I3C1RXIP 13C1 Receive Interrupt Priority

Value Description
1 High Priority
0 Low Priority
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11.13.36 IPR9

Name: IPR9
Address: 0x486

Peripheral Interrupt Priority Register 9

Bit 7 6 5 4 3 2 1 0
| ADTIP [ ADIP [ HLVDIP | I3C2RIP I3C2EIP I3C2IP I3C2TXIP_ | I3C2RXIP
Access  R/W R/W R/W R/W R/W R/W R/W R/W
Reset 1 1 1 1 1 1 1 1

Bit 7 - ADTIP ADC Threshold Interrupt Priority
Value Description
1 High Priority
0 Low Priority

Bit 6 - ADIP ADC Interrupt Priority
Value Description
1 High Priority
0 Low Priority

Bit 5 - HLVDIP High/Low-Voltage Detect Priority Flag

VEINS Description
1 High Priority
0 Low Priority

Bit 4 - I3C2RIP [3C2 Reset Interrupt Priority

Value Description
1 High Priority
0 Low Priority

Bit 3 - I3C2EIP 13C2 Error Interrupt Priority

Value Description
1 High Priority
0 Low Priority

Bit 2 - I3C2IP 13C2 General Interrupt Priority

VEINS Description
1 High Priority
0 Low Priority

Bit 1 - I3C2TXIP 13C2 Transmit Interrupt Priority

Value Description
1 High Priority
0 Low Priority

Bit 0 - I3C2RXIP 13C2 Receive Interrupt Priority

Value Description
1 High Priority
0 Low Priority
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11.14 Register Summary - Interrupts

I S T T N S S N

0x0376
0x0377

0x045F
0x0460
0x0461
0x0462

0x0463

0x0466

0x0469
0x046A
0x046B
0x046C
0x046D
0x046E
0x046F
0x0470
0x0471

0x0472
0x0473
0x0474
0x0475
0x0476
0x0477
0x0478
0x0479
0x047A
0x047B
0x047C
0x047D
0x047E
0x047F
0x0480
0x0481

0x0482
0x0483
0x0484
0x0485
0x0486
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SHADCON

Reserved

IVTLOCK
INTCONO
INTCON1

IVTAD

IVTBASE

PIRO
PIR1
PIR2
PIR3
PIR4
PIR5
PIR6
PIR7
PIR8
PIR9
PIEO
PIE1
PIE2
PIE3
PIE4
PIES
PIE6
PIE7
PIE8
PIE9
IPRO
IPR1
IPR2
IPR3
IPR4
IPR5
IPR6
IPR7
IPR8
IPR9

7:0
7:0
7:0
7:0
15:8
23:16
7:0
15:8
23:16
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0

GIE/GIEH GIEL IPEN
STAT[1:0]
IVTADL[7:0]
IVTADH[7:0]
IVTBASEL[7:0]
IVTBASEH[7:0]
DMATAIF  DMATORIF DMA1DCNTIF DMATSCNTIF  INT2IF
DMA3AIF  DMA3ORIF DMA3DCNTIF DMA3SCNTIF  DMA2AIF
ACTIF SCANIF CRCIF NVMIF DMAJAIF
TMR1GIF TMRI1IF TMROIF IOCIF VDDIO3IF
PWM1IF PWM1PIF CCP2IF CCP1IF TU16BIF
IOCVIF CLCAIF CLC3IF CLC2IF CLC1IF
U2EIF U2IF U2TXIF U2RXIF UTEIF
12C1EIF 12C1IF 12C1TXIF 12C1RXIF
I3C1RIF I3C1EIF
ADTIF ADIF HLVDIF I3C2RIF I3C2EIF
DMATAIE ~ DMATORIE DMATDCNTIE DMATSCNTIE  INT2IE
DMA3AIE  DMA3ORIE DMA3DCNTIE DMA3SCNTIE  DMA2AIE
ACTIE SCANIE CRCIE NVMIE DMAJAIE
TMR1GIE TMRITIE TMROIE IOCIE VDDIO3IE
PWM1IE PWM1PIE CCP2IE CCP1IE TU16BIE
IOCVIE CLC4IE CLC3IE CLC2IE CLC1IE
U2EIE U2IE U2TXIE U2RXIE UTEIE
12C1EIE 12C1IE 12C1TXIE 12C1RXIE
I3CTRIE I3C1EIE
ADTIE ADIE HLVDIE I3C2RIE I3C2EIE
DMATAIP  DMATORIP DMATDCNTIP DMA1SCNTIP  INT2IP
DMA3AIP  DMA3ORIP DMA3DCNTIP DMA3SCNTIP  DMA2AIP
ACTIP SCANIP CRCIP NVMIP DMAJAIP
TMR1GIP TMR1IP TMROIP 10CIP VDDIO3IP
PWM1IP  PWM1PIP ccp2Ip CCP1IP TU16BIP
IOCVIP cLCalP CLC3IP cLC2IP cLC1IP
U2EIP u2ip u2TXIP U2RXIP UTEIP
12C1EIP 12C1IP 12C1TXIP I2C1RXIP
I3C1RIP I3C1EIP
ADTIP ADIP HLVDIP I3C2RIP I3C2EIP

SHADLO

IVTLOCKED
INT2EDG INT1EDG INTOEDG
IVTADU[4:0]
IVTBASEU[4:0]
INT1IF INTOIF SWIF

DMA20RIF DMA2DCNTIF DMA2SCNTIF
DMAA4ORIF  DMAADCNTIF DMA4SCNTIF

VDDIO2IF OSFIF CSWIF
TUT6AIF TMR4IF TMR2IF
CWGT1IF PWM2IF PWM2PIF

U1IF U1TTXIF U1RXIF
SPITIF SPINTXIF SPI1RXIF
I3C1IF I3C1TXIF I3C1RXIF
I3C2IF 13C2TXIF I3C2RXIF
INTTIE INTOIE SWIE

DMA20RIE DMA2DCNTIE DMA2SCNTIE
DMA4ORIE DMA4DCNTIE DMA4SCNTIE

VDDIOZ2IE OSFIE CSWIE
TU16AIE TMR4IE TMR2IE
CWG1IE PWM2IE PWM2PIE

U1IE U1TXIE U1RXIE
SPIMIE SPITTXIE SPITRXIE
13CTIE I3C1TXIE I3CTRXIE
I13C2IE I3C2TXIE I3C2RXIE
INT1IP INTOIP SWIP

DMA20RIP DMA2DCNTIP DMA2SCNTIP
DMA4ORIP DMAADCNTIP DMAA4SCNTIP

VDDIO2IP OSFIP CSWIP

TU16AIP TMR4IP TMR2IP

CWG1IP PWM2IP PWM2PIP
u1ip U1TTXIP U1RXIP
SPITIP SPINTXIP SPI1RXIP
13C1IP 13C1TXIP I3CTRXIP
13C2IP 13C2TXIP I3C2RXIP
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12. OSC - Oscillator Module (With Fail-Safe Clock Monitor)

The oscillator module contains multiple clock sources and selection features that allow it to be used
in a wide range of applications while maximizing performance and minimizing power consumption.

Clock sources can be supplied either internally or externally. External sources include:

+ External clock oscillators

* Quartz crystal resonators

« Ceramic resonators

+ Secondary Oscillator (SOSC)

Internal sources include:

+ High-Frequency Internal Oscillator (HFINTOSC)

+ Low-Frequency Internal Oscillator (LFINTOSC)

+ Analog-to-Digital Converter RC Oscillator (ADCRC)

Special features of the oscillator module include:

+ Oscillator Start-up Timer (OST): Ensures stability of quartz crystal or ceramic resonators
+ 4x Phase-Locked Loop (PLL): Frequency multiplier for external clock sources

« HFINTOSC Frequency Adjustment: Provides the ability to adjust the HFINTOSC frequency

+ Clock switching: Allows the system clock to switch between internal or external sources via
software during run time

+ Fail-Safe Clock Monitor (FSCM): Designed to detect a failure of the system clock (FOSC), primary
external clock (EXTOSC) or secondary external clock (SOSC) sources. The FSCM automatically
switches to an internal clock source upon detection of an FOSC failure.

The Reset Oscillator (RSTOSC) Configuration bits determine the type of oscillator that will be used
when the device runs after a Reset, including when the device is first powered up (see the table
below).

Table 12-1. RSTOSC Selection Table
SFR Reset Values

RSTOSC Clock Source
NOSC/ COSC NDIV / CDIV OSCFRQ
111 111 0000 (1:1) EXTOSC per FEXTOSC
110 110 0010 (4:1) HFINTOSC @ 1 MHz
0010 (4 MHz)
101 101 0000 (1:1) LFINTOSC
100 100 0000 (1:1) SOSC
011 Reserved
010 010 0000 (1:1) 0010 (4 MHz) EXTOSC + 4x PLL(™
001 Reserved
000 000 0000 (1:1) 1000 (64 MHz) HFINTOSC @ 64 MHz
Note:

1. EXTOSC must meet the PLL specifications (see the data sheet Electrical Specifications).

If an external clock source is selected by the RSTOSC bits, the External Oscillator Mode Select
(FEXTOSC) Configuration bits must be used to select the External Clock mode. These modes include:

+ ECL: External Clock Low-Power mode
+ ECM: External Clock Medium-Power mode
+ ECH: External Clock High-Power mode
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« HS: High-Gain Crystal or Ceramic Resonator mode (up to 32 MHz)

The ECH, ECM and ECL modes rely on an external logic-level signal as the device clock source.

The HS mode relies on an external quartz crystal or ceramic resonator as the device clock source.
Each mode is optimized for a specific frequency range. The internal oscillator block produces both
low-frequency and high-frequency clock signals, designated LFINTOSC and HFINTOSC, respectively.
Multiple system operating frequencies may be derived from these clock sources.

The figure below illustrates a block diagram of the oscillator module.

Figure 12-1. Clock Source Block Diagram

PLLEN
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( 77777 |-f |:7|1\]T7657c7777"} Reserved— 000 2 0001 Idle —¢
I | 1
| ——1 0000
i FR(%[S:O] |
I| 1,2,4,8,1216,32,48,64 || vy —
! MHz !
} Oscillator } LFINTOSC is usedto, FSCM
,,,,,,,,,,,,,,,,,, monitor system clock
77777777777777777 » To Peripherals
| MFINTOSC ! » To Peripherals
I | - .
L pl| 31.25kHz and 500 kHz |! > ToPeripherals
! Oscillator \ > To Peripherals
1 ! » To Peripherals
- -
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! I
L 1 MHz I SFINTOSC is used for NVM NUM
} Oscillator } Write / Erase Operations o
! I

12.1 Clock Source Types

Clock sources can be classified as external or internal.

External clock sources rely on external circuitry for the clock source to function. Examples of
external clock sources include:

+ Digital oscillator modules

* Quartz crystal resonators

+ Ceramic resonators

A 4x PLL is provided for use with external clock sources.

Internal clock sources are contained within the oscillator module. The internal oscillator block
features two internal oscillators that are used to generate internal system clock sources. The
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High-Frequency Internal Oscillator (HFINTOSC) can produce a wide range of frequencies which are
determined via the HFINTOSC Frequency Selection (OSCFRQ) register. The Low-Frequency Internal
Oscillator (LFINTOSC) generates a fixed nominal 31 kHz clock signal. The internal oscillator block also
features an RC oscillator which is dedicated to the Analog-to-Digital Converter (ADC).

The oscillator module allows the system clock source or system clock frequency to be changed
through clock switching. Clock source selections are made via the New Oscillator Source Request
(NOSC) bits. Once the clock source has been selected, the clock source base frequency can be
divided (post-scaled) via the New Divider Selection Request (NDIV) bits.

The instruction clock (Fosc/4) can be routed to the OSC2/CLKOUT pin when the pin is not in use.
The Clock Out Enable (CLKOUTEN) Configuration bit controls the functionality of the CLKOUT signal.
When CLKOUTEN is clear (CLKOUTEN = 0), the CLKOUT signal is routed to the OSC2/CLKOUT pin.
When CLKOUTEN is set (CLKOUTEN = 1), the OSC2/CLKOUT pin functions as an I/0 pin.

12.1.1 External Clock Sources

An external clock source can be used as the device system clock by performing one of the following
actions:

+ Program the RSTOSC and FEXTOSC Configuration bits to select an external clock source that will
be used as the default system clock upon a device Reset.

+  Write the NOSC and NDIV bits to switch the system clock source during run time.

12.1.1.1 EC Mode
The External Clock (EC) mode allows an externally generated logic level signal to be the system clock
source. When operating in EC mode, an external clock source is connected to the OSC1/CLKIN input
pin. The OSC2/CLKOUT pin is available as a general purpose /0 pin or as the CLKOUT signal pin.
EC mode provides three Power mode selections:
+ ECH: High-Power mode
+ ECM: Medium-Power mode
+ ECL: Low-Power mode
The Oscillator Start-up Timer (OST) is disabled when EC mode is selected; therefore, ther®e is no
delay in operation after a Power-on Reset (POR) or wake-up from Sleep. Because the PIC MCU
design is fully static, stopping the external clock input will have the effect of halting the device while

leaving all data intact. Upon restarting the external clock, the device will resume operation as if no
time had elapsed.

The figure below shows the pin connections for EC mode.
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Figure 12-2. External Clock (EC) Mode Operation

External clock PIC® MCU
source

OSC1/CLKIN

CLKOUT (Fosc/4) <—>|X 0OSC2/CLKOUT
or 110"

Note:
1. Output depends on the setting of the CLKOUTEN Configuration bit.

12.1.1.2 HS Modes

The High Speed (HS) oscillator modes support the use of quartz crystals or ceramic resonators
connected to the OSC1 and OSC2 pins, as shown in the figures below. These modes work best

for crystals or ceramic resonators that require operating frequencies from 4 MHz up to 32 MHz.
Depending on the operating frequency, the appropriate HS power mode (8, 16, 24, or 32 MHz)
should be selected to control the drive strength and optimize current consumption, which can help
eliminate the need of an external series resistor.

The figures below show typical circuits for quartz crystal and ceramic resonators.

Figure 12-3. Quartz Crystal Operation
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Crystal = § Re® ; ; Sleep
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CLKOUT

—3)

A

@ MICROCHIP

180



Notes:
1. Aseries resistor (Rs) may be required for quartz crystals with low drive level.

2. The value of Rg varies with the Oscillator mode selected (typically between 2 MQ and 10 MQ).

Figure 12-4. Ceramic Resonator Operation

®
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CLKOUT
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A
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Notes:
1. Aseries resistor (Rs) may be required for ceramic resonators with low drive level.

2. The value of Rg varies with the Oscillator mode selected (typically between 2 MQ and 10 MQ).

3. An additional parallel feedback resistor (Rp) may be required for proper ceramic resonator
operation.

12.1.1.3 Oscillator Start-Up Timer (OST)
The Oscillator Start-up Timer (OST) ensures that the oscillator circuit has started and is providing
a stable system clock to the oscillator module. Quartz crystals or ceramic resonators do not
start immediately and may take a few hundred cycles before the oscillator becomes stable. The
oscillations must build up until sufficient amplitude is generated to properly toggle between logic
states. The OST counts 1024 oscillation periods from the OSC1 input following a Power-on Reset
(POR), Brown-out Reset (BOR), or wake-up from Sleep event to ensure that the oscillator has
enough time to reach stable and accurate operation. Once the OST has completed its count, module
hardware sets the External Oscillator Ready (EXTOR) bit, indicating that the oscillator is stable and
ready to use.

12.1.1.4 4x PLL
The oscillator module contains a 4x Phase-Locked Loop (PLL) circuit that can be used with the
external clock sources to provide a system clock source. The input frequency for the PLL must fall
within a specified range. See the “PLL Specifications” table found in the “Electrical Specifications”
chapter for more information.

The PLL can be enabled for use through one of two methods:

1. Program the RSTOSC Configuration bits to select the “EXTOSC with 4x PLL" option.
2. Write the NOSC bits to select the "EXTOSC with 4x PLL" option.
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12.1.1.5 Secondary Oscillator

The Secondary Oscillator (SOSC) is a separate external oscillator block that can be used as an
alternate system clock source or as a Timer clock source. The SOSC is optimized for 32.768 kHz and
can be used with either an external quartz crystal connected to the SOSCI and SOSCO pins or with
an external clock source connected to the SOSCI pin, as shown in the figures below.

Figure 12-5. SOSC 32.768 kHz Quartz Crystal Oscillator Operation
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Figure 12-6. SOSC 32.768 kHz External Clock Operation
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The SOSC can be enabled through one of two methods:

+ Programming the RSTOSC Configuration bits to select the SOSC as the system clock.
+  Programming the NOSC bits to select the SOSC during run time.

Two Power modes are available for the secondary oscillator and are selected using the Secondary
Oscillator Power Mode Select (SOSCPWR) bit. When SOSCPWR is clear (SOSCPWR = 0), the oscillator
operates in Low-Power mode, which is ideal for crystal oscillators with low drive strength. When
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SOSCPWR is set (SOSCPWR = 1), the oscillator operates in High-Power mode, which is ideal for
crystal oscillators with high drive strength or high Equivalent Series Resistance (ESR).

Important: The SOSC module must be disabled before changing Power modes. Changes
to the Power mode during operation may result in undefined oscillator behavior.

12.1.1.5.1 SOSC Start-Up Timing

The SOSC utilizes the Oscillator Start-up Timer (OST) to ensure that the 32.768 kHz crystal oscillator

has started and is available for use. Since crystal oscillators do not start immediately and may take a
few hundred cycles before achieving stable operation, the OST counts 1024 oscillation periods from

the SOSCI input. Once the OST completes its count, module hardware sets the Secondary Oscillator

Ready (SOR) bit, indicating that the SOSC is stable and ready to use.

12.1.2 Internal Clock Sources
The internal oscillator block contains two independent oscillators that can produce two internal
system clock sources:
+ High-Frequency Internal Oscillator (HFINTOSC)

+ Low-Frequency Internal Oscillator (LFINTOSC)

Internal oscillator selection is performed one of two ways:
1. Program the RSTOSC Configuration bits to select one of the INTOSC sources which will be used
upon a device Reset.

2. Write the New Oscillator Source Request (NOSC) bits to select an internal oscillator during run
time.

In INTOSC mode, the OSC1/CLKIN and OSC2/CLKOUT pins are available for use as a general purpose
I/0s, provided that no external oscillator is connected. The function of the OSC2/CLKOUT pin is
determined by the CLKOUTEN Configuration bit. When CLKOUTEN is set (CLKOUTEN = 1), the pin
functions as a general-purpose 1/0. When CLKOUTEN is clear (CLKOUTEN = 0), the system instruction
clock (Fosc/4) is available as an output signal on the pin.

12.1.2.1 HFINTOSC

The High-Frequency Internal Oscillator (HFINTOSC) is a factory-calibrated, precision digitally-
controlled internal clock source that produces a wide range of stable clock frequencies. The
HFINTOSC can be enabled through one of the following methods:

« Program the RSTOSC Configuration bits to select the HFINTOSC upon device Reset or power-up.
+  Write to the New Oscillator Source Request (NOSC) bits to select the HFINTOSC during run time.

The HFINTOSC frequency is selected via the HFINTOSC Frequency Selection (FRQ) bits. Fine-tuning
of the HFINTOSC is done via the HFINTOSC Frequency Tuning (TUN) bits. The HFINTOSC output
frequency can be divided (post-scaled) via the New Divider Selection Request (NDIV) bits.

12.1.2.1.1 HFINTOSC Frequency Tuning
The HFINTOSC frequency can be fine-tuned via the HFINTOSC Tuning (OSCTUNE) register. The
OSCTUNE register is used by Active Clock Tuning hardware or user software to provide small
adjustments to the HFINTOSC nominal frequency.

The OSCTUNE register contains the HFINTOSC Frequency Tuning (TUN) bits. The TUN bits default

to a 6-bit, two's compliment value of 0x00, which indicates that the oscillator is operating at the
selected frequency. When a value between 0x01 and 0x1F is written to the TUN bits, the HFINTOSC
frequency is increased. When a value between 0x3F and 0x20 is written to the TUN bits, the
HFINTOSC frequency is decreased.
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When the OSCTUNE register is modified, the oscillator will begin to shift to the new frequency. Code
execution continues during this shift. There is no indication that the frequency shift occurred.

Important: OSCTUNE tuning does not affect the LFINTOSC frequency.

12.1.2.2 MFINTOSC

The Medium-Frequency Internal Oscillator (MFINTOSC) generates two constant clock outputs (500
kHz and 31.25 kHz). The MFINTOSC clock signals are created from the HFINTOSC using dynamic
divider logic, which provides constant MFINTOSC clock rates regardless of selected HFINTOSC
frequency.

The MFINTOSC cannot be used as the system clock, but can be used as a clock source for certain
peripherals, such as a Timer.
12.1.2.3 LFINTOSC

The Low-Frequency Internal Oscillator (LFINTOSC) is a factory-calibrated 31 kHz internal clock
source.

The LFINTOSC can be used as a system clock source and may be used by certain peripheral modules
as a clock source. Additionally, the LFINTOSC provides a time base for the following:

+ Power-up Timer (PWRT)

+  Watchdog Timer (WDT)/Windowed Watchdog Timer (WWDT)

+ Fail-Safe Clock Monitor (FSCM)

The LFINTOSC is enabled through one of the following methods:

+ Program the RSTOSC Configuration bits to select LFINTOSC

+  Write the NOSC bits to select LFINTOSC during run time

12.1.2.4 SFINTOSC

The Specified-Frequency Internal Oscillator (SFINTOSC) generates a constant 1TMHz clock output. The
SFINTOSC clock signal is created from the HFINTOSC using dynamic divider logic, which provides
constant SFINTOSC clock rates regardless of the selected HFINTOSC frequency.

The SFINTOSC cannot be used as the system clock, but provides a constant 1 MHz clock signal that is
used for NVM Write and Erase operations. Additionally, SFINTOSC can be used as a clock source for
certain peripherals.

12.1.2.5 ADCRC

The Analog-to-Digital RC (ADCRC) oscillator is dedicated to the ADC module. ADCRC operates at a
fixed frequency of approximately 600 kHz and is used as a conversion clock source. The ADCRC
allows the ADC module to operate in Sleep mode, which can reduce system noise during the ADC
conversion. The ADCRC is automatically enabled when it is selected as the clock source for the ADC
module or when selected as the clock source of any peripheral that may use it. The ADCRC may also
be manually enabled via the ADC Oscillator Enable (ADOEN) bit, thereby avoiding start-up delays
when this source is used intermittently.

12.1.3 Oscillator Status and Manual Enable
The Oscillator Status (OSCSTAT) register displays the Ready status for each of the following

oscillators:
« External oscillator
« HFINTOSC
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+ MFINTOSC

* LFINTOSC
+ SOSC
+ ADCRC

The OSCSTAT register also displays the Ready status for the 4xPLL.

The HFINTOSC Oscillator Ready (HFOR) and MFINTOSC Oscillator Ready (MFOR) Status bits indicate
whether the respective oscillators are ready for use. Both clock sources are available for use at any
time but may require a finite amount of time before they have reached the specified accuracy levels.
When the HFINTOSC or MFINTOSC are ready and achieved the specified accuracy, module hardware
sets the HFOR/MFOR bits, respectively.

When a new value is loaded into the OSCFRQ register, the HFOR and MFOR bits are cleared by
hardware and will be set again once the respective oscillator is ready. During pending OSCFRQ
changes, the MFINTOSC will stall at either a high or a low state until the HFINTOSC locks in the new
frequency and resumes operation.

The Oscillator Enable (OSCEN) register can be used to manually enable the following oscillators:
+ External oscillator

+ HFINTOSC
+  MFINTOSC
* LFINTOSC

+ S0SC

+ ADCRC

Important: OSCEN cannot be used to manually enable the 4xPLL.

12.2  Clock Switching

The system clock source can be switched between external and internal clock sources via software
using the New Oscillator Source Request (NOSC) and New Divider Selection Request (NDIV) bits. The
following sources can be selected:

+ External Oscillator (EXTOSC)

«  EXTOSC with 4x PLL

+ High-Frequency Internal Oscillator (HFINTOSC)
+ Low-Frequency Internal Oscillator (LFINTOSC)
+ Secondary Oscillator (SOSC)

The Clock Switch Enable (CSWEN) Configuration bit can be used to enable or disable the clock
switching capability. When CSWEN is set (CSWEN = 1), writes to NOSC and NDIV by user software will
allow the system clock to switch between sources or frequencies. When CSWEN is clear (CSWEN = 0),
writes to NOSC and NDIV are ignored, preventing the system clock from switching from one source
to another.

12.2.1 NOSC and NDIV Bits

The New Oscillator Source Request (NOSC) and New Divider Selection Request (NDIV) bits are used
to select the system clock source and clock frequency divider that will be used by the CPU and
peripherals (see the tables below).

185

@ MICROCHIP



When new values are written into NOSC and/or NDIV, the current oscillator selection will continue
to operate as the system clock while waiting for the new source to indicate that it is ready. Writes
to NDIV without changing the clock source (e.g., changing the HFINTOSC frequency from 1 MHz to 2
MHz) are handled in the same manner as a clock switch.

When the new oscillator selection is ready, the New Oscillator is Ready (NOSCR) bit and the Clock
Switch Interrupt Flag (CSWIF) are set by module hardware. If the Clock Switch Interrupt Enable
(CSWIE) bit is set (CSWIE = 1), an interrupt will be generated when CSWIF is set. Additionally, the
Oscillator Ready (ORDY) bit can be polled to determine that the clock switch has completed and the
new oscillator source has replaced the old source as the system clock.

Important: The CSWIF interrupt does not wake the device from Sleep.

Table 12-2. NOSC/COSC Clock Source Selection Table

NOSC / COSC Clock Source

111 EXTOSC(M
110 HFINTOSC®
101 LFINTOSC
100 SOSC

011 Reserved

010 EXTOSC + 4xPLL®)
001 Reserved

000 Reserved

Notes:
1. EXTOSC is configured via the FEXTOSC Configuration bits.

2. HFINTOSC frequency is determined by the FRQ bits.
3. EXTOSC must meet the PLL specifications (see the data sheet Electrical Specifications).

Table 12-3. NDIV/CDIV Clock Divider Selection Table

NDIV/ CDIV Clock Divider

1111-1010 Reserved
1001 512
1000 256
0111 128
0110 64
0101 32
0100 16
0011 8
0010 4
0001 2
0000 1

12.2.2 COSC and CDIV Bits
The Current Oscillator Source Select (COSC) bits and the Current Divider Select (CDIV) bits indicate
the current oscillator source and clock divider, respectively. When a new oscillator or divider is
requested via the NOSC/NDIV bits, the COSC and CDIV bits remain unchanged until the clock switch
actually occurs. When the switch actually occurs, hardware copies the NOSC and NDIV values into
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COSC and CDIV, the Oscillator Ready (ORDY) bit is set, and the NOSCR bit is cleared by hardware,
indicating that the clock switch is complete.

12.2.3 CSWHOLD
When the system oscillator changes frequencies, peripherals using the system clock may be
affected. For example, if the 12C module is actively using the system clock as its Serial Clock (SCL)
time base, changing the system clock frequency will change the SCL frequency. The Clock Switch
Hold (CSWHOLD) bit can be used to suspend a requested clock switch. In this example, software can
request a new clock source, use the CSWHOLD bit to suspend the switch, wait for the 12C bus to
become Idle, then reconfigure the SCL frequency based on the new clock source. Once the 12C has
been reconfigured, software can use CSWHOLD to complete the clock switch without causing any
issues with the I12C bus.

When CSWHOLD is set (CSWHOLD = 1), a write to NOSC and/or NDIV is accepted, but the clock
switch is suspended and does not automatically complete. While the switch is suspended, code
execution continues using the old (current) clock source. Module hardware will still enable the new
oscillator selection and set the NOSCR bit. Once the NOSCR bit is set, software will either:

+ clear CSWHOLD so that the clock switch can complete, or
+ copy the Current Oscillator Source Select (COSC) value into NOSC to abandon the clock switch.

When CSWHOLD is clear (CSWHOLD = 0), the clock switch will occur when the NOSCR bit is set.
When NOSCR is set, the CSWIF is also set, and if CSWIE is set, the generated interrupt will be serviced
using the new oscillator.

12.2.4 PLL Input Switch

Switching between the PLL and any non-PLL source is handled in the same manner as any other
clock source change.

When the NOSC selects a source with a PLL, the system continues to operate using the current
oscillator until the new oscillator is ready. When the new source is ready, the associated Status bit in
the Oscillator Status (OSCSTAT) register is set, and once the PLL is locked and ready for use, the PLL
is Ready (PLLR) bit is set. Once both the source and PLL are ready, the switch will complete.

12.2.5 Clock Switch and Sleep
If the NOSC/NDIV bits are written with new values and the device is put to Sleep before the clock
switch completes, the switch will not take place and the device will enter Sleep mode.

When the device wakes up from Sleep and CSWHOLD is clear (CSWHOLD = 0), the clock switch will
complete and the device will wake with the new clock active, setting CSWIF.

When the device wakes from Sleep and CSWHOLD is set (CSWHOLD = 1), the device will wake up
with the old clock active, and the new clock source will be requested again.

If Doze mode is in effect, the clock switch occurs on the next clock cycle regardless of whether or not
the CPU is active during that clock cycle.
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Figure 12-7. Clock Switch (CSWHOLD = 0)
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Figure 12-8. Clock Switch (CSWHOLD = 1)
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Figure 12-9. Clock Switch Abandoned
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12.3 Fail-Safe Clock Monitor (FSCM)

The Fail-Safe Clock Monitor (FSCM) allows the device to continue operating in the event of an
oscillator failure. The FSCM also provides diagnostic data pertaining to potential primary and
secondary oscillator failures. The FSCM serves three separate functions:

* Monitoring of Fosc using the FSCMFEV bit
+ Monitoring of EXTOSC (primary external oscillator) using the FSCMPEV bit
+ Monitoring of SOSC (secondary external oscillator) using the FSCMSEV bit

The primary external oscillator FSCM (FSCMP) is enabled by setting the Fail-Safe Clock Monitor

for Primary Crystal Oscillator (FCMENP) Configuration bit. The secondary external oscillator FSCM
(FSCMS) is enabled by setting the Fail-Safe Clock Monitor for Secondary Crystal Oscillator (FCMENS)
Configuration bit. The Fosc FSCM is enabled by setting the Fail-Safe Clock Monitor Enable for FOSC
(FCMEN) Configuration bit. The figure below shows the FSCM block diagram.
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Figure 12-10. FSCM Block Diagram
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12.3.1 Fail-Safe Detection

Each FSCM detects a failed oscillator by comparing the external oscillator to the FSCM sample clock.
The sample clock is generated by dividing the LFINTOSC by 64. The fail detector logic block contains
a latch that is set upon each falling edge of the external clock. The latch is cleared on the rising edge
of the sample clock. A failure is detected when a half-period of the sample clock elapses before the

external clock goes low and the corresponding FSCM failure status bit will be set.

12.3.2 Fail-Safe Operation - FOSC Fail-Safe Clock Monitor

When the system clock (Fosc) fails, the Oscillator Fail Interrupt Flag (OSFIF) bit of the PIR registers,

as well as the corresponding FSCM failure status (FSCMFEV) bit, will be set. If the Oscillator Fail
Interrupt Enable (OSFIE) bit was set, an interrupt will be generated when OSFIF is high. If enabled,
the Fosc Fail-Safe Clock Monitor will switch the system clock to HFINTOSC when a failure is detected
by overwriting the NOSC/COSC bits. The frequency of HFINTOSC will depend on the previous state
of the FRQ bits and the state of the NDIV/CDIV bits. Once a failure is detected, software can be

used to take steps to mitigate the repercussions of the oscillator failure. The FSCM will switch the
system clock to HFINTOSC, and the device will continue to operate from HFINTOSC until the external
oscillator has been restarted. Once the external source is operational, it is up to the user to confirm
that the clock source is stable and to switch the system clock back to the external oscillator using the
NOSC/NDIV bits.

12.3.3 Fail-Safe Operation - Primary and Secondary Fail-Safe Clock Monitors

When the primary external clock (EXTOSC) or the secondary external clock (SOSC) fail, the Oscillator
Fail Interrupt Flag (OSFIF) bit of the PIR registers will be set. Additionally, the corresponding FSCM
failure status bit (FSCMPEV or FSCMSEYV, respectively) will be set. If the Oscillator Fail Interrupt
Enable (OSFIE) bit has been set, an interrupt will be generated when OSFIF is high. It is important

to note that neither the primary or secondary Fail-Safe Clock Monitors will cause a clock switch to
occur in the event of a failure, and it is up to the user to address the clock fail event.
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12.3.4 Fail-Safe Clock Monitor Fault Injection

Each of the Fail-Safe Clock monitors on this device has its own respective Fault Injection bit. The
Fault Injection bit is used to verify in the software that the FSCM functions work properly and that
they will detect a clock failure during normal operation. If the FSCM Fault Injection bit is set, the
FSCM sample clock input will be blocked, forcing a clock failure. Writing to the FOSC FSCM Fault
Injection (FSCMFFI) bit will result in the system clock switching to HFINTOSC and the FSCMFEV bit
as well as the Oscillator Fail Interrupt Flag (OSFIF) of the PIR registers being set. Writing to the
primary and secondary external FSCM Fault Injection (FSCMPFI and FSCMSFI) bits will result in the
respective FSCM Fault Status (FSCMPEV and FSCMSEV) bits being set but the system clock will not
switch. Additionally, the Oscillator Fail Interrupt Flag (OSFIF) of the PIR registers will also be set.

12.3.5 Fail-Safe Condition Clearing
For the FOSC FSCM, the Fail-Safe condition is cleared after either a device Reset, execution of a
SLEEP instruction, or a change to the NOSC/NDIV bits. When switching to the external oscillator
or PLL, the Oscillator Start-up Timer (OST) is restarted. While the OST is running, the device
continues to operate from HFINTOSC. When the OST expires, the Fail-Safe condition is cleared after
successfully switching to the external clock source.

Important: Software must clear the OSFIF bit before switching to the external oscillator. If
the Fail-Safe condition still exists, the OSFIF bit will be set again by module hardware.

12.3.6 Reset or Wake-Up from Sleep
The FSCM is designed to detect an oscillator failure after the OST has expired. The OST is used after
waking up from Sleep or after any type of Reset, when in HS mode. If the device is using the EC
mode, the FSCM will be active as soon as the Reset or wake-up event has completed.

12.4 Active Clock Tuning (ACT)

Many applications, such as those using UART communication, require an oscillator with an accuracy
of £ 1% over the full temperature and voltage range. To meet this level of accuracy, the Active

Clock Tuning (ACT) feature utilizes the SOSC frequency of 32.768 kHz to adjust the frequency of the
HFINTOSC over voltage and temperature.

Important: Active Clock Tuning requires the use of a 32.768 kHz external oscillator
connected to the SOSCI/SOSCO pins.

Active Clock Tuning is enabled via the Active Clock Tuning Enable (ACTEN) bit. When ACTEN is set
(ACTEN = 1), the ACT module uses the SOSC time base to measure the HFINTOSC frequency and
uses the HFINTOSC Frequency Tuning (TUN) bits to adjust the HFINTOSC frequency. When ACTEN is
clear (ACTEN = 0), the ACT feature is disabled, and user software can utilize the TUN bits to adjust
the HFINTOSC frequency.

Important: When the ACT feature is enabled, the TUN bits are controlled directly through
module hardware and become read-only bits to user software. Writes to the TUN bits when
the ACT feature is enabled are ignored.

The figure below shows the Active Clock Tuning block diagram.
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Figure 12-11. Active Clock Tuning (ACT) Block Diagram
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12.4.1 ACT Lock Status

The Active Clock Tuning Lock Status (ACTLOCK) bit can be used to determine when the HFINTOSC
has been tuned. When ACTLOCK is set (ACTLOCK = 1), the HFINTOSC frequency has been locked
to within £ 1% of the nominal frequency. When ACTLOCK is clear (ACTLOCK = 0), the following
conditions may be true:

+ The HFINTOSC frequency has not been locked to within £ 1%
+ A device Reset occurred
« The ACT feature is disabled

Important: The ACTLOCK bit is read-only. Writes to ACTLOCK are ignored.

12.4.2 ACT Out-of-Range Status

When Active Clock Tuning is enabled, module hardware uses the TUN bits to achieve high accuracy
levels. If the module requires a TUN value outside of its range, the ACT Out-of-Range Status
(ACTORS) bit is set by hardware (ACTORS = 1).

The ACTORS bit will be set when:

+ The HFINTOSC is tuned to its lowest frequency as determined by the TUN bits and will require a
value lower than the TUN bits can provide to achieve accuracy within £ 1%.

+ The HFINTOSC is tuned to its highest frequency as determined by the TUN bits and will require a
value higher than the TUN bits can provide to achieve accuracy within + 1%.

When an ACT out-of-range event occurs, the HFINTOSC will continue to use the last TUN value until
the HFINTOSC frequency returns to the tunable range. Once the HFINTOSC returns to the tunable
range, module hardware clears the ACTORS bit.

Important: The ACTORS bit is read-only. Writes to ACTORS are ignored.
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12.4.3 ACT Update Disable

When Active Clock Tuning is enabled, the OSCTUNE register is continuously updated every ACT

clock cycle. The ACT Update Disable (ACTUD) bit can be used to suspend updates to the OSCTUNE
register. When ACTUD is set (ACTUD = 1), updates to OSCTUNE are suspended, although the module
continues to operate. The last value written to OSCTUNE is used for tuning, and the ACTLOCK bit

is continually updated for each ACT cycle. When ACTUD is clear (ACTUD = 0), the module updates
OSCTUNE register every ACT cycle.

12.4.4 ACT Interrupts

When Active Clock Tuning is enabled (ACTEN = 1) and the ACTLOCK or ACTORS bit changes state
(e.g., from a Locked to an Unlocked state), the ACT Interrupt Flag (ACTIF) of the PIR registers is set
(ACTIF = 1). If the ACT Interrupt Enable (ACTIE) bit is set (ACTIE = 1), an interrupt will be generated
when ACTIF becomes set. No interrupts are generated for each OSCTUNE update unless the update
results in a change of Lock status or Out-of-Range status.

12.5 Register Definitions: Oscillator Module
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12.5.1 ACTCON

Name: ACTCON
Address: 0x081

Active Clock Tuning Control Register

Bit 7 6 5 4 3 2 1 0
| ACTEN | ACTUD | | | ACTLOCK | | ACTORS | |
Access R/W R/W R R
Reset 0 0 0 0

Bit 7 - ACTEN Active Clock Tuning Enable

Value Description
1 ACT enabled: HFINTOSC tuning is controlled by the ACT

0 ACT disabled: HFINTOSC tuning is controlled by the OSCTUNE register via user software

Bit 6 - ACTUD Active Clock Tuning Update Disable

Value Condition Description

1 ACTEN =1 Updates to the OSCTUNE register from ACT hardware are disabled

0 ACTEN =1 Updates to the OSCTUNE register from ACT hardware are allowed

X ACTEN =0 Updates to the OSCTUNE register through user software are allowed

Bit 3 - ACTLOCK Active Clock Tuning Lock Status

VIS Description
1 Locked: HFINTOSC is within + 1% of its nominal value
0 Not locked: HFINTOSC may or may not be within + 1% of its nominal value

Bit 1 - ACTORS Active Clock Tuning Out-of-Range Status

Value Description
1 Value required for tuning is outside of the OSCTUNE range

0 Value required for tuning is within the OSCTUNE range
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12.5.2 OSCCON1

Name: OSCCON1
Address: 0x07A

Oscillator Control Register 1

Bit 7 6 5 4 3 2 1 0
| | NOSC[2:0] | NDIV[3:0] |
Access R/W R/W R/W R/W R/W R/W R/W
Reset f f f q q q q

Bits 6:4 - NOSC[2:0] New Oscillator Source Request(1.2:3)
Requests a new oscillator source per the NOSC/COSC Clock Source Selection Table.

Bits 3:0 - NDIV[3:0] New Divider Selection Request
Requests the new postscaler division ratio per the NDIV/CDIV Clock Divider Selection Table.

Notes:

1. The default value is determined by the RSTOSC Configuration bits. See the Reset Oscillator
(RSTOSC) selection table for the RSTOSC selections.

2. If NOSC is written with a reserved value, the operation is ignored and neither NOSC nor NDIV is
written.

3. When CSWEN = 0, these bits are read-only and cannot be changed from the RSTOSC value.
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12.5.3 OSCCON2

Name: OSCCON2
Address: 0x07B

Oscillator Control Register 2

Bit 7 6 5 4 3 2 1 0
| | COSC[2:0] | CDIV[3:0] |
Access R R R R R R
Reset f f f f f f f

Bits 6:4 - COSC[2:0] Current Oscillator Source Select (read-only)("
Indicates the current oscillator source per the NOSC/COSC Clock Source Selection Table.

Bits 3:0 - CDIV[3:0] Current Divider Select (read-only)
Indicates the current postscaler divider ratio per the NDIV/CDIV Clock Divider Table.

Note:

1. The RSTOSC value is the value present when user code execution begins. Refer to the RSTOSC
Configuration bits or the RSTOSC selection table for the Reset Oscillator selections.
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12.5.4 OSCCON3

Name: OSCCONS3
Address: 0x07C

Oscillator Control Register 3

Bit 7 6 5 4 3 2 1 0
| CSWHOLD | SOSCPWR | | ORDY | NOSCR | | |
Access  R/W/HC R/W R R
Reset 0 1 0 0

Bit 7 - CSWHOLD Clock Switch Hold Control

Value Description
1 Clock switch (and interrupt) will hold when the oscillator selected by NOSC is ready
0 Clock switch will proceed when the oscillator selected by NOSC is ready

Bit 6 - SOSCPWR Secondary Oscillator Power Mode Select
Value Description
Secondary Oscillator operates in High-Power mode

1
0 Secondary Oscillator operates in Low-Power mode

Bit 4 - ORDY Oscillator Ready (read-only)

VEINS Description
1 OSCCON1 = OSCCONZ2; the current system clock is the clock specified by NOSC
0 A clock switch is in progress

Bit 3 - NOSCR New Oscillator is Ready (read-only)(™

1 A clock switch is in progress and the oscillator selected by NOSC indicates a Ready condition
0 A clock switch is not in progress, or the NOSC-selected oscillator is not ready
Note:

1. If CSWHOLD = 0, the user may not see this bit set (NOSCR = 1). When the oscillator becomes
ready, there may be a delay of one instruction cycle before NOSCR is set. The clock switch occurs
in the next instruction cycle and NOSCR is cleared.
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12.5.5 OSCTUNE

Name: OSCTUNE
Address: O0xO07F

HFINTOSC Frequency Tuning Register

Bit 7 6 5 4 3 2 1 0
| | | TUN[5:0] |
Access R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0

Bits 5:0 - TUN[5:0] HFINTOSC Frequency Tuning

01 1111  Maximum frequency

00 0000  Center frequency. Oscillator is operating at the selected nominal frequency. (Default value)

10 0000  Minimum frequency
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12.5.6 OSCFRQ

Name: OSCFRQ
Address: 0x080

HFINTOSC Frequency Selection Register

Bit 7 6 5 4 3 2 1 0
| | | | | FRQI3:0] |
Access R/W R/W R/W R/W
Reset 0 0 0 0

Bits 3:0 - FRQ[3:0] HFINTOSC Frequency Selection

Frg
1111-1001 Reserved
1000 64
0111 48
0110 32
0101 16
0100 12
0011 8
0010 4
0001 2

0000 1

o 200
ﬁ\ MICROCHIP



12.5.7 OSCSTAT

Name: OSCSTAT
Address: 0x07D

Oscillator Status Register

Bit 7 6 5 4 3 2 1 0

| EXTOR | HFOR | MFOR | LFOR | SOR | ADOR | SFOR [ PLIR |
Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bit 7 - EXTOR External Oscillator Ready
Value Description
1 The External oscillator is ready for use
0 The External oscillator is not enabled, or it is not ready for use

Bit 6 - HFOR HFINTOSC Ready
Value Description
The HFINTOSC is ready for use
The HFINTOSC is not enabled, or it is not ready for use

o

Bit 5 - MFOR MFINTOSC Ready

VEINS Description
1 The MFINTOSC is ready for use
0 The MFINTOSC is not enabled, or it is not ready for use

Bit 4 - LFOR LFINTOSC Ready
Value Description
1 The LFINTOSC is ready for use
0 The LFINTOSC is not enabled, or it is not ready for use

Bit 3 - SOR Secondary Oscillator (SOSC) Ready
Value Description
The Secondary oscillator is ready for use
The Secondary oscillator is not enabled, or it is not ready for use

o

Bit 2 - ADOR ADCRC Oscillator Ready

VEINS Description
1 The ADCRC oscillator is ready for use
0 The ADCRC oscillator is not enabled, or it is not ready for use

Bit 1 - SFOR SFINTOSC Ready
Value Description
1 The SFINTOSC is ready for use
0 The SFINTOSC is not enabled, or it is not ready for use

Bit 0 - PLLR PLL is Ready

Value Description
1 The PLL is ready for use
0 The PLL is not enabled, the required input source is not ready, or the PLL is not locked
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12.5.8 OSCEN

Name: OSCEN
Address: O0xO07E

Oscillator Enable Register

Bit 7 6 5 4 3 2 1 0
| EXTOEN | HFOEN | MFOEN | LFOEN | SOSCEN | ADOEN | | PLLEN |
Access R/W R/W RIW R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0

Bit 7 - EXTOEN External Oscillator Enable

1 EXTOSC is explicitly enabled, operating as specified by FEXTOSC
0 EXTOSC can be enabled by a peripheral request

Bit 6 - HFOEN HFINTOSC Enable

Value Description
1 HFINTOSC is explicitly enabled, operating as specified by OSCFRQ
0 HFINTOSC can be enabled by a peripheral request

Bit 5- MFOEN MFINTOSC Enable

VEINS Description
1 MFINTOSC is explicitly enabled
0 MFINTOSC can be enabled by a peripheral request

Bit 4 - LFOEN LFINTOSC Enable

1 LFINTOSC is explicitly enabled
0 LFINTOSC can be enabled by a peripheral request

Bit 3 - SOSCEN Secondary Oscillator Enable

Value Description
SOSC is explicitly enabled, operating as specified by SOSCPWR
SOSC can be enabled by a peripheral request

o

Bit 2 - ADOEN ADCRC Oscillator Enable

VEINS Description
1 ADCRC is explicitly enabled
0 ADCRC may be enabled by a peripheral request

Bit 0 - PLLEN PLL Enable(™

1 EXTOSC multiplied by the 4x system PLL is used by a peripheral request
0 EXTOSC is used by a peripheral request
Note:

1. This bit only controls external clock source supplied to the peripherals and has no effect on the
system clock.
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12.5.9 FSCMCON

Name: FSCMCON
Address: 0x082

Fail-Safe Clock Monitor Control and Status Register

Bit 7 6 5 4 3 2 1 0

| | | FSCMSFI | FSCMSEV | FSCMPFI | FSCMPEV | FSCMFFI | FSCMFEV |
Access RIW R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0

Bit 5 - FSCMSFI SOSC Fail-Safe Clock Monitor Fault Injection(™
Value Description
1 SOSC FSCM clock input is blocked; FSCM will time-out
0 SOSC FSCM clock input is enabled; FSCM functions as indicated

Bit 4 - FSCMSEV SOSC Fail-Safe Clock Monitor Status(®
Value Description
SOSC clock showed a failure
FSCM is detecting SOSC input clocks, or the bit was cleared by the user

o

Bit 3 - FSCMPFI Primary Oscillator Fail-Safe Clock Monitor Fault Injection(

VEINS Description
1 Primary Oscillator FSCM clock input is blocked; FSCM will time-out
0 Primary Oscillator FSCM clock input is enabled; FSCM functions as indicated

Bit 2 - FSCMPEV Primary Oscillator Fail-Safe Clock Monitor Status(?

Value Description
1 Primary Oscillator clock showed a failure
0 FSCM is detecting primary oscillator input clocks, or the bit was cleared by the user

Bit 1 - FSCMFFI FOSC Fail-Safe Clock Monitor Fault Injection(

Value Description
1 Fosc FSCM clock input is blocked; FSCM will time-out
0 Fosc FSCM clock input is enabled; FSCM functions as indicated

Bit 0 - FSCMFEV FOSC Fail-Safe Clock Monitor Status(?

VEINS Description

1 Fosc clock showed a failure

0 FSCM is detecting Fosc input clocks, or the bit was cleared by the user
Notes:

1. This bit is used to demonstrate that FSCM can detect clock failure; the bit must be cleared for
normal operation.

2. This bit will not be cleared by hardware upon clock recovery; the bit must be cleared by the user.
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12.6

[cdress| — Name | Bitpos| 7 | 6|
7:0

0x7A OSCCON1

0x7B OSCCON2 7:0

0x7¢C OSCCON3 7:0 CSWHOLD =~ SOSCPWR
0x7D OSCSTAT 7:0 EXTOR HFOR
0x7E OSCEN 7:0 EXTOEN HFOEN
O0x7F OSCTUNE 7:0

0x80 OSCFRQ 7:0

0x81 ACTCON 7:0 ACTEN ACTUD
0x82 FSCMCON 7:0

@ MICROCHIP

Register Summary - Oscillator Module

MR I T N

NOSC[2:0
COSC[2:0]

MFOR
MFOEN

FSCMSFI

ORDY
LFOR
LFOEN

FSCMSEV

NDIV[3:0]
CDIV[3:0]
NOSCR
SOR ADOR SFOR
SOSCEN ADOEN
TUNI5:0]
FRQ[3:0]
ACTLOCK ACTORS
FSCMPFI FSCMPEV  FSCMFFI

PLLR
PLLEN

FSCMFEV
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13. CRC- Cyclic Redundancy Check Module with Memory Scanner

The Cyclic Redundancy Check (CRC) module provides a software-configurable hardware-
implemented CRC checksum generator. This module includes the following features:

* Any standard CRC up to 32 bits can be used

+ Configurable polynomial

* Any seed value up to 32 bits can be used

+ Standard and reversed bit order available

+ Augmented zeros can be added automatically or by the user

«  Memory scanner for core-independent CRC calculations on any program memory locations
+ Software configurable data registers for communication CRCs

13.1 Module Overview

The CRC module is coupled with a memory scanner that provides a means of performing CRC
calculations in hardware, without CPU intervention. The memory scanner can automatically provide
data from program Flash memory to the CRC module. The CRC module can also be operated by
directly writing data to SFRs, without using a scanner.

The CRC module can be used to detect bit errors in the Flash memory using the built-in memory
scanner or through user input RAM. The CRC module can accept up to a 32-bit polynomial with up
to a 32-bit seed value. A CRC calculated check value (or checksum) will then be generated into the
CRCOUT registers for user storage. The CRC module uses an XOR shift register implementation

to perform the polynomial division required for the CRC calculation. This feature is useful for
calculating CRC values of data being transmitted or received using communications peripherals such
as the SPI, UART or I2C.

13.2 Polynomial Implementation

The CRC polynomial equation is user configurable, allowing any polynomial equation to be used for
the CRC checksum calculation. The polynomial and accumulator sizes are determined by the PLEN
bits. For an n-bit accumulator, PLEN = n-1 and the corresponding polynomial is n+1 bits. This allows
the accumulator to be any size up to 32 bits with a corresponding polynomial up to 33 bits. The
MSb and LSb of the polynomial are always ‘1’ which is forced by hardware. Therefore, the LSb of the
CRCXOR Low Byte register is hardwired high and always reads as ‘1'.

All polynomial bits between the MSb and LSb are specified by the CRCXOR registers.
For example, when using the standard CRC32, the polynomial is defined as 0x4C11DB7

(x32 +x20 a2 4 22 10 12 1 0 B 7 St X x + 1). In this polynomial, the
X32 and X0 terms are the MSb and LSb controlled by hardware. The X3' and X' terms are specified
by setting the CRCXOR[31:0] bits with the corresponding polynomial value, which in this example is
0x04C11DB6. Reading the CRCXOR registers will return 0x04C11DB7 because the LSb is always ‘1".
Refer to the following example for more details.

Example 13-1. CRC32 Example

Standard CRC32 Polynomial (33 bits):

(32 +x20+x23 + 622 4 110 4 212 4 x4 204 38 4 27+ ¥ + 2t + 2% + x4+ 1)

Standard 32-bit Polynomial Representation: 0x04C11DB7

CRCXORT = 0x04 = 0b00000100

CRCXORU = 0xCl = 0b11000001

CRCXORH = 0x1D = 0b00011101
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CRCXORL = 0xB7 = 0b1011011- (M
Data Sequence: 0x55, 0x66, 0x77, 0x88

DLEN = 0b00111 // Number of bits written to CRCDATA registers
(Data Length)

PLEN = 0Obl1111 // MSb position of the polynomial (Polynomial
Length)

Data passed into the CRC:
// SHIFTM = 0(Shift Mode: MSb first)
0x55 0x66 0x77 0x88 = 01010101 01100110 01110111 10001000

// SHIFTM = 1(Shift Mode: LSb first)
0x55 0x66 0x77 0x88 = 10101010 01100110 11101110 00010001

CRC Check Value (accM = 1, data are augmented with zeros)
// When SHIFTM = 0, CRC Result = 0xC60D8323
CRCOUTT = 0xC6 = 0b11000110

CRCOUTU = 0x0D = 0b00001101

CRCOUTH = 0x83 = 0b10000011

CRCOUTL = 0x23 = 0b00100011

// When SHIFTM = 1, CRC Result = 0x843529CC
CRCOUTT = 0x84 = 0b10000100

CRCOUTU = 0x35 = 0b00110101

CRCOUTH = 0x29 = 0b00101001

CRCOUTL = 0xCC = 0b11001100

Note:

1. Bit 0 is unimplemented. The LSb of any CRC polynomial is always ‘1" and will
always be treated as a ‘1’ by the CRC for calculating the CRC check value. This bit
will be read in software as a ‘0.

13.3 Data Sources

Data are supplied to the CRC module using the CRCDATA registers and can either be loaded
manually or automatically by using the scanner module. The length of the data word being supplied
to the CRC module is specified by the DLEN bits and can be configured for data words up to 32 bits
in length. The DLEN field indicates how many bits in the CRCDATA registers are valid and any bits
outside of the specified data word size will be ignored. Data are moved into the CRCSHIFT registers
as an intermediate to calculate the check value located in the CRCOUT registers. The SHIFTM bit is
used to determine the bit order of the data being shifted into the accumulator and the bit order of
the result.
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Figure 13-1. CRC Process

MSb first (SHIFTM = 0)
MSb LSb LSb

MSb
| |<—| CRC Feedback |<—| Input Data

Accumulator
After n sums

Industry standard LSb first
MSb LSb MSb LSb

Input Data |—>| CRC Feedback |—>| |

Accumulator
After n sums

LSb first (SHIFTM = 1)
LSb MSb

| |<—| CRC Feedback |<—

Accumulator

MSb LSb
After n sums
(bit reversed) Input Data

When the SHIFTM bit is not set, data will be shifted into the CRC, MSb first and the result will be
big-endian. When the SHIFTM bit is set, data will be shifted into the accumulator in the reverse order
(LSb first) and the result will be little-endian. The CRC module can be seeded with an initial value by
setting the CRCOUT registers to the appropriate value before beginning the CRC process.

13.3.1 CRC from User Data

Data can be supplied to the CRC module by writing to the CRCDATA registers. Once data has been
loaded into the CRCDATA registers, it will then be latched onto the CRC Shift (CRCSHIFT) registers.
If data are still being shifted from an earlier write to the CRCDATA registers and the user attempts
to write more data, the most recently written data will be held in the CRCDATA registers until the
previous shift has completed.

13.3.2 CRC from Flash

Data can also be supplied to the CRC module using the memory scanner, as opposed to writing
the data manually using the CRCDATA registers, allowing users to automate CRC calculations. An
automated scan of Program Flash Memory or Data EEPROM can be performed by configuring the
scanner accordingly, to copy data into the CRCDATA registers. The user can initialize the program
memory scanner as defined in Scanner Module Overview and Configuring the Scanner.

13.4 CRC Check Value

The CRC check value can be accessed using the CRCOUT registers after a CRC calculation has
completed. The check value is dependent on the configuration of the ACCM and SHIFTM mode
settings. When the ACCM bit is set, the CRC module will augment the data with a number of zeros
equal to the length of the polynomial to align the final check value. When the ACCM bit is not set, the
CRC will stop at the end of the data and no additional zeroes will be augmented to the final value.
The user can manually augment a number of additional zeroes equal to the length of the polynomial
by entering them into the CRCDATA register, which will yield the same check value as Augmented
mode. Alternatively, the expected check value can be entered at this point to make the final result
equal zero.
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When the CRC check value is computed with the SHIFTM (LSb first) and ACCM bits set, the final value
in the CRCOUT registers will be reversed such that the LSb will be in the MSb position and vice versa
(Figure 13-1).

When creating a check value to be appended to a data stream, then a reversal must be performed
on the final value to achieve the correct checksum. The CRC can be used to do this reversal by
following the steps below.

1. Save CRCOUT value in user RAM space.

2. Clear the CRCOUT registers.

3. Clear the CRCXOR registers.

4. Write the saved CRCOUT value to the CRCDATA input.

If the steps listed above were followed completely, the properly orientated check value will be in the
CRCOUT registers.

13.5 CRC Interrupt

The CRC module will generate an interrupt when the BUSY bit transitions from ‘1" to ‘0. The CRC
Interrupt Flag (CRCIF) bit of the corresponding PIR register will be set every time the BUSY bit
transitions, whether or not the CRC Interrupt Enable (CRCIE) has been set. The CRCIF bit must be
cleared by software by the user. If the user has the CRCIE bit set, then the CPU will jump to the
Interrupt Service Routine (ISR) every time that the CRCIF bit is set.

13.6 Configuring the CRC Module

The following steps illustrate how to properly configure the CRC:

1. Determine if the automatic program memory scan will be used with the scanner or if manual
calculation will take place through the SFR interface and perform the actions specified in the CRC
Data Sources section.

a. To configure the scanner module to be used with CRC, refer to the Configuring the Scanner
section for more information.

When applicable, seed a starting CRC value into the CRCOUT registers.
3. Program the CRCXOR registers with the desired generator polynomial.

Program the DLEN bits with the length of the data word (refer to Figure 13-1). This value
determines how many times the shifter will shift into the accumulator for each data word.

Program the PLEN bits with the length of the polynomial (refer to Figure 13-1).

Determine whether shifting in trailing zeroes is desired and set the ACCM bit accordingly.
Determine whether the MSb or LSb first shifting is desired and write the SHIFTM bit accordingly.
Set the GO bit to begin the shifting process.

If manual SFR entry is used, monitor the FULL bit.

a. When FULL = 0, another word of data can be written to the CRCDATA registers. It is important
to note that the Most Significant Byte (CRCDATAH) must be written first if the data has more
than eight bits, as the shifter will begin upon the CRCDATAL register being written.

0 0N owm

b. If the scanner is used, it will automatically load words into the CRCDATA registers as needed,
as long as the GO bit is set.

10. If using the Flash memory scanner, monitor the SCANIF bit of the corresponding PIR register to
determine when the scanner has finished pushing data into the CRCDATA registers.
a. After the scan is completed, monitor the SGO bit to determine that the CRC has been
completed and the check value can be read from the CRCOUT registers.

b. When both the interrupt flags are set (or both BUSY and SGO bits are cleared), the completed
CRC calculation can be read from the CRCOUT registers.
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11. If manual entry is used, monitor the BUSY bit to determine when the CRCOUT registers hold the
valid check value.

13.6.1 Register Overlay

The CRCOUT, CRCSHIFT and CRCXOR registers are grouped together and share SFR space. Since

these register groups are located within the same addresses, the SETUP bits must be configured
accordingly to access any of these registers. Refer to the CRCCON2 register for more information
about how the SETUP bits can be configured to access each of the available CRC registers.

13.7 Scanner Module Overview

The scanner allows segments of the Program Flash Memory or Data EEPROM to be read out
(scanned) to the CRC peripheral. The scanner module interacts with the CRC module and supplies
it with data, one word at a time. Data are fetched from the address range defined by SCANLADR
registers up to the SCANHADR registers. The scanner begins operation when the SGO bit is set and
ends when either SGO is cleared by the user or when SCANLADR increments past SCANHADR. The
SGO bit is also cleared when the EN bit in the CRCCONO register is cleared.

13.8 Scanning Modes

The interaction of the scanner with the system operation is controlled by the priority selection in
the system arbiter (refer to the “Memory Access Scheme” section for more details). When using
the scanner module in conjunction with the CRC module, the system arbiter needs to be configured
such that the scanner has a higher priority than the CPU to ensure that a memory access request is
granted when it occurs. Additionally, BURSTMD and TRIGEN bits also determine the operation of the
scanner.

13.8.1 TRIGEN =0, BURSTMD =0

In this case, the memory access request is granted to the scanner if no other higher priority source
is requesting access. All sources with lower priority than the scanner will get the memory access
cycles that are not utilized by the scanner.

13.8.2 TRIGEN =1, BURSTMD =0

In this case, the memory access request is generated when the CRC module is ready to accept. The
memory access request is granted to the scanner if no other higher priority source is requesting
access. All sources with lower priority than the scanner will get the memory access cycles that are
not utilized by the scanner.

13.8.3 TRIGEN = x, BURSTMD =1

In this case, the memory access is always requested by the scanner. The memory access request is
granted to the scanner if no other higher priority source is requesting access. The memory access
cycles will not be granted to lower priority sources than the scanner until it completes operation, i.e.
SGO = 0.

Important: If TRIGEN = 1 and BURSTMD = 1, the user needs to ensure that the trigger
source is active for the scanner operation to complete.

13.8.4 WWDT Interaction

The Windowed Watch Dog Timer (WWDT) operates in the background during scanner activity. It is
possible that long scans, particularly in Burst mode, may exceed the WWDT time-out period and
result in an undesired device Reset. This must be considered when performing memory scans with
an application that also utilizes WWDT.
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13.9 Configuring the Scanner
The scanner module may be used in conjunction with the CRC module to perform a CRC calculation
over a range of program memory or Data EEPROM addresses. To set up the scanner to work with
the CRC, perform the following steps:

1. Set up the CRC module (see the Configuring the CRC Module section) and enable the scanner
module by setting the EN bit in the SCANCONO register.

2. Choose which memory region the scanner module needs to operate on and set the MREG bit
appropriately.

3. |If trigger is used for scanner operation, set the TRIGEN bit and select the trigger source using
the SCANTRIG register. Select the trigger source using the SCANTRIG register and then set the
TRIGEN bit.

If Burst mode of operation is desired, set the BURSTMD bit.

5. Set the SCANLADR and SCANHADR registers with the beginning and ending locations in memory
that are to be scanned.

6. Select the priority level for the scanner module (refer to the “System Arbitration” and the
“Priority Lock” sections for more details).
Note: The default priority levels of the system arbiter may need to be changed to ensure the
scanner operates as intended and that a memory access request is granted when it occurs.

7. Both EN and GO bits in the CRCCONO register must be enabled to use the scanner. Setting the
SGO bit will start the scanner operation.

13.10 Scanner Interrupt

The scanner will trigger an interrupt when the SGO bit transitions from ‘1" to ‘0". The SCANIF
interrupt flag of one of the PIR registers is set when the last memory location is reached and the
data are entered into the CRCDATA registers. The SCANIF bit must be cleared by software. The SCAN
interrupt enable is the SCANIE bit of the corresponding PIE register.

13.11 Peripheral Module Disable

Both the CRC and scanner module can be disabled individually by setting the CRCMD and SCANMD
bits of one of the PMD registers (see the “Peripheral Module Disable” chapter for more details).
The SCANMD bit can be used to enable or disable the scanner module only if the SCANE
Configuration bit is set. If the SCANE bit is cleared, then the scanner module is not available for
use and the SCANMD bit is ignored.

13.12 Register Definitions: CRC and Scanner Control

Long bit name prefixes for the CRC are shown in the table below. Refer to the “Long Bit Names”
section in the “Register and Bit Naming Conventions” chapter for more information.

Table 13-1. CRC Long Bit Name Prefixes

Peripheral Bit Name Prefix

CRC CRC
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13.12.1 CRCCONO

Name: CRCCONO
Address: 0x068

CRC Control Register 0

Bit 7 6 5 4 3 2 1 0
| EN | GO | BUSY | ACCM | SETUP[1:0] | SHIFTM | FULL |

Access R/W R/W R R/W R/W R/W R

Reset 0 0 0 0 0 0 0

Bit 7 - EN CRC Enable

Value Description
1 CRC module is released from Reset
0 CRC is disabled and consumes no operating current

Bit 6 - GO CRC Start

Value Description
Start CRC serial shifter
CRC serial shifter turned off

o

Bit 5 - BUSY CRC Busy

VEINS Description
1 Shifting in progress or pending
0 All valid bits in shifter have been shifted into accumulator and EMPTY = 1

Bit 4 - ACCM Accumulator Mode

Value Description
1 Data are augmented with zeros
0 Data are not augmented with zeros

Bits 4:3 - SETUP[1:0]
Register Overlay Setup

VEIS Description

11 CRC Register Overlay Selection; Read / Write access to CRCOUT
10 CRC Register Overlay Selection; Read / Write access to CRCXOR
01 CRC Register Overlay Selection; Read / Write access to CRCSHIFT
00 CRC Register Overlay Selection; Read / Write access to CRCOUT

Bit 1 - SHIFTM Shift Mode

1 Shift right (LSb first)
0 Shift left (MSb first)

Bit 0 - FULL Data Path Full Indicator

Value Description
1 CRCDATAT/U/H/L registers are full
0 CRCDATAT/U/H/L registers have shifted their data into the shifter
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13.12.2 CRCCON1

Name: CRCCON1
Address: 0x069

CRC Control Register 1

Bit 7 6 5 4 3 2 1 0
| | | | PLEN[4:0]
Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0

Bits 4:0 - PLEN[4:0] Polynomial Length
Denotes the length of the polynomial (n-1)
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13.12.3 CRCCON2

Name: CRCCONZ2
Address: 0x06A

CRC Control Register 2

Bit 7 6 5 4 3 2 1 0
| | | | DLEN[4:0]
Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0

Bits 4:0 - DLEN[4:0] Data Length
Denotes the length of the data word (n-1)
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13.12.4 CRCDATA

Name: CRCDATA
Address: 0x060

CRC Data Registers

Bit 31 30 29 28 27 26 25 24
| CRCDATAT[7:0]
Access  R/W R/W R/W R/W RIW R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| CRCDATAU[7:0]
Access  R/W R/W R/W R/W RIW R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
CRCDATAHI[7:0]
Access  R/W R/W RIW R/W RIW R/W RIW RIW
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
CRCDATAL[7:0]
Access  R/W R/W RIW R/W RIW R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 31:24 - CRCDATAT[7:0] CRC Data Top Byte
Bits 23:16 - CRCDATAU[7:0] CRC Data Upper Byte
Bits 15:8 - CRCDATAH[7:0] CRC Data High Byte

Bits 7:0 - CRCDATAL[7:0] CRC Data Low Byte
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13.12.5 CRCOUT

Name: CRCOUT
Address: 0x064

CRC Output Registers

Bit 31 30 29 28 27 26 25 24
| CRCOUTT[7:0]
Access  R/W R/W R/W R/W RIW R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| CRCOUTU[7:0]
Access  R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
CRCOUTH[7:0]
Access  R/W R/W RIW R/W RIW R/W RIW RIW
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
CRCOUTL[7:0]
Access  R/W R/W RIW R/W RIW R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 31:24 - CRCOUTT[7:0] CRC Output Register Top Byte

Writing to this register writes the Most Significant Byte of the CRC output register. Reading from this

register reads the Most Significant Byte of the CRC output.

Bits 23:16 - CRCOUTU[7:0] CRC Output Register Upper Byte

Bits 15:8 - CRCOUTH[7:0] CRC Output Register High Byte

Bits 7:0 - CRCOUTL[7:0] CRC Output Register Low Byte

Writing to this register writes the Least Significant Byte of the CRC output register. Reading from this

register reads the Least Significant Byte of the CRC output.
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13.12.6 CRCSHIFT

Name: CRCSHIFT
Address: 0x064

CRC Shift Registers

Bit 31 30 29 28 27 26 25 24
| CRCSHIFTT[7:0]
Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| CRCSHIFTU[7:0]
Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
CRCSHIFTH[7:0]
Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
CRCSHIFTL[7:0]
Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bits 31:24 - CRCSHIFTT[7:0] CRC Shift Register Top Byte

Reading from this register reads the Most Significant Byte of the CRC Shifter.

Bits 23:16 - CRCSHIFTU[7:0] CRC Shift Register Upper Byte

Bits 15:8 - CRCSHIFTH[7:0] CRC Shift Register High Byte

Bits 7:0 - CRCSHIFTL[7:0] CRC Shift Register Low Byte

Reading from this register reads the Least Significant Byte of the CRC Shifter.
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13.12.7 CRCXOR

Name: CRCXOR
Address: 0x064

CRC XOR Registers

Bit 31 30 29 28 27 26 25 24
| CRCXORT[7:0]
Access  R/W R/W R/W R/W RIW R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| CRCXORU[7:0]
Access  R/W R/W RIW R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
CRCXORH[7:0]
Access  R/W R/W RIW R/W RIW R/W RIW RIW
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
CRCXORL[7:0]
Access  R/W R/W RIW R/W RIW R/W R/W RIW
Reset 0 0 0 0 0 0 0 0

Bits 31:24 - CRCXORT[7:0] XOR of Polynomial Term XN Enable Top Byte
Bits 23:16 - CRCXORU[7:0] XOR of Polynomial Term XN Enable Upper Byte
Bits 15:8 - CRCXORH[7:0] XOR of Polynomial Term XN Enable High Byte

Bits 7:0 - CRCXORL[7:0] XOR of Polynomial Term XN Enable Low Byte
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13.12.8 SCANCONO

Name: SCANCONO
Address: 0x071

Scanner Access Control Register O

Bit 7 6 5 4 3 2 1 0

| EN | TRIGEN | SGO | | | MREG | BURSTMD | BUSY |
Access R/W R/W R/W/HC R/W R/W R/W
Reset 0 0 0 1 0 0

Bit 7- EN Scanner Enable(

Value Description
1 Scanner is enabled
0 Scanner is disabled

Bit 6 - TRIGEN Scanner Trigger Enable(2:3)
Value Description

Scanner trigger is enabled

Scanner trigger is disabled

o

Bit 5 - SGO Scanner GOG4

VEINS Description

1 When the CRC is ready, the Memory region set by the MREG bit will be accessed and data are passed to the
CRC peripheral

0 Scanner operations will not occur

Bit 2 - MREG Scanner Memory Region Select(?)
Value Description
Scanner address points to Data EEPROM
Scanner address points to Program Flash Memory

o

Bit 1 - BURSTMD Scanner Burst Mode(®

VEINS Description
1 Memory access request to the CPU Arbiter is always true
0 Memory access request to the CPU Arbiter is dependent on the CRC request and trigger

Bit 0 - BUSY Scanner Busy Indicator

Value Description
1 Scanner cycle is in process
0 Scanner cycle is compete (or never started)
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Notes:
1. Setting EN = 0 does not affect any other register content.

2. Scanner trigger selection can be set using the SCANTRIG register.

3. This bit can be cleared in software. It is cleared in hardware when LADR > HADR (and a data cycle
is not occurring) or when CRCGO = 0.

The CRCEN and CRCGO bits must be set before setting the SGO bit.
5. See Table 13-2.

Table 13-2. Scanner Operating Modes

Memory access is requested when the CRC module is ready to accept data; the request

0 0 is granted if no other higher priority source request is pending.
Memory access is requested when the CRC module is ready to accept data and trigger
1 0 selection is true; the request is granted if no other higher priority source request is
pending.
« 1 Memory access is always requested; the request is granted if no other higher priority

source request is pending.

Note: Refer to the “System Arbitration” and the “Memory Access Scheme” sections for more details about Priority
selection and Memory Access Scheme.
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13.12.9 SCANLADR

Name: SCANLADR

Address: 0x06B

Scan Low Address Registers

Bit 23 22 21 20 19 18 17 16
| | SCANLADRU[5:0]
Access R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
| SCANLADRH[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
SCANLADRL[7:0]
Access R/W R/W RIW R/W RIW R/W RIW RIW
Reset 0 0 0 0 0 0 0 0

Bits 21:16 - SCANLADRUI[5:0] Scan Start/Current Address upper byte

Upper bits of the current address to be fetched from, value increments on each fetch of memory.

Bits 15:8 - SCANLADRH[7:0] Scan Start/Current Address high byte
High byte of the current address to be fetched from, value increments on each fetch of memory.

Bits 7:0 - SCANLADRL[7:0] Scan Start/Current Address low byte
Low byte of the current address to be fetched from, value increments on each fetch of memory.

Notes:

1. Registers SCANLADRU/H/L form a 22-bit value, but are not guarded for atomic or asynchronous

access; registers may only be read or written while SGO = 0.

2. While SGO = 1, writing to this register is ignored.
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13.12.10 SCANHADR

Name: SCANHADR
Address: 0x06E

Scan High Address Registers

Bit 23 22 21 20 19 18 17 16
| | | SCANHADRUI5:0]
Access R/W R/W R/W R/W R/W R/W
Reset 1 1 1 1 1 1
Bit 15 14 13 12 11 10 9 8
SCANHADRH[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 1 1 1 1 1 1 1 1
Bit 7 6 5 4 3 2 1 0
SCANHADRL[7:0]
Access R/W R/W RIW R/W RIW R/W RIW RIW
Reset 1 1 1 1 1 1 1 1

Bits 21:16 - SCANHADRUI[5:0] Scan End Address
Upper bits of the address at the end of the designated scan

Bits 15:8 - SCANHADRH[7:0] Scan End Address
High byte of the address at the end of the designated scan

Bits 7:0 - SCANHADRL[7:0] Scan End Address
Low byte of the address at the end of the designated scan

Notes:

1. Registers SCANHADRU/H/L form a 22-bit value but are not guarded for atomic or asynchronous

access; registers may only be read or written while SGO = 0.
2. While SGO = 1, writing to this register is ignored.
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13.12.11 SCANTRIG

Name: SCANTRIG

Address: 0x072

SCAN Trigger Selection Register

Bit 7 6 2
| | TSEL[3:0]
Access R/W R/W
Reset 0
Bits 3:0 - TSEL[3:0] Scanner Data Trigger Input Selection
Table 13-3. Scanner Data Trigger Input Sources
1111 - 1010 —
1001 CLC4_OouT
1000 CLC3_0ouT
0111 CLC2_OuUT
0110 cLc1_out
0101 TMR4_Postscaler_OUT
0100 TMR2_Postscaler_OUT
0011 TMR1_OUT
0010 TMRO_OUT
0001 CLCKREF_OUT
0000 LFINTOSC()

Note:

1. The number of implemented bits varies by device.
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13.13 Register Summary - CRC

I S T B R

0x60

0x64

0x64

0x64

0x68
0x69
0x6A

0x6B

Ox6E

0x71
0x72
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CRCDATA

CRCOUT

CRCSHIFT

CRCXOR

CRCCONO
CRCCON1
CRCCON2

SCANLADR

SCANHADR

SCANCONO
SCANTRIG

15:8
23:16
31:24

7:0

15:8
23:16
31:24

7:0

15:8
23:16
31:24

7:0

15:8
23:16
31:24

7:0
7:0
7:0
7:0

15:8

23:16
7:0

15:8

23:16
7:0
7:0

EN

EN

GO

TRIGEN

BUSY

SGO

I T N R

CRCDATAL[7:0]
CRCDATAH[7:0]
CRCDATAU[7:0]
CRCDATAT[7:0]
CRCOUTL[7:0]
CRCOUTH[7:0]
CRCOUTU[7:0]
CRCOUTT[7:0]
CRCSHIFTL[7:0]
CRCSHIFTH[7:0]
CRCSHIFTUL7:0]
CRCSHIFTT[7:0]
CRCXORL[7:0]
CRCXORH[7:0]
CRCXORU[7:0]
CRCXORT[7:0]

ACCM SETUP[1:0] SHIFTM
PLEN[4:0]
DLENT[4:0]
SCANLADRL[7:0]

SCANLADRH[7:0]
SCANLADRUI5:0]
SCANHADRL[7:0]
SCANHADRH[7:0]
SCANHADRUI5:0]
MREG BURSTMD
TSEL[3:0]

FULL

BUSY
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14. Resets
There are multiple ways to reset the device:
* Power-on Reset (POR)
* Brown-out Reset (BOR)
* Low-Power Brown-out Reset (LPBOR)
« MCLR Reset
* WDT Reset
* RESET instruction
+ Stack Overflow
+ Stack Underflow
*  Programming mode exit
«  Memory Execution Violation Reset
+ Main LDO Voltage Regulator Reset
+ Configuration Memory Reset

A simplified block diagram of the On-Chip Reset Circuit is shown in the block diagram below.

Figure 14-1. Simplified Block Diagram of On-Chip Reset Circuit

ICSP™ Programming Mode Exit
RESET Instruction

Memory Violation
Main LDO Voltage Regulator

Configuration Memory

Stack Underflow
Stack Overflow

B j

WWDT Time-out/
Window violation

Device
Reset
|E Power-on
Reset
VbD
| | Brown-out
Reset Power-up
_,_ Timer
LFINTOSC 1
LPBOR
Reset PWRTS
Note:

1. See the BOR Operating Modes table for BOR active conditions.

14.1 Power-on Reset (POR)

The POR circuit holds the device in Reset until Vpp has reached an acceptable level for minimum
operation. Slow rising Vpp, fast operating speeds or analog performance may require greater than
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minimum Vpp. The PWRT, BOR or MCLR features can be used to extend the start-up period until all
device operation conditions have been met. The POR bit will be set to ‘0’ if a Power-on Reset has
occurred.

14.2 Brown-out Reset (BOR)

The BOR circuit holds the device in Reset when Vpp reaches a selectable minimum level. Between
the POR and BOR, complete voltage range coverage for execution protection can be implemented.
The BOR bit will be set to ‘0" if a BOR has occurred.

The BOR module has four operating modes controlled by the BOREN Configuration bits. The four
operating modes are:

+ BORis always on

+ BOR s off when in Sleep

« BOR s controlled by software
+ BORis always off

Refer to the BOR Operating Modes table for more information.

A Vpp noise rejection filter prevents the BOR from triggering on small events. If Vpp falls below
Vgor for a duration greater than parameter Tgorpc, the device will reset. Refer to the “Electrical
Specifications” chapter for more details.

14.2.1 BOR/s Always On
When the BOREN Configuration bits are programmed to ‘b11, the BOR is always on. The device
start-up will be delayed until the BOR is ready and Vpp is higher than the BOR threshold.

BOR protection is active during Sleep. The BOR does not delay wake-up from Sleep.

14.2.2 BORs Off in Sleep
When the BOREN Configuration bits are programmed to ‘b10, the BOR is on, except in Sleep. The
device start-up will be delayed until the BOR is ready and Vpp is higher than the BOR threshold.

BOR protection is not active during Sleep. The device wake-up will be delayed until the BOR is ready.

14.2.3 BOR Controlled by Software

When the BOREN Configuration bits are programmed to ‘b01, the BOR is controlled by the SBOREN
bit. The device start-up is not delayed by the BOR Ready condition or the Vpp level.

BOR protection begins as soon as the BOR circuit is ready. The status of the BOR circuit is reflected
in the BORRDY bit.

BOR protection selected by SBOREN bit is unchanged by Sleep.

14.2.4 BORIs Always Off

When the BOREN Configuration bits are programmed to ‘b00, the BOR is off at all times. The device
start-up is not delayed by the BOR Ready condition or the Vpp level.

Table 14-1. BOR Operating Modes

.
BOREN SBOREN Device Mode BOR Mode
Release of POR Wake-up from Sleep
X X

Wait for release of BOR

(W)
H (BORRDY = 1)

Active Begins immediately
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........... continued

Instruction Execution upon:
BOREN SBOREN Device Mode BOR Mode
Release of POR Wake-up from Sleep

Wait for release of BOR

Awake Active (BORRDY = 1) N/A
10 X
) Wait for release of BOR
Sleep Hibernate N/A (BORRDY = 1)
o1 1 X Active Wait for release of BOR Begins immediately
0 X Hibernate (BORRDY = 1)
00 X X Disabled Begins immediately

Note:

1. Inthis specific case, “Release of POR” and “Wake-up from Sleep”, there is no BOR ready delay in start-up. The BOR ready
flag (BORRDY = 1) will be set before the CPU is ready to execute instructions, because the BOR circuit is forced on by the
BOREN bits.

Figure 14-2. Brown-Out Situations

Rev. 30.0000928

VDD
______________\_f _________________ VBOR

Internal

Reset TpwrT()
VDD
_____________W _____________ VBOR
et
Internal [ <TPwRTe——7
Reset TpwrT("
VDD
_____ \_____________7[______________ VBOR
| |
Internal e
Reset " Tpwrt(M

Note:
1. Tpwr delay only if the Configuration bits enable the Power-up Timer.

14.2.5 BOR and Bulk Erase

BOR is forced ON during PFM Bulk Erase operations to make sure that the system code protection
cannot be compromised by reducing Vpp.

During Bulk Erase, the BOR is enabled at the lowest BOR threshold level, even if it is configured to
some other value. If Vpp falls, the erase cycle will be aborted, but the device will not be reset.

14.3 Low-Power Brown-out Reset (LPBOR)

The Low-Power Brown-out Reset (LPBOR) provides an additional BOR circuit for low-power
operation. Refer to the figure below to see how the BOR interacts with other modules.

The LPBOR is used to monitor the external Vpp pin. When too low of a voltage is detected, the device
is held in Reset.
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14.3.1

14.3.2

14.4

14.4.1
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Figure 14-3. LPBOR, BOR, POR Relationship

Any Reset
BOR
BOR Event
_>
REARM POR »
Event L To PCON
indicator bit
POR
LPBOR
POR Event
LPBOR Event
Reset

AE&»

Enabling LPBOR

The LPBOR is controlled by the LPBOREN Configuration bit. When the device is erased, the LPBOR
module defaults to disabled.

LPBOR Module Output

The output of the LPBOR module indicates whether or not a Reset is to be asserted. This signal is
OR'd with the Reset signal of the BOR module to provide the generic BOR signal, which goes to the
PCONO register and to the power control block.

MCLR Reset

MCLR is an optional external input that can reset the device. The MCLR function is controlled by the
MCLRE and LVP Configuration bits (see the table below). The RMCLR bit will be set to ‘0" if a MCLR
has occurred.

Table 14-2. MCLR Configuration

MCLRE LvVP MCLR

% 1 Enabled
1 0 Enabled
0 0 Disabled

MCLR Enabled

When MCLR is enabled and the pin is held low, the device is held in Reset. The MCLR pin is
connected to Vpp through an internal weak pull-up.

The device has a noise filter in the MCLR Reset path. The filter will detect and ignore small pulses.

Important: An internal Reset event (RESET instruction, BOR, WWDT, POR, STKOVF,
STKUNF) does not drive the MCLR pin low.
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14.4.2

14.5

14.6

14.7

14.8

14.9

14.10

MCLR Disabled

When MCLR is disabled, the MCLR pin becomes input-only and pin functions such as internal weak
pull-ups are under software control.

Windowed Watchdog Timer (WWDT) Reset

The Windowed Watchdog Timer generates a Reset if the firmware does not issue a CLRWDT
instruction within the time-out period or window set. The TO and PD bits in the STATUS register
and the RWDT bit are changed to indicate a WDT Reset. The WDTWV bit indicates if the WDT Reset
has occurred due to a time-out or a window violation.

RESET Instruction
A RESET instruction will cause a device Reset. The RI bit will be set to ‘0. See Determining the Cause
of a Reset for default conditions after a RESET instruction has occurred.

Stack Overflow/Underflow Reset

The device can be reset when the Stack Overflows or Underflows. The STKOVF or STKUNF bits
indicate the Reset condition. These Resets are enabled by setting the STVREN Configuration bit.
Programming Mode Exit

Upon exit of Programming mode, the device will operate as if a POR had just occurred.

Power-up Timer (PWRT)

The Power-up Timer provides a selected time-out duration on POR or Brown-out Reset.

The device is held in Reset as long as PWRT is active. The PWRT delay allows additional time for Vpp
to rise to an acceptable level. The Power-up Timer is selected by setting the PWRTS Configuration
bits accordingly.

The Power-up Timer starts after the release of the POR and BOR/LPBOR if enabled, as shown in
Figure 14-4.

Start-Up Sequence

Upon the release of a POR or BOR, the following must occur before the device will begin executing:
1. Power-up Timer runs to completion (if enabled).

2. Oscillator Start-up Timer runs to completion (if required for selected oscillator source).

3. MCLR must be released (if enabled).

The total time-out will vary based on the oscillator configuration and Power-up Timer configuration.

The Power-up Timer and Oscillator Start-up Timer run independently of MCLR Reset. If MCLR is kept
low long enough, the Power-up Timer and Oscillator Start-up Timer will expire. Upon bringing MCLR
high, the device will begin execution after 10 Fosc cycles (see the figure below). This is useful for
testing purposes or to synchronize more than one device operating in parallel.
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Figure 14-4. Reset Start-Up Sequence
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14.10.1 Memory Execution Violation
A memory execution violation Reset occurs if executing an instruction being fetched from outside
the valid execution area. The invalid execution areas are:

1. Addresses outside implemented program memory.
2. Storage Area Flash (SAF) inside program memory, if it is enabled.

When a memory execution violation is generated, the device is reset and the MEMYV bit is cleared to
signal the cause of the Reset. The MEMV bit must be set in the user code after a memory execution
violation Reset has occurred to detect further violation Resets.

14.11 Determining the Cause of a Reset

Upon any Reset, multiple bits in the STATUS, PCONO and PCON1 registers are updated to indicate
the cause of the Reset. The following table shows the Reset conditions of these registers.

Table 14-3. Reset Condition for Special Registers

E?ugr:?:: STATUS Register(1.2) PCONO Register PCON1 Register

Vpp Power-on Reset -110 0000 0011 110x ---u ulll
Vpp Brown-out Reset 0 -110 0000 0011 11u0 ---u uulu
Vppio2 Power-on Reset PC+2 -uuu uuuu uuuu uuuu ---u Ouuu
Vppio3 Power-on Reset PC+2 -uuu uuuu uuuu uuuu ---0 uuuu
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14.12

........... continued

STATUS Register(1:2) PCONO Register PCON1 Register

MCLR Reset during
normal operation

MCLR Reset during
Sleep

WDT Time-out Reset

WDT Wake-up from
Sleep

WWDT Window
Violation Reset

Interrupt Wake-up from
Sleep

RESET Instruction
Executed

Stack Overflow Reset
(STVREN = 1)

Stack Underflow Reset
(STVREN = 1)

Data Protection (Fuse
Fault)

VREG or ULP Ready
Fault

Memory Violation Reset

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as ‘0.

Notes:

PC+2

PC +20)

0

0

—uuu uuuu

-10u uuuu

-0uu uuuu

-00u uuuu

—uuu uuuu

-10u uuuu

—uuu uuuu

—uuu uuuu

—uuu uuuu

—uuu uuuu

-110 0000

—uuu uuuu

1. If a Status bit is not implemented, that bit will be read as ‘0".

2. Status bits Z, C, DC are reset by Vpp POR/BOR.

3. When the wake-up is due to an interrupt and Global Interrupt Enable (GIE) bit is set, the return address is pushed on
the stack and PC is loaded with the corresponding interrupt vector (depending on source, high or low priority) after
execution of PC + 2.

Power Control (PCONO/PCON1) Registers

The Power Control (PCONO/PCON1) registers contain flag bits to differentiate between the following

Reset events:

+ Brown-out Reset (BOR)

« Power-on Reset (POR)

* Reset Instruction Reset (RI)

+ MCLR Reset (RMCLR)

« Watchdog Timer Reset (RWDT)

+  Watchdog Window Violation (WDTWV)
« Stack Underflow Reset (STKUNF)

« Stack Overflow Reset (STKOVF)

« Configuration Memory Reset (RCM)

« Memory Violation Reset (MEMV)

« Main LDO Voltage Regulator Reset (RVREG)

Hardware will change the corresponding register bit or bits as a result of the Reset event. Bits for

uuuu

uuuu

uuu0

uuuu

uuOu

uuuu

uuuu

luuu

uluu

uuuu

0011

uuuu

Ouuu

Ouuu

uuuu

uuuu

uuuu

uuuu

uluu

uuuu

uuuu

uuuu

110u

uuuu

---u

===

---u

—-——-u

—-——-u

—-——-u

—-——-u

===

---u

===1

---u

---u

uuuu

uuuu

uuuu

uuuu

uuuu

uuuu

uuuu

uuuu

uuuu

uuu0

ulul

uulu

other Reset events remain unchanged. See Determining the Cause of a Reset for more details.
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Software will reset the bit to the Inactive state after restart (hardware will not reset the bit).

Software may also set any PCONO bit to the Active state, so that user code may be tested, but no
Reset action will be generated.

14.13 Register Definitions: Power Control
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14.13.1 BORCON

Name: BORCON
Address: 0x073

Brown-out Reset Control Register

Bit 7 6 5 4 3 2 1 0

| SBOREN | | | | | | BORRDY |
Access R/W R
Reset 1 q

Bit 7 - SBOREN Software Brown-out Reset Enable
Reset States: POR/BOR =1

All Other Resets =u

Value Condition Description

- If BOREN # 01 SBOREN is read/write, but has no effect on the BOR
1 If BOREN = 01 BOR Enabled

0 If BOREN = 01 BOR Disabled

Bit 0 - BORRDY Brown-out Reset Circuit Ready Status
Reset States: POR/BOR =q

All Other Resets =u

1 The Brown-out Reset Circuit is active and armed
0 The Brown-out Reset Circuit is disabled or is warming up
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14.13.2 PCONO

Name: PCONO
Address: 0x4F0

Power Control Register 0

Bit 7 6 5 4 3 2 1 0
| STKOVF | STKUNF | WDTWV | RWDT | RMCIR | RI | POR | BOR |
Access  R/W/HS R/W/HS R/W/HC R/W/HC R/W/HC R/W/HC R/W/HC R/W/HC
Reset 0 0 1 1 1 1 0 q

Bit 7 - STKOVF Stack Overflow Flag
Reset States: POR/BOR =0
All Other Resets = q

Value Description
1 A Stack Overflow occurred (more CALLS than fit on the stack)
0 A Stack Overflow has not occurred or set to ‘0’ by firmware

Bit 6 - STKUNF Stack Underflow Flag
Reset States: POR/BOR =0
All Other Resets = q

Value Description
1 A Stack Underflow occurred (more RETURNS than CALLS)
0 A Stack Underflow has not occurred or set to ‘0’ by firmware

Bit 5 - WDTWV Watchdog Window Violation Flag
Reset States: POR/BOR =1
All Other Resets = q

Value Description
1 A WDT window violation has not occurred or set to ‘1’ by firmware
0 A CLRWDT instruction was issued when the WDT Reset window was closed (set to ‘0’ in hardware when a WDT

window violation Reset occurs)

Bit 4 - RWDT WDT Reset Flag
Reset States: POR/BOR =1
All Other Resets = q

Value Description
1 A WDT overflow/Time-out Reset has not occurred or set to ‘1’ by firmware
0 A WDT overflow/Time-out Reset has occurred (set to ‘0’ in hardware when a WDT Reset occurs)

Bit 3 - RMCLR MCLR Reset Flag
Reset States: POR/BOR =1
All Other Resets = q

Value Description
1 A MCLR Reset has not occurred or set to ‘1’ by firmware
0 A MCLR Reset has occurred (set to ‘0’ in hardware when a MCLR Reset occurs)

Bit 2 - RI RESET Instruction Flag
Reset States: POR/BOR =1
All Other Resets = q

Value Description
1 A RESET instruction has not been executed or set to ‘1’ by firmware
0 A RESET instruction has been executed (set to ‘0" in hardware upon executing a RESET instruction)
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Bit 1 - POR Power-on Reset Status
Reset States: POR/BOR =0
All Other Resets =u

Value Description

1 No Vpp Power-on Reset occurred or set to ‘1’ by firmware
0 A Vpp Power-on Reset occurred (set to ‘0’ in hardware when a Power-on Reset occurs)

Bit 0 - BOR Brown-out Reset Status
Reset States: POR/BOR =q
All Other Resets =u

Value Description

1 No Vpp Brown-out Reset occurred or set to ‘1" by firmware
0 A Vpp Brown-out Reset occurred (set to ‘0" in hardware when a Brown-out Reset occurs)
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14.13.3 PCON1

Name: PCON1
Address: 0x4F1

Power Control Register 1

Bit 7 6 5 4 3 2 1 0
| | | | PORVDDIO3 [PORVDDIO2| RVREG | MEMV | RCM
Access R/W/HC R/W/HC R/W/HC R/W/HC R/W/HC
Reset 0 0 1 0 q

Bit 4 - PORVDDIO3 Vpp o3 Power-on Reset Flag
Reset States: POR/BOR =0
All Other Resets = q

Value Description
1 No Vppioz Power-on Reset occurred or set to ‘1’ by firmware
0 A Vppjo3 Power-on Reset occurred (set to ‘0’ in hardware when a Vpp,03 Power-on Reset occurs)

Bit 3 - PORVDDIO2 Vpp o, Power-on Reset Flag
Reset States: POR/BOR =0
All Other Resets = q

Value Description
1 No Vppio2 Power-on Reset occurred or set to ‘1’ by firmware
0 A Vppjo2 Power-on Reset occurred (set to ‘0’ in hardware when a Vpp,0, Power-on Reset occurs)

Bit 2 - RVREG Main LDO Voltage Regulator Reset Flag
Reset States: POR/BOR =1
All Other Resets = q

Value Description
1 No LDO or ULP “ready” Reset has occurred or set to ‘1’ by firmware
0 LDO or ULP “ready” Reset has occurred (VDDCORE reached its minimum spec)

Bit 1 - MEMV Memory Violation Reset Flag
Reset States: POR/BOR =0
All Other Resets = u

VEIS Description
1 No memory violation Reset occurred or set to ‘1’ by firmware
0 A memory violation Reset occurred (set to ‘0" in hardware when a Memory Violation occurs)

Bit 0 - RCM Configuration Memory Reset Flag
Reset States: POR/BOR = q
All Other Resets = u

VIS Description
1 A Reset occurred due to corruption of the configuration and/or calibration data latches
0 The configuration and calibration latches have not been corrupted
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14.14 Register Summary - BOR Control and Power Control

[hddress| — Name [ Bitpos | 7 |6 | 5 | 4 | 3 | 2 | 1 | o
7:0

0x73 BORCON SBOREN BORRDY
0x74

e Reserved
OX04EF
0x04F0 PCONO 7:0 STKOVF STKUNF WDTWV RWDT RMCLR RI POR BOR
0x04F1 PCON1 7:0 PORVDDIO3 PORVDDIOZ2 RVREG MEMV RCM
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15. WWDT - Windowed Watchdog Timer

A Watchdog Timer (WDT) is a system timer that generates a Reset if the firmware does not

issue a CLRWDT instruction within the time-out period. A Watchdog Timer is typically used to
recover the system from unexpected events. The Windowed Watchdog Timer (WWDT) differs from
nonwindowed operation in that CLRWDT instructions are only accepted when they are performed
within a specific window during the time-out period.

The WWDT has the following features:
+ Selectable clock source

« Multiple operating modes
- WWDT is always on

- WWDT is off when in Sleep
- WWDT is controlled by software
- WWDT is always off
+ Configurable time-out period from 1 ms to 256s (nominal)
+ Configurable window size from 12.5% to 100% of the time-out period

Multiple Reset conditions
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15.1

15.2

Figure 15-1. Windowed Watchdog Timer Block Diagram

WWDT
Armed
\_4 WDT
Window
Violation
Window Closed

Window
-
CLRWDT Sizes
WINDOW
RESET®

N

R
See .
WDTCON1 >18-b|t Prescale
) Counter
Register £

57

R 5-bit Overflow

WDT Counter Latch

— WDT Time-out

WDTE = ‘b1l

WDTE = ‘b10—]
Sleep —

WDTE = ‘b01—
SEN—

Independent Clock Source

The WWDT can derive its time base from either the 31 KHz LFINTOSC or 31.25 kHz MFINTOSC
internal oscillators, depending on the value of WDT Operating Mode (WDTE) Configuration bits. If
WDTE = ‘b1lx, then the clock source will be enabled depending on the WDTCCS Configuration bits. If
WDTE = ‘b01, the SEN bit will be set by software to enable WWDT, and the clock source is enabled
by the CS bits. Time intervals in this chapter are based on a minimum nominal interval of 1 ms. See
the device Electrical Specifications for LFINTOSC and MFINTOSC tolerances.

WWDT Operating Modes

The Windowed Watchdog Timer module has four operating modes that are controlled by the WDTE
Configuration bit. The table below summarizes the different WWDT operating modes.
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Table 15-1. WWDT Operating Modes

wore WwDT Mode
11 X X

Active
Awake Active
10 X
Sleep Disabled
1 X Active
01
0 X Disabled
00 X X Disabled

15.2.1 WWDT Is Always On

When the WDTE Configuration bits are set to ‘b11, the WWDT is always on. WWDT protection is
active during Sleep.

15.2.2 WWDT Is Off in Sleep

When the WDTE Configuration bits are set to ‘b10, the WWDT is on, except in Sleep mode. WWDT
protection is not active during Sleep.

15.2.3 WWDT Controlled by Software

When the WDTE Configuration bits are set to ‘b01, the WWDT is controlled by the SEN bit. WWDT
protection is unchanged by Sleep. See Table 15-1 for more details.

15.3 Time-Out Period

When the WDTCPS Configuration bits are set to the default value of *b11111, the PS bits set the
time-out period from 1 ms to 256 seconds (nominal). If any value other than the default value is
assigned to the WDTCPS Configuration bits, then the timer period will be based on the WDTCPS
Configuration bits. After a Reset, the default time-out period is 2s.

15.4 Watchdog Window

The Windowed Watchdog Timer has an optional Windowed mode that is controlled by either the
WDTCWS Configuration bits or the WINDOW bits. In the Windowed mode (WINDOW < ‘b1111),

the CLRWDT instruction must occur within the allowed window of the WDT period. Any CLRWDT
instruction that occurs outside of this window will trigger a window violation and will cause a WWDT
Reset, similar to a WWDT time-out. See Figure 15-2 for an example.

When the WDTCWS Configuration bits are ‘b111, then the window size is controlled by the WINDOW
bits, otherwise the window size is controlled by the WDTCWS bits. The five Most Significant bits of
the WDTTMR register are used to determine whether the window is open, as defined by the window
size. In the event of a window violation, a Reset will be generated and the WDTWV bit of the PCONO
register will be cleared. This bit is set by a POR and can be set by software.

Figure 15-2. Window Period and Delay

CLRWDT Instruction

(or other WDT Reset)
- Window Period

Y

Yy

Window Closed Window Open

< >
-t

Window Delay
(window violation can occur)

Time-out Event
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15.5 Clearing the Watchdog Timer
The Watchdog Timer is cleared when any of the following conditions occur:
* Any Reset
« Avalid CLRWDT instruction is executed
+ The device enters Sleep
+ The devices exits Sleep by Interrupt
+ The WWDT is disabled
+ The Oscillator Start-up Timer (OST) is running
* Any write to the WDTCONO or WDTCON1 registers

15.5.1 CLRWDT Considerations (Windowed Mode)

When in Windowed mode, the WWDT must be armed before a CLRWDT instruction will clear the
timer. This is performed by reading the WDTCONO register. Executing a CLRWDT instruction without
performing such an arming action will trigger a window violation regardless of whether the window
is open or not. See Table 15-2 for more information.

15.6 Operation During Sleep

When the device enters Sleep, the Watchdog Timer is cleared. If the WWDT is enabled during Sleep,
the Watchdog Timer resumes counting. When the device exits Sleep, the Watchdog Timer is cleared
again. The Watchdog Timer remains clear until the Oscillator Start-up Timer (OST) completes, if
enabled. When a WWDT time-out occurs while the device is in Sleep, no Reset is generated. Instead,
the device wakes up and resumes operation. The TO and PD bits in the STATUS register are changed
to indicate the event. The RWDT bit in the PCONO register indicates that a Watchdog Reset has
occurred.

Table 15-2. WWDT Clearing Conditions

wwior

WDTE = *b00
WDTE = ‘b01 and SEN =0
WDTE = ‘b10 and enter Sleep

CLRWDT Command Cleared

Oscillator Fail Detected

Exit Sleep + System Clock = SOSC, EXTRC, INTOSC, EXTCLK

Exit Sleep + System Clock = XT, HS, LP Cleared until the end of OST
Change INTOSC divider (NOSC bits) Unaffected

15.7 Register Definitions: Windowed Watchdog Timer Control

Long bit name prefixes for the Windowed Watchdog Timer peripherals are shown in the following
table. Refer to the "Long Bit Names" section in the “Register and Bit Naming Conventions”
chapter for more information.

Table 15-3. WWDT Long Bit Name Prefixes

Peripheral Bit Name Prefix

WDT WDT
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15.7.1 WDTCONO

Name:
Address:

WDTCONO
0x074

Watchdog Timer Control Register 0

Bit 7 6 5 4 3 2 1 0
| | | PS[4:0] | SEN |
Access R/W R/W R/W R/W R/W R/W
Reset q q q q q 0

Bits 5:1 - PS[4:0] Watchdog Timer Prescaler Select(?

11111
10011

10010
10001
10000
01111
01110
01101
01100
01011
01010
01001
01000
00111
00110
00101
00100
00011
00010
00001
00000

Bit 0 - SEN Software Enable/Disable for Watchdog Timer

to

Reserved. Results in minimum interval (1 ms)

1:8388608 (223) (Interval 256s nominal)
1:4194304 (222) (Interval 128s nominal)
1:2097152 (22") (Interval 64s nominal)
1:1048576 (229) (Interval 32s nominal)
1:524288 (219) (Interval 16s nominal)
1:262144 (218) (Interval 8s nominal)
1:131072 (2'7) (Interval 4s nominal)
1:65536 (Interval 2s nominal) (Reset value)
1:32768 (Interval 1s nominal)

1:16384 (Interval 512 ms nominal)
1:8192 (Interval 256 ms nominal)
1:4096 (Interval 128 ms nominal)
1:2048 (Interval 64 ms nominal)

1:1024 (Interval 32 ms nominal)

1:512 (Interval 16 ms nominal)

1:256 (Interval 8 ms nominal)

1:128 (Interval 4 ms nominal)

1:64 (Interval 2 ms nominal)

1:32 (Interval 1 ms nominal)

X

1
0
X

Notes:

1. When the WDTCPS Configuration bits = *b11111, the Reset value (q) of WDTPS is *b01011.
Otherwise, the Reset value of WDTPS is equal to the WDTCPS in Configuration bits.

2. When the WDTCPS in Configuration bits # ‘b11111, these bits are read-only.

If WDTE = 1x
If WDTE = 01
If WDTE =01
If WDTE = 00
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This bit is ignored
WDT is turned on
WDT is turned off
This bit is ignored
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15.7.2 WDTCON1

Name:

Address:

WDTCON1
0x075

Watchdog Timer Control Register 1

Bit 7 6 5 4 3 2 1 0
| CS[2:0] | | WINDOW[2:0]
Access R/W RIW R/W R/W R/W R/W
Reset q q q q 9 q

Bits 6:4 - CS[2:0] Watchdog Timer Clock Select(:3)

111-100
011
010
001
000

Reserved
EXTOSC
SOSC
MFINTOSC (31.25 kHz)
LFINTOSC (31 kHz)

Bits 2:0 - WINDOW][2:0] Watchdog Timer Window Select(z4)

WINDOW Window Delay Percent of Time Window Opening Percent of Time

111

Notes:
When the WDTCCS in Configuration bits = *0b111, the Reset value of WDTCS is *b000.

1.

2.
3.
4
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The Reset value (q) of WINDOW is determined by the value of WDTCWS in the Configuration bits.

N/A
12.5
25
37.5
50
62.5
75
87.5

100
87.5
75
62.5
50
37.5
25
12.5

When the WDTCCS in Configuration bits # ‘b111, these bits are read-only.
When the WDTCWS in Configuration bits # ‘b111, these bits are read-only.
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15.7.3 WDTPSH

Name: WDTPSH
Address: 0x077

WWODT Prescaler Select Register (Read-Only)

Bit 7 6 5 4 3 2 1 0

| PSCNTH[7:0] |
Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bits 7:0 - PSCNTH[7:0] Prescaler Select High Byte("

Note:

1. The 18-bit WDT prescaler value, PSCNT[17:0] includes the WDTPSL, WDTPSH and the lower bits
of the WDTTMR registers. PSCNT[17:0] is intended for debug operations and will be read during
normal operation.
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15.7.4 WDTPSL

Name: WDTPSL
Address: 0x076

WWODT Prescaler Select Register (Read-Only)

Bit 7 6 5 4 3 2 1 0

| PSCNTL[7:0] |
Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bits 7:0 - PSCNTL[7:0] Prescaler Select Low Byte("

Note:

1. The 18-bit WDT prescaler value, PSCNT[17:0] includes the WDTPSL, WDTPSH and the lower bits
of the WDTTMR registers. PSCNT[17:0] is intended for debug operations and will be read during
normal operation.
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15.7.5 WDTTMR

Name: WDTTMR
Address: 0x078

WDT Timer Register (Read-Only)

Bit 7 6 5 4 3 2 1 0

| TMR[4:0] | STATE | PSCNT[17:16] |
Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bits 7:3 - TMR[4:0] Watchdog Window Value

WDT Window State
e | open
111 N/A

Open Percent

00000-11111 100
110 00000-00011 00100-11111 87.5
101 00000-00111 01000-11111 75
100 00000-01011 01100-11111 62.5
011 00000-01111 10000-11111 50
010 00000-10011 10100-11111 37.5
001 00000-10111 11000-11111 25
000 00000-11011 11100-11111 12.5

Bit 2 - STATE WDT Armed Status

Value Description
1 WDT is armed
0 WDT is not armed

Bits 1:0 - PSCNT[17:16] Prescaler Select Upper Byte("

Note:

1. The 18-bit WDT prescaler value, PSCNT[17:0] includes the WDTPSL, WDTPSH and the lower bits
of the WDTTMR registers. PSCNT[17:0] is intended for debug operations and will not be read
during normal operation.
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15.8 Register Summary - WDT Control

0x74 WDTCONO
0x75 WDTCON1
0x76 WDTPSL
0x77 WDTPSH
0x78 WDTTMR

@ MICROCHIP

7:0
7:0
7:0
7:0

CS[2:0]

TMR[4:0]

PS[4:0]

PSCNTL[7:0]
PSCNTH[7:0]

STATE

WINDOWI[2:0]

PSCNT[17:16]
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16. DMA - Direct Memory Access

The Direct Memory Access (DMA) module is designed to service data transfers between different
memory regions directly, without intervention from the CPU. By eliminating the need for CPU-
intensive management of handling interrupts intended for data transfers, the CPU now can spend
more time on other tasks.

The DMA modules can be independently programmed to transfer data between different memory
locations, move different data sizes, and use a wide range of hardware triggers to initiate transfers.
The DMA modules can even be programmed to work together, to carry out more complex data
transfers without CPU overhead.

Key features of the DMA module include:
+ Support access to the following memory regions:
- GPR and SFR space (R/W)

- Program Flash memory (R only)
- Data EEPROM memory (R only)

* Programmable priority between the DMA and CPU operations. Refer to the “System
Arbitration” section in the “PIC18 CPU" chapter for details.

+ Programmable Source and Destination Address modes:
- Fixed address

- Post-increment address
- Post-decrement address
« Programmable source and destination sizes
+ Source and Destination Pointer register, dynamically updated and reloadable
+ Source and Destination Count register, dynamically updated and reloadable
* Programmable auto-stop based on source or destination counter
« Software triggered transfers
+ Multiple user-selectable sources for hardware triggered transfers
* Multiple user-selectable sources for aborting DMA transfers

16.1 DMA Registers
The operation of the DMA module is controlled by the following registers:
+ DMA Instance Selection (DMASELECT) register
+ Control (DMANCONO, DMANCON1) registers
« Data Buffer (DMANBUF) register
+ Source Start Address (DMANSSA) register
* Source Pointer (DMANSPTR) register
+ Source Message Size (DMANSSZ) register
* Source Count (DMANSCNT) register
+ Destination Start Address (DMANDSA) register
+ Destination Pointer (DMANDPTR) register
* Destination Message Size (DMANDSZ) register
+ Destination Count (DMANDCNT) register
+ Start Interrupt Request Source (DMANSIRQ) register
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« Abort Interrupt Request Source (DMANAIRQ) register
The registers are detailed in Register Definitions: DMA.

16.2 DMA Organization

The DMA module is designed to move data by using the existing instruction bus and data bus
without the need for any dual-porting of memory or peripheral systems (Figure 16-1). The DMA
accesses the required bus when granted by the system arbiter.

Figure 16-1. DMA Functional Block Diagram

DMA1

Control Registers

Source Start Address

Source Size
Destination Start Address
] Program Flash
Destination Size = Memory
2
a
— 2
. T |- Data EEPROM
] 9]
®
° >
]
. GPR/SFR
. —_— RAM Space
DMAnRN
Control Registers
Source Start Address
Priority

Source Size —

Destination Start Address

Destination Size

Depending on the priority of the DMA with respect to CPU execution (refer to the “Memory Access
Scheme” section in the “PIC18 CPU" chapter for more information), the DMA Controller can move
data through two methods:

+ Stalling the CPU execution until it has completed its transfers (DMA has higher priority over the
CPU in this mode of operation)

+ Utilizing unused CPU cycles for DMA transfers (CPU has higher priority over the DMA in this
mode of operation). Unused CPU cycles are referred to as bubbles, which are instruction cycles
available for use by the DMA to perform read and write operations. In this way, the effective
bandwidth for handling data is increased; at the same time, DMA operations can proceed without
causing a processor stall.
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16.3 DMA Interface

The DMA module transfers data from the source to the destination one byte at a time, this smallest
data movement is called a DMA data transaction. A DMA message refers to one or more DMA data
transactions.

Each DMA data transaction consists of two separate actions:

+ Reading the source address memory and storing the value in the DMA Buffer register

+ Writing the contents of the DMA Buffer register to the destination address memory

Important: DMA data movement is a two-cycle operation.

The XIP bit is a Status bit to indicate whether or not the data in the DMANBUF register has been
written to the destination address. If the bit is set, then data are waiting to be written to the
destination. If clear, it means that either data has been written to the destination or that no source
read has occurred.

The DMA has read access to PFM, Data EEPROM, and SFR/GPR space, and write access to SFR/GPR
space. Based on these memory access capabilities, the DMA can support the following memory
transactions:

Table 16-1. DMA Memory Access

Program Flash Memory GPR
Program Flash Memory SFR
Data EE GPR

Data EE SFR

GPR GPR

GPR SFR

SFR GPR

SFR SFR

Important: Even though the DMA module has access to all memory and peripherals that
are also available to the CPU, it is recommended that the DMA does not access any register
that is part of the system arbitration. The DMA, as a system arbitration client must not be
read or written by itself or by another DMA instantiation.

The following sections discuss the various control interfaces required for DMA data transfers.

16.3.1 Special Function Registers with DMA Access only
The DMA can transfer data to any GPR or SFR location. For better user accessibility, some of the
more commonly used SFR spaces have their mirror registers placed in a separate data memory
location. These mirror registers can be only accessed by the DMA module through the DMA Source
and Destination Address registers. The figure below shows the register map for these registers.

These registers are useful to multiple peripherals together like the Timers, PWMs and also other
DMA modules using one of the DMA modules.
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Figure 16-2. Special Function Register Map (DMA Access Only)

40FFh = 40DFh 40BFh 409Fh 407Fh = 405Fh 403Fh = 401Fh &

40FEh - 40DEh 40BEh 409Eh 407€h - 405Eh! 403Eh - 401Eh -

40FDh - 40DDh 40BDh! 409Dh 407Dh| ADRESH_M1 405Dh| 403Dh - 401Dh|

40FCh - 40DCh 408Ch 409Ch 407Ch ADRESL_M1 405Ch 403Ch - 401Ch

40FBh 40DBh 408Bh 4098h 4078h ADPCH_M1 4058h 4038h - 401Bh

40FAh! = 40DAh 40BAh 409Ah 407Ah’ ADCLK_M1 405Ah! 403Ah = 401Ah!

40FSh = 40DSh 40B%h 409%h 407%h ADACT_M1 405%h 403%h = 4019h!

40F8h = 40D8h 40B8h 4098h 4078h ADREF_M1 4058h 4038h = 4018h’ =

40F7h - 40D7h 40B7h 4097h 4077h ADCON3_M1 4057h 4037h - 4017h|  PWM2S1P2H_M1
40F6h ADRESH_M2 40D6h 40B6h 4096h 4076h ADCON2_M1 4056h! 4036h - 4016h[  PWM251P2L M1
40F5h ADRESL_M2 40D5h 40B5h 4095h 4075h ADCON1_M1 4055h! 4035h - 4015h|  PWM2S1P1H_M2
40F4h ADPCH_M2 40D4h 40B4h 4094h 4074h ADCONO_M1 4054h 4034h - 4014h|  PWM251P1L_M2
40F3h ADCAP_M2 40D3h 4083h 4093h 4073h ADCAP_M1 4053h; 4033h 4013h|  PWMIS1P2H_M1
40F2h ADACQH_M2 40D2h 4082h 4092h 4072h ADACQH_M1 4052h 4032h h 4012h PWM1S1P2L_M1
40F1h ADACQL_M2 40D1h 4081h 4091h 4071h ADACQL_M1 4051h 4031h = 4011h PWM1S1P1H_M2
40FOh ADPREVH_M2 40D0h 40B0h 4090h 4070h ADPREVH_M1 4050h 4030h = 4010h! PWM1S1P1L_M2
40EFh ADPREVL_M2 40CFh 40AFh 408Fh 406Fh ADPREVL_M1 404Fh 402Fh - 400Fh -

40EER ADRPT_M2 40CEh 40AEh 408Eh 406Eh ADRPT_M1 404Eh 402Eh - 400Eh! -

40EDh ADCNT_M2 40CDh 40ADh 408Dh 406Dh| ADCNT_M1 404Dh 402Dh - 400Dh| -

40ECh = 40cch 40ACh 408Ch 406Ch - 404ch 402ch - 400Ch

40EBh ADACCH_M2 40CBh 40ABh 4088h 4068h ADACCH_M1 404Bh 4028h PWM2PRH_M1 4008h

40EAR] ADACCL_M2 40CAh 40AAN 408Ah 406Ah’ ADACCL_M1 404Ah| 402Ah PWM2PRL_M1 400Ah s

40ESh ADFLTRH_M2 40CSh 40A%h 4089h 4069h ADFLTRH_M1 4049h 4029h PWM2S1P2H_M2 4009h PWM251P1H_M1
40E8h ADFLTRL_M2 40C8h 40A8h 4088h 4068h ADFLTRL_M1 4048h 4028h PWM251P2L_M2 4008h PWM251P1L_M1
40E7h ADSTPTH_M2 40C7h 40A7h 4087h 4067h ADSTPTH_M1 4047h 4027h[ PWM2S1P1H_M3  [4007h| PWM1S1P1H_M1
40E6h ADSTPTL_M2 40C6h 40A6h 4086h 4066h ADSTPTL_M1 4046h’ - 4026h| PWM251P1L_ M3 [4006h| PWMIS1P1L_M1
40ESh ADERRH_M2 40Csh 40ASh 4085h 4065h ADERRH_M1 4045h T4PR_M1 4025h PWMIPRH_M1 4005h -

40E4h ADERRL_M2 40Cah 40A4h 4084h 4064h ADERRL_M1 4044h CCPR2H_M?2 4024h PWM1PRL_M1 4004h -

40E3h ADUTHH_M2 40C3h 40A3h 4083h 4063h ADUTHH_M1 4043h CCPR2L_M2 4023h PWM1S1P2H_M2 4003h CCPR2H_M1
40E2h ADUTHL_M2 40C2h 40A2h 4082h 4062h ADUTHL_M1 4042h T2PR_M1 4022h PWM1S1P2L_M2 4002h! CCPR2L_M1
40E1h ADLTHH_M2 40C1h 40A1h 4081h 4061h ADLTHH_M1 4041h CCPR1H_M2 4021h PWM1S1P1H_M3 4001h CCPR1H_M1
40EOh ADLTHL_M2 40C0h 40A0h 4080h 4060h ADLTHL_M1 4040h CCPRIL_M2 4020h PWM1S1P1L_M3 4000h CCPR1L_M1
41FFh 41DFh 41BFh 419Fh 417Fh 415Fh 413Fh[ DMANnSSAH_DMA3 [411Fh| DMANDSAH_DMA2
41FEh 41DEh 41BEh 419h 417th 415Eh 413th[ DMANnSSAL_DMA3 |411Eh| DMANDSAL_DMA2
41FDh 410Dh! 418Dh 419Dh 417Dh| 415Dh 413Dh| DMANSSZH_DMA3  |411Dh[ DMAnDSZH_DMA2
41FCh] 41DCh 41BCh 419Ch 417Ch] 415Ch - 413Ch| DMANSSZL_DMA3 411Ch[ DMANDSZL_DMA2
41FBh 41DBh 418Bh 4198h 4178h 415Bh| DMANSIRQ_DMA4 _ [413Bh| DMANSPTRU_DMA3 |411Bh| DMANnDPTRH_DMA2
41FAh 41DAh 41BAh 419Ah 417Ah 415Ah| DMAnAIRQ_DMA4 _|413Ah[ DMANSPTRH_DMA3 |411Ah| DMANDPTRL_DMA2
41FSh - 41D%h 41B9h 4199h 4179h 4159h| DMANCON1 DMA4 [4139h| DMANnSPTRL_DMA3 |4119h| DMAnDCNTH_DMA2
41F8h - 41D8h 418B8h 4198h 4178h 4158h| DMANCONO_DMA4 |4138h| DMANSCNTH_DMA3 |4118h| DMANDCNTL_DMA2
41F7h TMR1H_M1 4107h 4187h 4197h 4177h 4157h| DMAnSSAU_DMA4  |4137h| DMANSCNTL DMA3 [4117h| DMAnBUF_DMA2
41F6h TMR1L_M1 41D6h 41B6h 4196h 4176h 4156h| DMANSSAH_DMA4 [4136h| DMAnDSAH_DMA3 |[4116h| DMAnSIRQ_DMA1
41F5h - 41D5h 41B5h 4195h 4175h 4155h| DMAnSSAL_DMA4  |4135h| DMANDSAL_DMA3 [4115h| DMAnAIRQ_DMA1
41F4h - 41D4h 41B4h 4194h 4174h 4154h| DMANSSZH_DMA4  [4134h| DMANDSZH_DMA3 |4114h| DMANCON1 DMA1
41F3h TU2PRH_M1 41D3h 41B3h 4193h 4173h] 4153h DMANSSZL_DMA4 4133h DMANDSZL_DMA3 _ [4113h| DMANCONO_DMA1
41F2h TU2PRL_M1 41D2h 41B2h 4192h 4172h 4152h| DMANSPTRU_DMA4 |4132h| DMAnDPTRH_DMA3 [4112h| DMANSSAU_DMA1
41F1h TU1PRH_M1 41D1h 41B1h 4191h 4171h 4151h| DMANSPTRH_DMA4 |4131h| DMANDPTRL_DMA3 [4111h| DMAnSSAH_DMA1
41FOh TU1PRL_M1 41D0h 41B0h 4190h 4170h] 4150h| DMANSPTRL_DMA4 [4130h| DMANDCNTH_DMA3 |4110h DMANSSAL_DMA1
41EFh - 41CFh 41AFh 418Fh 416Fh 414Fh| DMANnSCNTH_DMA4 |412Fh| DMANDCNTL_DMA3 [410Fh| DMANSSZH_DMA1
41EEh 41CEh 41Ath 418th 416Eh 414Eh| DMANSCNTL_DMA4 |412Eh DMAnBUF_DMA3 410Eh DMANSSZL_DMA1
41EDh 41CDh 41ADh 418Dh| 416Dh| 414Dh| DMANDSAH_DMA4 |412Dh| DMANSIRQ_DMA2 _|410Dh| DMANSPTRU_DMA1
41ECh a1cch 41ACh 418Ch 416Ch 414Ch| DMAnDSAL_DMA4 [412Ch[ DMANAIRQ_DMA2 |410Ch| DMANSPTRH_DMA1
41CBh 41CBh 41ABh 4188h 416Bh’ 414Bh| DMANDSZH_DMA4 |412Bh| DMANCON1 DMA2 |410Bh| DMANSPTRL_DMA1
41EAh 41CAh 41AAh 418Ah 416Ah 414Ah| DMANDSZL DMA4  [412Ah| DMANCONO_DMA2 |410Ah| DMANSCNTH_DMA1
41E9h 41C9h 41A9h 418%h 4169 414%h| DMANDPTRH_DMA4 |4129h| DMANSSAU_DMA2 [4109h| DMANSCNTL_DMAL
41E8h 41C8h 41A8h 4188h 4168h’ 4148h| DMANDPTRL_DMA4 [4128h| DMAnSSAH_DMA2 |4108h| DMAnDSAH_DMA1
41E7h 41C7h 41A7h 4187h 4167h 4147h| DMANDCNTH_DMA4 |4127h| DMAnSSAL_DMA2 _[4107h| DMAnDSAL_DMA1
41E6h 41C6h 41A6h 4186h 4166h 4146h| DMANDCNTL_DMA4 |4126h| DMAnSSZH DMA2 [4106h| DMANnDSZH_DMA1
41ESh - 41C5h 41Ash 4185h 4165h’ 4145h DMANnBUF_DMA4 4125h DMANSSZL_DMA2 4105h DMANDSZL_DMA1
41E4h 10CWF_M1 41Cah 41A4h 4184h 4164h 4144h| DMANSIRQ_DMA3  |4124h| DMANSPTRU_DMA2 |4104h| DMANDPTRH_DMA1
41E3h - 41C3h 41A3h 4183h 4163h 4143h| DMANAIRQ_DMA3 |4123h| DMANSPTRH_DMA2 [4103h| DMAnDPTRL_DMA1
41E2h 10CCF_M1 41C2h 41A2h 4182h 4162h’ 4142h| DMANCON1 DMA3 [4122h| DMANSPTRL_DMA2 |4102h| DMANDCNTH_DMA1
41E1h 10CBF_M1 41C1h 41A1h 4181h 4161h 4141h| DMANCONO_DMA3 |4121h| DMANSCNTH_DMA2 [4101h| DMAnDCNTL_DMAL
41E0h I0CAF_M1 41C0h 41A0h 4180h 4160h 4140h| DMANSSAU_DMA3 |4120h| DMANSCNTL_DMA2 [4100h| DMAnBUF_DMA1

16.3.2 DMA Addressing

The start addresses for the source read and destination write operations are set using the DMANSSA
and DMANDSA registers, respectively.

When the DMA message transfers are in progress, the DMANSPTR and DMANDPTR registers contain
the current Address Pointers for each source read and destination write operation. These registers
are modified after each transaction based on the Address mode selection bits.

The SMODE and DMODE bits determine the Address modes of operation by controlling how the
DMANSPTR and DMANDPTR registers are updated after every DMA data transaction (Figure 16-3).

Each address can be separately configured to:
Remain unchanged
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Increment by 1
Decrement by 1
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Figure 16-3. DMA Pointers Block Diagram

DMANSSA DMANDSA

A A A

N _/

A4 v
DMANSPTR DMANDPTR
+1 +1
00— 0—
i — I p—
SMODE DMODE

The DMA can initiate data transfers from the PFM, Data EEPROM or SFR/GPR space. The SMR bits are
used to select the type of memory being pointed to by the Source Address Pointer. The SMR bits are
required because the PFM and SFR/GPR spaces have overlapping addresses that do not allow the
specified address to uniquely define the memory location to be accessed.

Important:

1. For proper memory read access to occur, the combination of address and space
selection must be valid.

2. The destination does not have space selection bits because it can only write to the
SFR/GPR space.

16.3.3 DMA Message Size/Counters

A transaction is the transfer of one byte. A message consists of one or more transactions. A
complete DMA process consists of one or more messages. The size registers determine how many
transactions are in a message. The DMANSSZ registers determine the source size and DMAnDSZ
registers determine the destination size.

When a DMA transfer is initiated, the size registers are copied to corresponding counter registers
that control the duration of the message. The DMANSCNT registers count the source transactions
and the DMANDCNT registers count the destination transactions. Both are simultaneously
decremented by one after each transaction.

A message is started by setting the DGO bit and terminates when the smaller of the two counters
reaches zero.

When either counter reaches zero, the DGO bit is cleared and the counter and pointer registers are
immediately reloaded with the corresponding size and address data. If the other counter did not
reach zero, then the next message will continue with the count and address corresponding to that
register. Refer to Figure 16-4.
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When the Source and Destination Size registers are not equal, then the ratio of the largest to the
smallest size determines how many messages are in the DMA process. For example, when the
destination size is six and the source size is two, then each message will consist of two transactions
and the complete DMA process will consist of three messages. When the larger size is not an even
integer of the smaller size, then the last message in the process will terminate early when the larger
count reaches zero. In that case, the larger counter will reset and the smaller counter will have a
remainder skewing any subsequent messages by that amount.

Table 16-2 has a few examples of configuring DMA Message sizes.

Important: Reading the DMANSCNT or DMANDCNT registers will never return zero. When
either register is decremented from ‘1, it is immediately reloaded from the corresponding
size register.

Table 16-2. Example Message Size

Read from single SFR UART Receive Buffer N equals the number of bytes desired in

location to RAM the destination buffer. N > 1.

Write to single SFR UART Transmit Buffer N 1 N equals the number of bytes desired in

location from RAM the source buffer. N> 1.

Read from multiple SFR ADC Result registers 2 2*N N equals the number of ADC results to be

location stored in memory. N =1

Write to Multiple SFR PWM Duty Cycle registers 2*N 2 N equals the number of PWM duty cycle

registers values to be loaded from a memory table.
N1

Figure 16-4. DMA Counters Block Diagram

DMANSSzZ DMANDSZ

A A 4 A A 4

N N

A 4 A 4

DMANSCNT DMANDCNT

16.3.4 DMA Message Transfers

Once the Enable bit is set to start DMA message transfers, the Source/Destination Pointer and
Counter registers are initialized to the conditions shown in the table below.

Table 16-3. DMA Initial Conditions

DMANSPTR DMANSSA
DMANSCNT DMANSSZ
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........... continued

DMANDPTR DMANDSA
DMANDCNT DMANDSZ

During the DMA operation after each transaction, Table 16-4 and Table 16-5 indicate how the
Source/Destination Pointer and Counter registers are modified.

The following sections discuss how to initiate and terminate DMA transfers.

Table 16-4. DMA Source Pointer/Counter During Operation

DMANSCNT = DMANSCNT -1
SMODE = 00: DMANSPTR = DMANSPTR

DMANSCNT !=1
SMODE = 01: DMANSPTR = DMANSPTR + 1
SMODE = 10: DMANSPTR = DMANSPTR - 1
DMANSCNT = DMANSSZ
DMANSCNT ==

DMANSPTR = DMANSSA

Table 16-5. DMA Destination Pointer/Counter During Operation
DMANDCNT = DMANDCNT -1
DMODE = 00: DMANDPTR = DMANDPTR
DMODE = 01: DMANDPTR = DMANDPTR + 1
DMODE = 10: DMANDPTR = DMANDPTR - 1
DMANDCNT = DMANDSZ
DMANDPTR = DMAnDSA

DMANDCNT !=1

DMANDCNT ==1

16.3.4.1 Starting DMA Message Transfers
The DMA can initiate data transactions by either of the following two conditions:

« User software control
+ Hardware trigger, SIRQ

16.3.4.1.1 User Software Control
Software starts or stops DMA transaction by setting/clearing the DGO bit. The DGO bit is also used
to indicate whether a DMA hardware trigger has been received and a message is in progress.

Important:
1. Software start can only occur when the EN bit is set.

2. If the CPU writes to the DGO bit while it is already set, there is no effect on the system,
the DMA will continue to operate normally.

16.3.4.1.2 Hardware Trigger, SIRQ
A hardware trigger is an interrupt request from another module sent to the DMA with the purpose
of starting a DMA message. The DMA start trigger source is user-selectable using the DMANSIRQ
register.

The SIRQEN bit is used to enable sampling of external interrupt triggers by which a DMA transfer can
be started. When set, the DMA will sample the selected interrupt source and when cleared, the DMA
will ignore the interrupt source. Clearing the SIRQEN bit does not stop a DMA transaction currently
in progress, it only stops more hardware request signals from being received.
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16.3.4.2 Stopping DMA Message Transfers
The DMA controller can stop data transactions by any of the following conditions:

+ Clearing the DGO bit

+ Hardware abort trigger, AIRQ
+ Source count reload

+ Destination count reload

+ Clearing the EN bit

16.3.4.2.1 User Software Control

If the user clears the DGO bit, the message will be stopped and the DMA will remain in the current
configuration.

For example, if the user clears the DGO bit after source data has been read, but before it is written
to the destination, then the data in the DMANBUF register will not reach its destination.

This is also referred to as a soft-stop as the operation can resume, if desired, by setting the DGO bit
again.

16.3.4.2.2 Hardware Trigger, AIRQ

The AIRQEN bit is used to enable sampling of external interrupt triggers by which a DMA transaction
can be aborted.

Once an abort interrupt request has been received, the DMA will perform a soft-stop by clearing the
DGO bit, as well as clearing the SIRQEN bit so overruns do not occur. The AIRQEN bit is also cleared
to prevent additional abort signals from triggering false aborts.

If desired, the DGO bit can be set again and the DMA will resume operation from where it left off
after the soft stop had occurred, as none of the DMA state information is changed in the event of an
abort.

16.3.4.2.3 Source Count Reload
A DMA message is considered to be complete when the Source Count register is decremented from
‘1" and then reloaded (i.e., once the last byte from either the source read or destination write has
occurred). When the SSTP bit is set and the Source Count register is reloaded, then further message
transfer is stopped.

16.3.4.2.4 Destination Count Reload
A DMA message is considered to be complete when the Destination Count register is decremented
from 1 and then reloaded (i.e., once the last byte from either the source read or destination write
has occurred). When the DSTP bit is set and the Destination Count register is reloaded then further
message transfer is stopped.

Important: Reading the DMANSCNT or DMANDCNT registers will never return zero. When
either register is decremented from ‘1, it is immediately reloaded from the corresponding
size register.

16.3.4.2.5 Clearing the EN Bit

If the user clears the EN bit, the message will be stopped and the DMA will return to its default
configuration. This is also referred to as a hard stop, as the DMA cannot resume operation from
where it was stopped.
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Important: After the DMA message transfer is stopped, it requires an extra instruction
cycle before the Stop condition takes effect. Thus, after the Stop condition has occurred, a
source read or a destination write can occur depending on the source or destination bus
availability.

16.4 Disable DMA Message Transfer Upon Completion

Once the DMA message is complete, it may be desirable to disable the trigger source to prevent
overrun or under run of data. This can be done by any of the following methods:

+ Clearing the SIRQEN bit
+ Setting the SSTP bit
+ Setting the DSTP bit

16.4.1 Clearing the SIRQEN Bit
Clearing the SIRQEN bit stops the sampling of external start interrupt triggers, hence preventing
further DMA message transfers.

An example is a communications peripheral with a level-triggered interrupt. The peripheral will
continue to request data (because its buffer is empty) even though there is no more data to be
moved. Disabling the SIRQEN bit prevents the DMA from processing these requests.

16.4.2 Source/Destination Stop
The SSTP and DSTP bits determine whether or not to disable the hardware triggers (SIRQEN = 0),
once a DMA message has completed.

When the SSTP bit is set and the DMANSCNT = 0, then the SIRQEN bit will be cleared. Similarly, when
the DSTP bit is set and the DMANDCNT = 0, the SIRQEN bit will be cleared.

Important: The SSTP and DSTP bits are independent functions and do not depend on
each other. It is possible for a message to be stopped by either counter at message end or
both counters at message end.

16.5 Types of Hardware Triggers
The DMA has two different trigger inputs, the source trigger and the abort trigger. Each of these
trigger sources is user configurable using the DMANSIRQ and DMANAIRQ registers.
Based on the source selected for each trigger, there are two types of requests that can be sent to
the DMA:
+ Edge triggers
+ Level triggers

16.5.1 Edge Trigger Requests

An edge request occurs only once when a given module interrupt requirements are true. Examples
of edge triggers are the ADC conversion complete and the interrupt-on-change interrupts.

16.5.2 Level Trigger Requests

A level request is asserted as long as the condition that causes the interrupt is true. Examples of
level triggers are the UART receive and transmit interrupts.
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16.6 Types of Data Transfers

Based on the memory access capabilities of the DMA (see Table 16-1), the following sections discuss

the different types of data movement between the source and destination memory regions.

* N
This type of transfer is common when sending predefined data packets (such as strings) through
a single interface point (such as communications modules transmit registers).

* N:N
This type of transfer is useful for moving information out of the program Flash or Data EEPROM
to SRAM for manipulation by the CPU or other peripherals.

1
This type of transfer is common when bridging two different modules data streams together
(communications bridge).

* 1N
This type of transfer is useful for moving information from a single data source into a memory
buffer (communications receive registers).

16.7 DMA Interrupts

Each DMA has its own set of four interrupt flags, used to indicate a range of conditions during data
transfers. The interrupt flag bits can be accessed using the corresponding PIR registers (refer to the
“VIC - Vectored Interrupt Controller Module” chapter).

16.7.1 DMA Source Count Interrupt

The Source Count Interrupt Flag (DMAXSCNTIF) is set every time the DMANSCNT register reaches
zero and is reloaded to its starting value.

16.7.2 DMA Destination Count Interrupt

The Destination Count Interrupt Flag (DMAXDCNTIF) is set every time the DMANDCNT register
reaches zero and is reloaded to its starting value.

The DMA source and destination count interrupts signal the CPU when the DMA messages are
completed.

16.7.3 Abort Interrupt

The Abort Interrupt Flag (DMAXAIF) is used to signal that the DMA has halted activity due to an abort
signal from one of the abort sources. This is used to indicate that the transaction has been halted by
a hardware event.

16.7.4 Overrun Interrupt

When the DMA receives a trigger to start a new message before the current message is completed,
then the Overrun Interrupt Flag (DMAXORIF) bit is set.

This condition indicates that the DMA is being requested before its current transaction is finished.
This implies that the active DMA may not be able to keep up with the demands from the peripheral
module being serviced, which may result in data loss.

The DMAXORIF flag being set does not cause the current DMA transfer to terminate.

The overrun interrupt is only available for trigger sources that are edge-based and is not available
for sources that are level-based. Therefore, a level-based interrupt source does not trigger a DMA
overrun error due to the potential latency issues in the system.

An example of an interrupt that can use the overrun interrupt is a timer overflow (or period match)
interrupt. This event only happens every time the timer rolls over and is not dependent on any other
system conditions.
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An example of an interrupt that does not allow the overrun interrupt is the UART TX buffer. The
UART will continue to assert the interrupt until the DMA is able to process the message. Due to
latency issues, the DMA may not be able to service an empty buffer immediately, but the UART
continues to assert its transmit interrupt until it is serviced. If overrun was allowed in this case,
the overrun would occur almost immediately, as the module samples the interrupt sources every
instruction cycle.

16.8 DMA Setup and Operation

The following steps illustrate how to configure the DMA for data transfer:

1. Select the desired DMA using the DMASELECT register.

2. Program the appropriate source and destination addresses for the transaction into the
DMANSSA and DMANDSA registers.

3. Select the source memory region that is being addressed by the DMANSSA register, using the
SMR bits.

Program the SMODE and DMODE bits to select the Addressing mode.

5. Program the source size (DMANSSZ) and destination size (DMANDSZ) registers with the number
of bytes to be transferred. It is recommended for proper operation that the size registers be a
multiple of each other.

6. If the user desires to disable data transfers once the message has completed, then the SSTP and
DSTP bits need to be set (see the Source/Destination Stop section).

7. If using hardware triggers for data transfer, set up the hardware trigger interrupt sources for
the starting and aborting DMA transfers (DMANSIRQ and DMANAIRQ), and set the corresponding
Interrupt Request Enable (SIRQEN and AIRQEN) bits.

8. Select the priority level for the DMA (see the “System Arbitration” section in the “PIC18 CPU"
chapter) and lock the priorities (see the “Priority Lock” section in the “PIC18 CPU"” chapter).

9. Enable the DMA by setting the EN bit.

10. If using software control for data transfer, set the DGO bit, else this bit will be set by the
hardware trigger.

Once the DMA is set up, Figure 16-5 describes the sequence of operation when the DMA uses
hardware triggers and utilizes the unused CPU cycles (bubble) for DMA transfers.

The following sections describe with visual reference the sequence of events for different
configurations of the DMA module.
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Figure 16-5. DMA Operation with Hardware Trigger

@ MICROCHIP

Configure DMA
Module

DMA Source/
Destination Pointers/
Counters are loaded

»le

> <

SIRQEN=1 &
Trigger?

IxP=1

| DoMANBUF = &DMANSPTR

I &DMANDPTR = DMABUF

Update
DMANDSA,
DMANDCNT

IxiP=o0
Reload
DMANSCNT & —»] DMAX_SENT'F
DMANSPTR =
Update
DMANSSA,
DMANSCNT
) 4
Reload
DMANDCNT = 0 DMADCNT & [—»f PMANDCNTIF
DMANDPTR =

AIRQEN =0

258



16.8.1 Source Stop

When the Source Stop bit is set (SSTP = 1) and the DMANSCNT register reloads, the DMA clears the
SIRQEN bit to stop receiving new start interrupt request signals and sets the DMANSCNTIF flag. Refer

to the figure below for more details.

Figure 16-6. GPR-GPR Transactions with Hardware Triggers, SSTP =1

@ 6 @6 @6 6 6 06 6 06 ® ®@ @ ® @ 6 ® 0 6 6
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. T o
pmanssz|  oxa pmanpsz[  oxe
Notes:

1. SR-Source Read
2. DW - Destination Write
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16.8.2 Destination Stop

When the Destination Stop bit is set (DSTP = 1) and the DMAXDCNT register reloads, the DMA clears
the SIRQEN bit to stop receiving new start interrupt request signals and sets the DMANDCNTIF flag.

Figure 16-7. GPR-GPR Transactions with Hardware Triggers, DSTP = 1

@ @ 6 @ 0 6 0 0@ 0 ® O @ B ® 6 B O 6 6
Instruction
Clock
ENJ
SIRQEN |
Sourgreriggé?ware
Deoé L |
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DMANDPTR 0x200 N o X 0x202 Y o2 X 0x200 )
DMANSCNT ~ ( 2 X 1 X 2 X v 2 )
DMANDCNT ~ { 4 X D 2 X 1 X 4 )
pmaSTATE  ( IDLE | sr® | ow®] sr® | ow?) IDLE | sr®] ow®] sr | ow@ IDLE )
DMAXSCNTIF
DMAXDCNTIF
DMANSSA DMANDSA
pmanssz|  ox2 pDMAnDSZ|  Ox4
Notes:

1. SR -Source Read
2. DW - Destination Write

16.8.3 Continuous Transfer

When the Source or the Destination Stop bit is cleared (SSTP, DSTP = 0), the transactions continue
unless stopped by the user. The DMAXSCNTIF and DMAXDCNTIF flags are set whenever the

respective counter registers are reloaded.
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Figure 16-8. GPR-GPR Transactions with Hardware Triggers, SSTP, DSTP = 0
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16.8.4 Transfer from SFR to GPR

The following visual reference describes the sequence of events when copying ADC results to a GPR

location. The ADC interrupt flag can be chosen as the source hardware trigger, the source address
can be set to point to the ADC Result registers (e.g., at 0Ox3EEF), and the destination address can be
set to point to any chosen GPR location (e.g., at 0x100).

Figure 16-9. SFR Space to GPR Space Transfer
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16.8.5 Overrun Condition

The Overrun Interrupt flag is set if the DMA receives a trigger to start a new message before the

current message is completed.
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Figure 16-10. Overrun Interrupt
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16.8.6 Abort Trigger, Message Complete

The AIRQEN needs to be set in order for the DMA to sample abort interrupt sources. When an
abort interrupt is received, the SIRQEN bit is cleared and the AIRQEN bit is cleared to avoid receiving
further abort triggers.

Figure 16-11. Abort at the End of Message
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16.8.7 Abort Trigger, Message in Progress

When an abort interrupt request is received in a DMA transaction, the DMA will perform a soft-stop
by clearing the DGO bit (i.e., if the DMA was reading the source register, it will complete the read
operation and then clear the DGO bit).

The SIRQEN bit is cleared to prevent any overrun and the AIRQEN bit is cleared to prevent any false
aborts. When the DGO bit is set again, the DMA will resume operation from where it left off after the
soft-stop.

Figure 16-12. Abort During Message Transfer

® @ 06 @ O 0 0 0 0 O ®© 0 6
"Coac NIRRT AR AT
EN |

SIRQEN
AlRQENg |
Sour(_:lf,;ig;é?ware —,—l ,—l

Abort Hardware

Ti
rigger
DGO | |—

pmansPTR OX3EEF N oxaero K ox3eer
pmanDPTR < 0x100 A ot X oae
pmanseNT < 2 P 1 X 2
pmanpeNT 10 P 9 K s
DMASTATE IDLE ) sr® X IDLE N ow?] sr® | ow@ ) IpLE

DMANCONDbits.XIP | | | |

DMAXAIF

DMAnSSA| Ox3EEF DMANDSA

DMANSSZ 0x2 DMANDSZ OxA

Notes:
1. SR-Source Read

2. DW - Destination Write
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16.9 Reset

The DMA registers are set to the default state on any Reset. The registers are also reset to the
default state when the enable bit is cleared (EN = 0). User firmware needs to setup all the registers
to resume DMA operation.

16.10 Power-Saving Mode Operation

The DMA utilizes system clocks and it is treated as a peripheral when it comes to power-saving
operations. Like other peripherals, the DMA also uses Peripheral Module Disable bits to further
tailor its operation in low-power states.

16.10.1 Sleep Mode

When the device enters Sleep mode, the system clock to the module is shut down, therefore no
DMA operation is supported in Sleep. Once the system clock is disabled, the requisite read and write
clocks are also disabled, without which the DMA cannot perform any of its tasks.

Any transfers that may be in progress are resumed on exiting from Sleep mode. Register contents
are not affected by the device entering or leaving Sleep mode. It is recommended that DMA
transactions be allowed to finish before entering Sleep mode.

16.10.2 Idle Mode

In Idle mode, all of the system clocks (including the read and write clocks) are still operating, but the
CPU is not using them to save power.

Therefore, every instruction cycle is available to the system arbiter and if the bubble is granted to
the DMA, it may be utilized to move data.

16.10.3 Doze Mode

Similar to the Idle mode, the CPU does not utilize all of the available instruction cycles slots that are
available to it to save power. It only executes instructions based on its Doze mode settings.

Therefore, every instruction not used by the CPU is available for system arbitration and may be
utilized by the DMA, if granted by the arbiter.

16.10.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable DMA by gating all clock
sources supplied to it. The respective DMAXMD bit needs to be set to disable the DMA.

16.11 Example Setup Code

This code example illustrates using DMAT1 to transfer 10 bytes of data from 0x1000 in Flash memory
to the UART transmit buffer.
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void initializeDMA () {
//Select DMAl by setting DMASELECT register to 0x00
DMASELECT = 0x00;
//DMAnCON1 - DPTR remains, Source Memory Region PFM, SPTR increments, SSTP
DMANCON1 = 0xO0B;
//Source registers
//Source size
DMANnSSZH = 0x00;
DMANnSSZL = 0x0A;
//Source start address, 0x1000

DMANnSSAU = 0x00;
DMANSSAH = 0x10;
DMANnSSAL = 0x00;

//Destination registers
//Destination size
DMAnDSZH 0x00;
DMANnDSZL 0x01;
//Destination start address,
DMANnDSA = &U1TXB;
//Start trigger source UITX. Refer the datasheet for the correct code
DMAnSIRQ = 0Oxnn;
//Change arbiter priority if needed and perform lock operation

DMA1PR = 0x01; // Change the priority only if needed
PRLOCK = 0x55; // This sequence
PRLOCK = 0OxAA; // 1is mandatory

PRLOCKbits.PRLOCKED = 1; // for DMA operation
//Enable the DMA & the trigger to start DMA transfer
DMANCONQO = 0xCO0;
}

16.12 Register Overlay

All DMA instances in this device share the same set of registers. Only one DMA instance is accessible
at a time. The value in the DMASELECT register is one less than the selected DMA instance. For
example, a DMASELECT value of ‘0’ selects DMAT1.

16.13 Register Definitions: DMA
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16.13.1 DMASELECT
Name: DMASELECT
Address:  0x040
DMA Instance Selection Register

Selects which DMA instance is accessed by the DMA registers

Bit 7 6 5 4 3 2 1 0
| | | | | | SLCT[2:0] |
Access R/W R/W R/W
Reset 0 0 0

Bits 2:0 - SLCT[2:0] DMA Instance Selection

Value Description

n Shared DMA registers of instance n+1 are selected for read and write operations
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16.13.2 DMANnCONO

Name: DMANCONO
Address: 0x054

DMA Control Register 0

Bit 7 6 5 4 3 2 1 0
| EN | SIRQEN | DGO | | | ARRQEN | | XP
Access R/W RIW/HC — R/W/HS/HC R/W/HC R/HS/HC
Reset 0 0 0 0 0

Bit 7 - EN DMA Module Enable

Value Description
1 Enables module
0 Disables module

Bit 6 - SIRQEN Start of Transfer Interrupt Request Enable

Value Description
1 Hardware triggers are allowed to start DMA transfers
0 Hardware triggers are not allowed to start the DMA transfers

Bit 5- DGO DMA Transaction

VEINS Description
1 DMA transaction is in progress
0 DMA transaction is not in progress

Bit 2 - AIRQEN Abort of Transfer Interrupt Request Enable

Value Description
1 Hardware triggers are allowed to abort DMA transfers
0 Hardware triggers are not allowed to abort the DMA transfers

Bit 0 - XIP Transfer in Progress Status

Value Description

1 The DMA buffer register currently holds contents from a read operation and has not transferred data to the
destination

0 The DMA buffer register is empty or has successfully transferred data to the destination address
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16.13.3 DMANCON1

Name: DMANCON1
Address: 0x055

DMA Control Register 1

Bit 7 6 5 4 3 2 1 0
| DMODE[1:0] | DSTP | SMR[1:0] | SMODE[1:0] | sstP |
Access  R/W R/W RIW R/W RIW R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:6 - DMODE[1:0] Destination Address Mode Selection

11 Reserved, do not use

10 Destination Pointer (DMADPTR) is decremented after each transfer

01 Destination Pointer (DMADPTR) is incremented after each transfer

00 Destination Pointer (DMADPTR) remains unchanged after each transfer

Bit 5 - DSTP Destination Counter Reload Stop

Value Description
1 SIRQEN bit is cleared when destination counter reloads
0 SIRQEN bit is not cleared when destination counter reloads

Bits 4:3 - SMR[1:0] Source Memory Region Selection

VEINS Description

1x Data EEPROM is selected as the DMA source memory

01 Program Flash Memory is selected as the DMA source memory
00 SFR/GPR data space is selected as the DMA source memory

Bits 2:1 - SMODE[1:0] Source Address Mode Selection

11 Reserved, do not use

10 Source Pointer (DMASPTR) is decremented after each transfer

01 Source Pointer (DMASPTR) is incremented after each transfer

00 Source Pointer (DMASPTR) remains unchanged after each transfer

Bit 0 - SSTP Source Counter Reload Stop
Value Description
1 SIRQEN bit is cleared when source counter reloads
0 SIRQEN bit is not cleared when source counter reloads
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16.13.4 DMAnBUF

Name: DMANBUF
Address: 0x041

DMA Data Buffer Register

Bit 7 6 5 4 3 2 1 0

| BUF[7:0] |
Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bits 7:0 - BUF[7:0] DMA Data Buffer

These bits reflect the content of the internal data buffer the DMA peripheral uses to hold the data being moved from the
source to destination.
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16.13.5 DMANSSA

Name: DMARNSSA
Address: 0x051

DMA Source Start Address Register

Bit 23 22 21 20 19 18 17 16
| | | SSA[21:16] |
Access R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
| SSA[15:8] |
Access R/W R/W RIW R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
SSA[7:0]
Access RIW RIW RIW R/W RIW R/W RIW RIW
Reset 0 0 0 0 0 0 0 0

Bits 21:0 - SSA[21:0] Source Start Address

Notes: The individual bytes in this multibyte register can be accessed with the following register
names.

1. DMARNSSAU: Accesses the upper most byte [23:16].
2. DMANSSAH: Accesses the high byte [15:8].
3. DMARNSSAL: Access the low byte [7:0].
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16.13.6 DMANSSZ

Name: DMAnNSSZ
Address: 0x04F

DMA Source Size Register

Bit 15 14 13 12 11 10 9 8
| | | | | SSZ[11:8]
Access R/W R/W R/W R/W
Reset 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| SSZ[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 11:0 - SSZ[11:0] Source Message Size

Notes: The individual bytes in this multibyte register can be accessed with the following register
names.

1. DMARNSSZH: Accesses the high byte [15:8].
2. DMARNSSZL: Access the low byte [7:0].
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16.13.7 DMANSCNT

Name: DMARNSCNT
Address: 0x04A

DMA Source Count Register

Bit 15 14 13 12 11 10 9 8
| | | | | SCNT[11:8]
Access R/W R/W R/W R/W
Reset 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| SCNT[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 11:0 - SCNT[11:0] Current Source Byte Count

Notes: The individual bytes in this multibyte register can be accessed with the following register

names.
1. DMANSCNTH: Accesses the high byte [15:8].

2. DMANSCNTL: Access the low byte [7:0].
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16.13.8 DMANSPTR

Name: DMARNSPTR

Address: 0x04C

DMA Source Pointer Register

Bit 23 22 21 20 19 18 17 16
| | SPTR[21:16]

Access R R R R R R
Reset 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8

| SPTR[15:8]
Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0

SPTR[7:0]
Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bits 21:0 - SPTR[21:0] Current Source Address Pointer

Notes: The individual bytes in this multibyte register can be accessed with the following register

names.

1. DMARNSPTRU: Accesses the upper most byte [23:16].
2. DMANSPTRH: Accesses the high byte [15:8].

3. DMANSPTRL: Access the low byte [7:0].
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16.13.9 DMANDSA

Name: DMANDSA
Address: 0x048

DMA Destination Start Address Register

Bit 15 14 13 12 11 10 9 8
| DSA[15:8]
Access  R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| DSA[7:0]
Access  R/W R/W RIW R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 15:0 - DSA[15:0] Destination Start Address

Notes: The individual bytes in this multibyte register can be accessed with the following register
names.

1. DMANDSAH: Accesses the high byte [15:8].
2. DMANDSAL: Access the low byte [7:0].
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16.13.10 DMANDSZ

Name: DMANDSZ
Address: 0x046

DMA Destination Size Register

Bit 15 14 13 12 11 10 9 8
| | | | | DSZ[11:8]
Access R/W R/W R/W R/W
Reset 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| DSZ[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 11:0 - DSZ[11:0] Destination Message Size

Notes: The individual bytes in this multibyte register can be accessed with the following register

names.
1. DMANDSZH: Accesses the high byte [15:8].

2. DMANDSZL: Access the low byte [7:0].
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16.13.11 DMANnDCNT

Name: DMANDCNT
Address: 0x042

DMA Destination Count Register

Bit 15 14 13 12 11 10 9 8
| | | | | DCNT[11:8]
Access R/W R/W R/W R/W
Reset 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| DCNT[7:0]
Access R/W R/W RIW R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 11:0 - DCNT[11:0] Current Destination Byte Count

Notes: The individual bytes in this multibyte register can be accessed with the following register
names.
1. DMANDCNTH: Accesses the high byte [15:8].

2. DMANDCNTL: Access the low byte Destination Message Size bits [7:0].
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16.13.12 DMANDPTR

Name:
Address:

DMANDPTR
0x044

DMA Destination Pointer Register

Bit 15 14 13 12 11 10 9 8

| DPTR[15:8]
Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0

| DPTR[7:0]
Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bits 15:0 - DPTR[15:0] Current Destination Address Pointer

Notes: The individual bytes in this multibyte register can be accessed with the following register

names.

1. DMANDPTRH: Accesses the high byte [15:8].

2. DMANDPTRL: Access the low byte [7:0].
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16.13.13 DMANSIRQ

Name:
Address:

DMANSIRQ
0x057

DMA Start Interrupt Request Source Selection Register

Bit 7 6 5 4 3 2 1 0
| SIRQ[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 - SIRQ[7:0] DMA Start Interrupt Request Source Selection

Table 16-6. DMAXSIRQ and DMAXAIRQ Interrupt Sources

Vector
Number

0x0
0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8
0x9
OxA
0xB
0xC
0xD
OxE
OxF
0x10
0x11
0x12
0x13
0x14
0x15
0x16
0x17
0x18
0x19
O0x1A
0x1B
0x1C
0x1D
Ox1E
Ox1F

Interrupt
source

INTO
INT1
INT2
DMA1SCNT (Direct Memory Access)
DMA1DCNT
DMA10R
DMA1TA
DMA2SCNT (Direct Memory Access)
DMA2DCNT
DMA20R
DMA2A
DMA3SCNT
DMA3DCNT
DMA3OR
DMA3A
DMA4SCNT
DMAA4DCNT
DMA40R
DMA4A
NVM
CRC (Cyclic Redundancy Check)
SCAN
ACT (Active Clock Tuning)
CSW (Clock Switching)
OSF (Oscillator Fail)
VDDIO2
VDDIO3
IOC (Interrupt-On-Change)
TMRO
TMR1
TMR1G
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Vector
Number

(cont.)

0x30
0x31
0x32
0x33
0x34
0x35
0x36
0x37
0x38
0x39
0x3A
0x3B
0x3C
0x3D
O0x3E
Ox3F
0x40
0x41
0x42
0x43
0x44
0x45 - 0x47
0x48
0x49
0x4A
0x4B
0x4C
0x4D
Ox4E
Ox4F
0x50
0x51

Interrupt
source

(cont.)

U1TRX
U1TX
U1
U1E
U2RX
U2TX
u2
U2E
SPIT1RX (Serial Peripheral Interface)
SPI1TX
SPI
I2C1RX
2C1TX
12C1
I2C1E
I3C1RX
I3C1TX
13C1
I3C1E
I3C1R
I3C2RX
I3C2TX
13C2
I3C2E
I3C2R
HLVD (High/Low-Voltage Detect)
AD (ADC Conversion Complete)
ADT (ADC Threshold)
SRPORT Interrupt-on-change (RWO0)
SRPORT Interrupt-on-change (RW1)
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........... continued

Vector
Number

0x20
0x21

0x22
0x23
0x24
0x25
0x26
0x27
0x28
0x29
0x2A
0x2B
0x2C
0x2D
Ox2E
Ox2F

Interrupt

source

TMR2

TMR4
TU16A (Universal Timer 16A)
TU16B (Universal Timer 16B)

CCP1 (Capture/Compare/PWM)
CCP2 (Capture/Compare/PWM)
PWM1RINT
PWM1GINT
PWM2RINT
PWM2GINT
CWG1 (Complementary Waveform Generator)
CLC1 (Configurable Logic Cell)
CLC2
CLC3
CLC4
IOCV (Interrupt-On-Change Virtual Ports)
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Vector
Number

(cont.)

0x52
0x53
0x54
0x55
0x56
0x57
0x58
0x59
Ox5A
0x5B
0x5C
0x5D
Ox5E
OX5F
0x60
0x61

Interrupt
source

(cont.)

SRPORT Interrupt-on-change (RW2)
SRPORT Interrupt-on-change (RW3)
SRPORT Interrupt-on-change (RW4)
SRPORT Interrupt-on-change (RW5)
SRPORT Interrupt-on-change (RW6)
SRPORT Interrupt-on-change (RW7)
TU16APR
TU16ACAPT
TU16AZERO
TU16BPR
TU16BCAPT
TU16BZERO
PWM1S1P1 (PWM1 Parameter 1 of Slice 1)
PWM1S1P2 (PWM1 Parameter 1 of Slice 2)
PWM2S1P1
PWM2S1P2
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16.13.14 DMANAIRQ

Name: DMANAIRQ
Address: 0x056

DMA Abort Interrupt Request Source Selection Register

Bit 7 6 5 4 3 2 1 0
| AIRQ[7:0]
Access  R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 - AIRQ[7:0] DMA Abort Interrupt Request Source Selection
Refer to the DMA Interrupt Sources table.
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16.14 Register Summary - DMA

I S T O N B A

0x40
0x41

0x42

0x44

0x46

0x48

Ox4A

0x4C

Ox4F

0x51

0x54
0x55
0x56
0x57
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DMASELECT
DMANBUF

DMANDCNT

DMANDPTR

DMANDSZ

DMANDSA

DMANSCNT

DMANSPTR

DMANSSZ

DMANSSA

DMANCONO
DMANCON1
DMANAIRQ
DMANSIRQ

7:0
7:0
15:8
7:0
15:8
7:0
15:8
7:0
15:8
7:0
15:8
7:0
15:8
23:16
7:0
15:8
7:0
15:8
23:16
7:0
7:0
7:0
7:0

EN SIRQEN
DMODE[1:0]

DGO
DSTP

BUF[7:0]
DCNT[7:0]

DPTR[7:0]
DPTR[15:8]
DSZ[7:0]

DSA[7:0]
DSA[15:8]
SCNT[7:0]

SPTR[7:0]
SPTR[15:8]

SSZ[7:0]
SSA[7:0]

SSA[15:8]

SMR[1:0]
AIRQ[7:0]
SIRQ[7:0]

SLCT[2:0]
DCNT[11:8]
DSZ[11:8]
SCNT[11:8]
SPTR[21:16]
SSZ[11:8]
SSA[21:16]
AIRQEN
SMODE[1:0]

_ 10

XIP
SSTP
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17. Power-Saving Modes
The purpose of the Power-Saving modes is to reduce power consumption. There are three Power-
Saving modes:
+ Doze mode
+ Sleep mode
+ Idle mode

17.1 Doze Mode

Doze mode allows for power saving by reducing CPU operation and Program Flash Memory (PFM)
access, without affecting peripheral operation. Doze mode differs from Sleep mode because the
band gap and system oscillators continue to operate, while only the CPU and PFM are affected. The
reduced execution saves power by eliminating unnecessary operations within the CPU and memory.

When the Doze Enable bit is set (DOZEN = ‘b1) the CPU executes only one instruction cycle out of
every N cycles as defined by the DOZE bits. For example, if DOZE = 001, the instruction cycle ratio
is 1:4. The CPU and memory execute for one instruction cycle and then lay Idle for three instruction
cycles. During the unused cycles, the peripherals continue to operate at the system clock speed.

17.1.1 Doze Operation

The Doze operation is illustrated in Figure 17-1. As with normal operation, the instruction is
fetched for the next instruction cycle while the previous instruction is executed. The Q-clocks to
the peripherals continue throughout the periods in which no instructions are fetched or executed.
The following configuration settings apply for this example:

+ Doze enabled (DOZEN = 1)
* CPU instruction cycle to peripheral instruction cycle ratio of 1:4
+ Recover-on-Interrupt enabled (ROl = 1)
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Figure 17-1. Doze Mode Operation Example
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1. Multicycle instructions are executed to completion before fetching 0x0004.
2. If the prefetched instruction clears GIE, the ISR will not occur, but DOZEN is still cleared and the

CPU will resume execution at full speed.

17.1.2 Interrupts During Doze

System behavior for interrupts that may occur during Doze mode are configured using the ROl and
DOE bits. Refer to the example below for details about system behavior in all cases for a transition

from Main to ISR back to Main.

Example 17-1. Doze Software Example

// Mainline operation
bool somethingToDo = FALSE;

void main () {
initializeSystem() ;
// DOZE = 64:1 (for example)
// ROI = 1;
GIE = 1; // enable interrupts
while (1) {

// If ADC completed, process data
if (somethingToDo) {
doSomething () ;
DOZEN = 1; // resume low-power

}

}
// Data interrupt handler

void interrupt () {
// DOZEN = 0 because ROI = 1
if (ADIF) {

somethingToDo = TRUE;
DOE = 0; // make main() go fast
ADIF = 0;
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}
// else check other interrupts...
if (TMROIF) {
timerTick++;
DOE = 1; // make main() go slow
TMROIF = O;

}

Note: User software can change the DOE bit in the ISR.

17.2 Sleep Mode

Sleep mode provides the greatest power savings because both the CPU and selected peripherals
cease to operate. However, some peripheral clocks continue to operate during Sleep. The
peripherals that use those clocks also continue to operate. Sleep mode is entered by executing the
SLEEP instruction, while the IDLEN bit is clear. Upon entering Sleep mode, the following conditions
exist:

The WDT will be cleared, but keeps running if enabled for operation during Sleep.

The PD bit of the STATUS register is cleared.

The TO bit of the STATUS register is set.

The CPU clock is disabled.

LFINTOSC, SOSC, HFINTOSC and ADCRC are unaffected. Peripherals using them may continue
operation during Sleep.

ARSI O

6. 1/0 ports maintain the status they had before Sleep was executed (driving high, low, or high-
impedance).

7. Resets other than WDT are not affected by Sleep mode.

Important: Refer to individual chapters for more details on peripheral operation during
Sleep.

To minimize current consumption, consider the following conditions:
* 1/0 pins must not be floating

+ External circuitry sinking current from 1/0 pins

+ Internal circuitry sourcing current to I/0 pins

+ Current draw from pins with internal weak pull-ups

+ Peripherals using clock source unaffected by Sleep

170 pins that are high-impedance inputs need to be pulled to Vpp or Vs externally to avoid switching
currents caused by floating inputs. Examples of internal circuitry that might be consuming current
include modules such as the DAC and FVR peripherals.

17.2.1 Wake-Up from Sleep
The device can wake up from Sleep through one of the following events:
External Reset input on MCLR pin, if enabled.
BOR Reset, if enabled.
Low-Power Brown-out Reset (LPBOR), if enabled.
POR Reset.

A wN -
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5. Windowed Watchdog Timer, if enabled.
6. All interrupt sources except clock switch interrupt can wake up the part.

Important: The first five events will cause a device Reset. The last event in the list is
considered a continuation of program execution. For more information about determining
whether a device Reset or wake-up event occurred, refer to the “Resets” chapter.

When the SLEEP instruction is being executed, the next instruction (PC + 2) is prefetched. For the
device to wake up through an interrupt event, the corresponding Interrupt Enable bit must be
enabled in the PIEx register. Wake-up will occur regardless of the state of the Global Interrupt Enable
(GIE) bit. If the GIE bit is disabled, the device will continue execution at the instruction after the
SLEEP instruction. If the GIE bit is enabled, the device executes the instruction after the SLEEP
instruction and then call the Interrupt Service Routine (ISR).

Important: Itis recommended to add a NOP as the immediate instruction after the SLEEP
instruction.

The WDT is cleared when the device wakes up from Sleep, regardless of the source of wake-up.
Upon a wake-from-Sleep event, the core will wait for a combination of three conditions before
beginning execution. The conditions are:

+ PFM Ready
+ System Clock Ready
+ BOR Ready (unless BOR is disabled)

17.2.2 Wake-Up Using Interrupts
When global interrupts are disabled (GIE cleared) and any interrupt source, with the exception of the
clock switch interrupt, has both its interrupt enable bit and interrupt flag bit set, one of the following
will occur:
+ If the interrupt occurs before the execution of a SLEEP instruction:

The SLEEP instruction will execute as a NOP

WDT and WDT prescaler will not be cleared

The TO bit of the STATUS register will not be set

The PD bit of the STATUS register will not be cleared

« If the interrupt occurs during or after the execution of a SLEEP instruction:
- The SLEEP instruction will be completely executed

- Device will immediately wake up from Sleep

- WDT and WDT prescaler will be cleared

- The TO bit of the STATUS register will be set

- The PD bit of the STATUS register will be cleared

In the event where flag bits were checked before executing a SLEEP instruction, it may be possible
for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP
instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a
NOP.
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Figure 17-2. Wake-Up from Sleep through Interrupt

CLKING A\ /M /Ml \ 1\ /N

CLKOUT® \ / \ / \ L Tost? ! / \ / \ / WD
Interrupt Flag . . . /:‘ ! Interrupt Latency®" .
Global Interrupt . ] ] - ] i
Enable : ! ! Processoriq. X \
_____________ Seep_ v v v
Instruction Flow : : \ ' : , ' \
PC X PC+1 X PC+2 X PC +2 X PC+2 X 0004h X 0005h
Instruction J | I I : I 1 I :
”FZ{E,JSE { ,Inst(PC) =Sleep; Inst(PC + 1) , . Inst(PC +2) | ' Inst(0x0004) | Inst(0x0005) |
S ‘{: Inst(PC-1) . Sleep . . Inst(PC +1) . Forced NOP . Forced NOP . Inst(0x0004) |

Notes:

1.

2.
3.
4

External clock - High, Medium, Low mode assumed.
CLKOUT is shown here for timing reference.
Tost = 1024 Tosc. This delay does not apply to EC and INTOSC Oscillator modes.

GIE = 1 assumed. In this case after wake-up, the processor calls the ISR at 0x0004. If GIE = 0,
execution will continue in-line.

17.2.3 Low-Power Sleep Mode

This device family contains an internal Low Dropout (LDO) voltage regulator, which allows the
device I/0 pins to operate at voltages up to Vpp while the internal device logic operates at a lower
voltage. The LDO and its associated reference circuitry must remain active in Sleep but can operate
in different Power modes. This allows the user to optimize the operating current in Sleep mode,
depending on the application requirements.

17.2.3.1 Sleep Current vs. Wake-Up Time
The Low-Power Sleep mode can be selected by setting the VREGPM bits as following:

VREGPM = *b00; the voltage regulator is in High-Power mode. In this mode, the voltage regulator
and reference circuitry remain in the normal configuration while in Sleep. Hence, there is no
delay needed for these circuits to stabilize after wake-up (fastest wake-up from Sleep).

VREGPM = b01; the voltage regulator is in Low-Power mode. In this mode, when waking up from
Sleep, an extra delay time is required for the voltage regulator and reference circuitry to return to
the normal configuration and stabilize (faster wake-up from Sleep).

VREGPM = 'b10; the voltage regulator is in Ultra-Low Power mode. In this mode, the voltage
regulator and reference circuitry are in the lowest current consumption mode and all the
auxiliary circuits remain shut down. Wake-up from Sleep in this mode needs the longest delay
time for the voltage regulator and reference circuitry to stabilize (lowest current consumption).

VREGPM = ‘b11; this mode is similar to the Ultra-Low Power mode (VREGPM = ‘b10) and is
recommended ONLY for extended temperature ranges at or above 70°C.

17.2.3.2 Peripheral Usage in Sleep
Some peripherals that can operate in High-Power Sleep mode (VREGPM = ‘b00) will not operate as
intended in the Low-Power Sleep modes (VREGPM = ‘b01 and ‘b11). The Low-Power Sleep modes
are intended for use with the following peripherals:

Brown-out Reset (BOR)
Windowed Watchdog Timer (WWDT)
External interrupt pin/interrupt-on-change pins
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It is the responsibility of the end user to determine what is acceptable for their application when
setting the VREGPM settings to ensure correct operation in Sleep.

17.3 Idle Mode

When the IDLEN bit is clear, the SLEEP instruction will put the device into full Sleep mode. When
IDLEN is set, the SLEEP instruction will put the device into Idle mode. In Idle mode, the CPU and
memory operations are halted, but the peripheral clocks continue to run. This mode is similar to
Doze mode, except that in Idle both the CPU and program memory are shut off.

Important:
1. Peripherals using Fosc will continue to operate while in Idle (but not in Sleep).
Peripherals using HFINTOSC:LFINTOSC will continue running in both Idle and Sleep.

2. When the Clock Out Enable (CLKOUTEN) Configuration bit is cleared, the CLKOUT pin
will continue operating while in Idle.

17.3.1 Idle and Interrupts

Idle mode ends when an interrupt occurs (even if global interrupts are disabled), but IDLEN is not
changed. The device can re-enter Idle by executing the SLEEP instruction. If Recover-on-Interrupt
is enabled (ROI = 1), the interrupt that brings the device out of Idle also restores full-speed CPU
execution when Doze is also enabled.

17.3.2 Idle and WWDT

When in Idle, the WWDT Reset is blocked and will instead wake the device. The WWDT wake-up is not
an interrupt, therefore ROl does not apply.

Important: The WWDT can bring the device out of Idle, in the same way it brings the
device out of Sleep. The DOZEN bit is not affected.

17.4 Peripheral Operation in Power-Saving Modes

All selected clock sources and the peripherals running from them are active in both Idle and Doze
modes. Only in Sleep mode, both the Fgsc and Fgsc/4 clocks are unavailable. However, all other
clock sources enabled specifically or through peripheral clock selection before the part enters Sleep,
remain operating in Sleep.

17.5 Register Definitions: Power-Savings Control
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17.5.1 CPUDOZE

Name: CPUDOZE
Address: 0x4F2

Doze and Idle Register

Bit 7 6 5 4 3 2 1 0
| IDLEN | DOZEN | ROl | DOE | | DOZE[2:0] |
Access R/W R/W/HC/HS R/W R/W/HC/HS R/W R/W R/W
Reset 0 0 0 0 0 0 0

Bit 7 - IDLEN Idle Enable

Value Description
1 A SLEEP instruction places device into Idle mode
0 A SLEEP instruction places the device into Sleep mode

Bit 6 - DOZEN Doze Enable(

Value Description
1 Places devices into Doze setting
0 Places devices into Normal mode

Bit 5 - ROl Recover-on-Interrupt("

Value Description
1 Entering the Interrupt Service Routine (ISR) makes DOZEN = 0
0 Entering the Interrupt Service Routine (ISR) does not change DOZEN

Bit 4 - DOE Doze-on-Exit("

Value Description
1 Exiting the ISR makes DOZEN =1
0 Exiting the ISR does not change DOZEN

Bits 2:0 - DOZE[2:0] Ratio of CPU Instruction Cycles to Peripheral Instruction Cycles

VEIS Description
111 1:256

110 1:128

101 1:64

100 1:32

011 1:16

010 1:8

001 1:4

000 1:2

Note:

1. WhenROI=1 or DOE =1.
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17.5.2 VREGCON

Name: VREGCON
Address: 0x079

Voltage Regulator Control Register

Bit 7 6 5 4 3 2 1 0
| | | PMSYS[1:0] | | VREGPM[1:0] |
Access R R R/W R/W
Reset q q 1 0

Bits 5:4 - PMSYS[1:0] System Power Mode Status

11 Regulator in Ultra-Low Power (ULP) mode for extended temperature range is active
10 Regulator in Ultra-Low Power (ULP) mode is active

01 Regulator in Low-Power (LP) mode is active

00 Regulator in High-Power (HP) mode is active

Bits 1:0 - VREGPM[1:0] Voltage Regulator Power Mode Selection

11 Regulator in Ultra-Low Power (ULP) mode. Use ONLY for extended temperature range
10 Regulator in Ultra-Low Power (ULP) mode (lowest current consumption)

01 Regulator in Low-Power (LP) mode (faster wake-up from Sleep)

00 Regulator in High-Power (HP) mode (fastest wake-up from Sleep)
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17.6 Register Summary - Power-Savings Control

Chddress|— Name —Loitpos] 7|6 | 5 | 4 |5 | 2 | 1 | o
7:0 [1:0]

0x79 VREGCON : PMSYS[1:0 VREGPM[1:0]
O0x7A
Reserved
0x04F1
0x04F2 CPUDOZE 7:0 IDLEN DOZEN ROI DOE DOZE[2:0]
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18. PMD - Peripheral Module Disable

18.1 Overview

This module provides the ability to selectively enable or disable a peripheral. Disabling a peripheral
places it in its lowest possible Power state. The user can selectively disable unused modules to
reduce the overall power consumption.

Important: All modules are ON by default following any system Reset.

18.2 Disabling a Module

A peripheral can be disabled by setting the corresponding peripheral disable bit in the PMDx
register. Disabling a module has the following effects:

+ The module is held in Reset and does not function.

+ All the SFRs pertaining to that peripheral become “unimplemented”
- Writing is disabled
- Reading returns 0x00

+ Module outputs are disabled

18.3 Enabling a Module

Clearing the corresponding module disable bit in the PMDx register, re-enables the module and the
SFRs will reflect the Power-on Reset values.

Important: There will be no reads/writes to the module SFRs for at least two instruction
cycles after it has been re-enabled.

18.4 Register Definitions: Peripheral Module Disable

293

@ MICROCHIP



18.4.1 PMDO

Name: PMDO
Address: 0x300

PMD Control Register 0

Bit 7 6 5 4 3 2 1 0
| SYSCMD | SCANMD | CRCMD | | DMA4MD | DMA3MD | DMA2MD | DMATMD |
Access R/W R/W RIW R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0

Bit 7 - SYSCMD Disable Peripheral System Clock Network®

Value Description
1 System clock network disabled (Fosc)
0 System clock network enabled

Bit 6 - SCANMD Disable NVM Memory Scanner

Value Description
1 NVM memory scanner module disabled
0 NVM memory scanner module enabled

Bit 5 - CRCMD Disable CRC Module

VEINS Description
1 CRC module disabled
0 CRC module enabled

Bits 0, 1, 2, 3 - DMANMD Disable DMAnN

Value Description

1 DMAnN module disabled
0 DMAnN module enabled
Note:

1. Clearing the SYSCMD bit disables the system clock (Fosc) to peripherals, however peripherals
clocked by Fosc/4 are not affected.
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18.4.2 PMD1

Name: PMD1
Address: 0x301

PMD Control Register 1

Bit 7 6 5 4 3 2 1 0

| TMRAMD | TMR2MD | TMRIMD | TMROMD | CLKRMD | 10CMD [ PORTWMD | ACTMD |
Access  R/W R/W RIW R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 4, 5, 6, 7 - TMRnMD Disable Timer TMRn
Value Description
1 TMRn module disabled
0 TMRn module enabled

Bit 3 - CLKRMD Disable Clock Reference

Value Description
1 Clock reference module disabled
0 Clock reference module enabled

Bit 2 - IOCMD Disable Interrupt-on-Change

VEINS Description
1 Interrupt-on-change module is disabled
0 Interrupt-on-change module is enabled

Bit 1 - PORTWMD Disable PORTW Virtual Port Module

Value Description
1 PORTW Virtual Port module disabled
0 PORTW Virtual Port module enabled

Bit 0 - ACTMD Disable Active Clock Tuning

Value Description
1 Active Clock Tuning disabled
0 Active Clock Tuning enabled
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18.4.3 PMD2

Name: PMD2
Address: 0x302

PMD Control Register 2

Bit 7 6 5 4 3 2 1 0
| CLCIMD | CWGIMD | PWM2MD | PWMIMD | CCP2MD | CCP1MD | TU16BMD | TU16AMD |

Access  R/W R/W RIW R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit 7 - CLCnMD Disable CLCn
Value Description
1 CLCn module disabled
0 CLCn module enabled

Bit 6 - CWG1MD Disable Complimentary Waveform Generator 1

Value Description
1 CWG1 module disabled
0 CWG1 module enabled

Bit 5 - PWM2MD Disable Pulse-Width Modulator 2

VEINS Description
1 PWM2 module disabled
0 PWM2 module enabled

Bit 4 - PWM1MD Disable Pulse-Width Modulator 1

Value Description
1 PWM1 module disabled
0 PWM1 module enabled

Bit 3 - CCP2MD Disable Capture Compare 2

Value Description
1 CCP2 module disabled
0 CCP2 module enabled

Bit 2 - CCP1MD Disable Capture Compare 1

VEINS Description
1 CCP1 module disabled
0 CCP1 module enabled

Bit 1 - TU16BMD Disable Universal Timer TU16B

Value Description
1 TU16B module disabled
0 TU16B module enabled

Bit 0 - TU16AMD Disable Universal Timer TU16A

Value Description
1 TU16A module disabled
0 TU16A module enabled
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18.4.4 PMD3

Name: PMD3
Address: 0x303

PMD Control Register 3

Bit 7 6 5 4 3 2 1 0
| 13CTMD | 12C(IMD | SPMMD | uU2mMD | UIMD | CLC4AMD | CLC3MD | CLC2mMD |
Access  R/W R/W RIW R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 - I3C1MD Disable 13C1
Value Description
1 I13C1 module disabled
0 I3C1 module enabled

Bit 6 - 1I2C1MD Disable 12C

Value Description
1 12C1 module disabled
0 [2C1 module enabled

Bit 5 - SPI1MD Disable Serial Peripheral Interface 1

VEINS Description
1 SPI1 module disabled
0 SPI1 module enabled

Bits 3, 4 - UnMD Disable UART Un

Value Description
1 UARTNn module disabled
0 UARTNn module enabled

Bits 0, 1, 2 - CLCnMD Disable CLCn

Value Description
1 CLCn module disabled
0 CLCn module enabled
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18.4.5 PMD4

Name: PMD4
Address: 0x304

PMD Control Register 4

Bit 7 6 5 4 3 2 1 0

| | | | ADCMD | HLVDMD | FVRMD [ I13C2MD |
Access R/W R/W R/W R/W
Reset 0 0 0 0

Bit 3 - ADCMD Disable Analog-to-Digital Converter

1 ADC module disabled
0 ADC module enabled

Bit 2 - HLVDMD Disable High/Low-Voltage Detect

Value Description
1 HLVD module disabled
0 HLVD module enabled

Bit 1 - FVYRMD Disable Fixed Voltage Reference
Disable Fixed Voltage Reference

VEINS Description
1 FVR module disabled
0 FVR module enabled

Bit 0 - I3C2MD Disable I13C2

1 I13C2 module disabled
0 13C2 module enabled
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18.5

pdress)Namesicbos L7 L6 L s L L 3 L 2 L L o

0x0300
0x0301
0x0302
0x0303
0x0304
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Register Summary - PMD

PMDO
PMD1
PMD2
PMD3
PMD4

7.0
7:0
7:0
7:0

SYSCMD

TMR4MD
CLCTMD
I13CTMD

SCANMD

TMR2MD

CWG1TMD
12C1MD

CRCMD
TMR1MD
PWM2MD

SPITMD

TMROMD
PWM1MD
U2MD

DMA4MD
CLKRMD
CCP2MD
U1MD
ADCMD

DMA3MD
I0CMD
CCP1MD
CLC4MD
HLVDMD

DMA2MD
PORTWMD
TU16BMD

CLC3MD
FVRMD

DMA1TMD
ACTMD
TU16AMD
CLC2MD
13C2MD
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19. 1/0 Ports

19.1 Overview

Table 19-1. Port Availability per Device

14-pin devices oM (3
20-pin devices oM o2 °
Notes:

Pins RAQ - RA5 only.
Pins RB4 - RB7 only.
Pins RCO - RC5 only.

Each port has eight registers to control the operation. These registers are:

PORTXx registers (reads the levels on the pins of the device)
LATX registers (output latch)

TRISx registers (data direction)

ANSELX registers (analog select)

WPUx registers (weak pull-up)

INLVLX (input level control)

SLRCONX registers (slew rate control)

ODCONX registers (open-drain control)

In this section, the generic names such as PORTX, LATx, TRISX, etc. can be associated with PORTA,
PORTB, PORTC, etc., depending on availability per device.

A simplified model of a generic I/O port, without the interfaces to other peripherals, is shown in the
following figure:

Figure 19-1. Generic I/O Port Operation
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19.2 PORTXx - Data Register

PORTX is a bidirectional port and its corresponding data direction register is TRISX.

Reading the PORTX register reads the status of the pins, whereas writing to it will write to the PORT
latch. All write operations are Read-Modify-Write operations. Therefore, a write to a port implies that
the PORT pins are read, and this value is modified and then written to the PORT data latch (LATX).
The PORT data latch LATx holds the output port data and contains the latest value of a LATx or
PORTx write. The example below shows how to initialize PORTA.

Example 19-1. Initializing PORTA in Assembly

; This code example illustrates initializing the PORTA register.
; The other ports are initialized in the same manner.

BANKSEL PORTA g

CLRF PORTA ;Clear PORTA

BANKSEL LATA g

CLRF LATA ;Clear Data Latch

BANKSEL ANSELA ;

CLRF ANSELA ;Enable digital drivers
BANKSEL TRISA g

MOVLW B'00111000" ;Set RA[5:3] as inputs
MOVWE TRISA ;and set others as outputs

Example 19-2. Initializing PORTA in C

// This code example illustrates initializing the PORTA register.
// The other ports are initialized in the same manner.

PORTA = 0x00; // Clear PORTA

LATA = 0x00; // Clear Data Latch

ANSELA = 0x00; // Enable digital drivers

TRISA = 0x38; // Set RA[5:3] as inputs and set others as outputs

Important: Most PORT pins share functions with device peripherals, both analog and
digital. In general, when a peripheral is enabled on a PORT pin, that pin cannot be used as a
general purpose output; however, the pin can still be read.

19.3 LATx - Output Latch

The Data Latch (LATX registers) is useful for Read-Modify-Write operations on the value that the I/0
pins are driving.

A write operation to the LATX register has the same effect as a write to the corresponding PORTx
register. A read of the LATx register reads the values held in the I/0 PORT latches, while a read of the
PORTX register reads the actual I/0 pin value.

Important: As a general rule, output operations to a port must use the LAT register to
avoid Read-Modify-Write issues. For example, a bit set or clear operation reads the port,
modifies the bit, and writes the result back to the port. When two bit operations are
executed in succession, output loading on the changed bit may delay the change at the
output in which case the bit will be misread in the second bit operation and written to
an unexpected level. The LAT registers are isolated from the port loading and therefore
changes are not delayed.
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19.4 TRISx - Direction Control

The TRISx register controls the PORTX pin output drivers, even when the pins are being used as
analog inputs. The user must ensure the bits in the TRISx register are set when using the pins as
analog inputs. I/0 pins configured as analog inputs always read ‘0’.

Setting a TRISx bit (TRISx = 1) will make the corresponding PORTx pin an input (i.e., disable the
output driver). Clearing a TRISx bit (TRISx = 0) will make the corresponding PORTX pin an output (i.e.,
it enables output driver and puts the contents of the output latch on the selected pin).

19.5 ANSELx - Analog Control

Ports that support analog inputs have an associated ANSELx register. The ANSELX register is used to
configure the Input mode of an I/0 pin to analog. Setting an ANSELx bit high will disable the digital
input buffer associated with that bit and cause the corresponding input value to always read ‘0,
whether the value is read in PORTx register or selected by PPS as a peripheral input.

Disabling the input buffer prevents analog signal levels on the pin between a logic high and low from
causing excessive current in the logic input circuitry.

The state of the ANSELX bits has no effect on digital or analog output functions. A pin with TRIS clear
and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause
unexpected behavior when executing Read-Modify-Write instructions on the PORTx register.

Important: The ANSELX bits default to the Analog mode after Reset. To use any pins
as digital general purpose or peripheral inputs, the corresponding ANSEL bits must be
changed to ‘0’ by the user.

19.6 WPUx - Weak Pull-Up Control

The WPUx register controls the individual weak pull-ups for each PORT pin. When a WPUXx bit is set
(WPUx = 1), the weak pull-up will be enabled for the corresponding pin. When a WPUx bit is cleared
(WPUx = 0), the weak pull-up will be disabled for the corresponding pin.

19.7 INLVLx - Input Threshold Control

The INLVLX register controls the input voltage threshold for each available PORTx input pin. A
selection between the Schmitt Trigger (ST, CMOS-compatible) and the Low-Voltage Buffer (LVBUF,
TTL-compatible) thresholds is available.

The ST input buffer provides voltage-dependent input sensing, meaning the V,_and V|4 levels are
proportional to the supply voltage (Vpp). The ST buffer typically has a wide gap between V,_and V|
levels (hysteresis). The ST buffer is also compatible with CMOS levels.

Unlike the ST buffer, the LVBUF input buffer provides voltage-independent input sensing, meaning
the V| and V| levels remain constant for the entire range of supply voltage (Vpp). The LVBUF buffer
typically has very low V|_and V4 levels with a smaller hysteresis, thus making it an ideal choice for
low-voltage input irrespective of the Vpp supply voltage. The LVBUF buffer is also compatible with
TTL levels.

Choosing an appropriate input threshold is vital in determining the value of a read of the PORTx
register and the level at which an interrupt-on-change occurs if that feature is enabled. Refer to the
I/0 Ports table in the "Electrical Specifications” chapter for more details on the threshold levels.

Important: Changing the input threshold selection must be performed while all peripheral
modules are disabled. Changing the threshold level during the time a module is active may
inadvertently generate a transition associated with an input pin, regardless of the actual
voltage level on that pin.
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19.8 SLRCONXx - Slew Rate Control
The SLRCONX register controls the slew rate option for each PORT pin. Slew rate for each PORT pin
can be controlled independently. When a SLRCONX bit is set (SLRCONx = 1), the corresponding PORT
pin drive is slew rate limited. When a SLRCONXx bit is cleared (SLRCONx = 0), the corresponding PORT
pin drive slews at the maximum rate possible.

19.9 ODCONXx - Open-Drain Control

The ODCONX register controls the open-drain feature of the port. Open-drain operation is
independently selected for each pin. When a ODCONX bit is set (ODCONXx = 1), the corresponding
port output becomes an open-drain driver capable of sinking current only. When a ODCONX bit is
cleared (ODCONXx = 0), the corresponding port output pin is the standard push-pull drive capable of
sourcing and sinking current.

Important: It is necessary to set open-drain control when using the pin for 12C.

19.10 Edge Selectable Interrupt-on-Change

An interrupt can be generated by detecting a signal at the PORT pin that has either a rising edge or
a falling edge. Individual pins can be independently configured to generate an interrupt. Refer to the
“lOC - Interrupt-on-Change” chapter for more details.

19.11 12C and I13C Pad Control

For this family of devices, the 12C and I13C specific pads are available on RB5, RB6, RCO, RC1, RC4 and
RC5 pins. The 12C and 13C characteristics of each of these pins is controlled by the RxyFEAT registers.
These characteristics include enabling 12C specific slew rate (over standard GPIO slew rate), selecting
from the available 13C internal input buffer selections, and selecting from the available 12C and PPS
Module input buffer selections. Refer to the “Input Buffers on Pads with MVIO” section in the
“MVIO - Multi-Voltage 1/0" chapter for more information.

19.12 1/0 Priorities

Each pin defaults to the data latch after Reset. Other functions are selected with the Peripheral Pin
Select logic. Refer to the “PPS - Peripheral Pin Select Module” chapter for more details.

Analog input functions, such as ADC and comparator inputs, are not shown in the Peripheral Pin
Select lists. These inputs are active when the 1/0 pin is set for Analog mode using the ANSELx
register. Digital output functions may continue to control the pin when it is in Analog mode.

Analog outputs, when enabled, take priority over digital outputs and force the digital output driver
into a High-Impedance state.

The pin function priorities are as follows:

Port functions determined by the Configuration bits.
Analog outputs (input buffers must be disabled).
Analog inputs.

AW -

. Portinputs and outputs from PPS.

19.13 MCLR/Vpp/RA3 Pin

The MCLR/Vpp pin is an input-only pin. Its operation is controlled by the MCLRE Configuration bit.
When selected as a PORT pin (MCLRE = 0), it functions as a digital input-only pin; as such, it does not
have TRISx and LATx bits associated with its operation. Otherwise, it functions as the device's Master
Clear input. In either configuration, the MCLR/Vpp pin also functions as the programming voltage
input pin during high-voltage programming.
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The MCLR/Vpp pin is a read-only bit and will read ‘1’ when MCLRE = 1 (i.e., Master Clear enabled).

Important: On a Power-on Reset (POR), the MCLR/Vpp pin is enabled as a digital input-only
if Master Clear functionality is disabled.

The MCLR/Vpp pin has an individually controlled internal weak pull-up. When set, the corresponding
WPU bit enables the pull-up. When the MCLR/Vpp pin is configured as MCLR (MCLRE =1 and LVP = 0)

or configured for Low-Voltage Programming (MCLRE = x and LVP = 1), the pull-up is always enabled,
and the WPU bit has no effect.

19.14 Register Definitions: Port Control
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19.14.1 PORTx

Name: PORTX

PORTx Register

Bit 7 6 5 4 3 2 1 0
| Rx7 | Rx6 | Rx5 Rd | Rx3 | Rx2 | Rx1 | Rx0 |
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset X X X X X X X X

Bits 0,1, 2, 3,4, 5,6, 7 - Rxn Port1/0 Value
Reset States: POR/BOR = XXXXXXXX

All Other Resets = uuuuuuuu

Value Description

1 PORT pinis 2 V|y
0 PORT pinis < V).
Important:
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Writes to PORTXx are actually written to the corresponding LATx register. Reads from
PORTx register return actual I/0 pin values.

The PORT bit associated with the MCLR pin is read-only and will read ‘1’ when the MCLR
function is enabled (LVP = 1 or (LVP = 0 and MCLRE = 1))

Refer to the “Pin Allocation Table” for details about MCLR pin and pin availability per
port

Unimplemented bits will read back as ‘0’
Bits RB6 and RB7 read ‘1’ while in Debug mode
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19.14.2 LATx
Name: LATx

Output Latch Register

Bit 7 6 5 4 3 2 1 0
| LATX7 | LATx6 | LATX5 LATx4 | LATX3 | LATx2 | [LATx1 | LATX0 |
Access RIW R/W R/W R/W R/W R/W R/W R/W
Reset X X X X X X X X

Bits 0, 1, 2, 3, 4, 5, 6, 7 - LATxn Output Latch Value
Reset States: POR/BOR = XXXXXXXX
All Other Resets = uuuuuuuu

Important:

+ Writes to LATx are equivalent to writes to the corresponding PORTx register. Reads from
LATX register return register values, not I/0 pin values.

+ Refer to the “Pin Allocation Table” for details about pin availability per port
+ Unimplemented bits will read back as ‘0’
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19.14.3 TRISx
Name: TRISX

Tri-State Control Register

Bit 7 6 5 4 3 2 1 0
| TRISx7 | TRISx6 | TRISX5 | TRISx4 | TRISx3 | TRISx2 | TRISxT [ TRISxO |
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 1 1 1 1 1 1 1 1
Bits 0,1, 2, 3,4, 5, 6, 7 - TRISxn Port I/0O Tri-state Control
1 PORTx output driver is disabled. PORTx pin configured as an input (tri-stated).
0 PORTx output driver is enabled. PORTx pin configured as an output.
Important:

« The TRIS bit associated with the MCLR pin is read-only and the value is ‘1’

+ Refer to the “Pin Allocation Table” for details about MCLR pin and pin availability per
port

+ Unimplemented bits will read back as ‘0’
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19.14.4 ANSELXx
Name: ANSELX

Analog Select Register

Bit 7 6 5 4 3 2 1 0

| ANSELx7 | ANSELx6 | ANSELX5 | ANSELx4 | ANSELx3 | ANSELx2 | ANSELx1T | ANSELx0 |
Access  R/W R/W RIW R/W RIW R/W R/W R/W
Reset 1 1 1 1 1 1 1 1

Bits 0, 1, 2, 3, 4, 5, 6, 7 - ANSELxn Analog Select on RX Pin

1 Analog input. Pin is assigned as analog input. Digital input buffer disabled.
0 Digital I/0. Pin is assigned to port or digital special function.
Important:

«  When setting a pin as an analog input, the corresponding TRIS bit must be set to Input
mode to allow external control of the voltage on the pin

+ Refer to the “Pin Allocation Table" for details about pin availability per port
+ Unimplemented bits will read back as ‘0’

308

@ MICROCHIP



19.14.5 WPUx

Name: WPUX

Weak Pull-Up Register

Bit 7 6 5 4 3 2 1 0

| WPUx7 | WPUx6 | WPUX5 | WPUx4 | WPUx3 | WPUx2 | WPUxT [ WPUx0 |

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 0, 1, 2, 3, 4, 5, 6, 7 - WPUxn Weak Pull-up PORTx Control

1 Weak pull-up enabled

0 Weak pull-up disabled

Important:

« The weak pull-up device is automatically disabled if the pin is configured as an output,
but this register remains unchanged

« If MCLRE = 1, the weak pull-up on MCLR pin is always enabled and the corresponding
WPU bit is not affected

+ Refer to the “Pin Allocation Table” for details about pin availability per port
+ Unimplemented bits will read back as ‘0’
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19.14.6 INLVLx
Name: INLVLX

Input Level Control Register

Bit 7 6 5 4 3 2 1 0
| INLVLX7 | INLVLx6 | INLVLX5 INLVLX4 | INLVLx3 [ INLVLx2 | INLVLXT | INLVLXO |
Access  R/W R/W RIW R/W R/W R/W R/W R/W
Reset 1 1 1 1 1 1 1 1

Bits 0, 1, 2, 3, 4, 5, 6, 7 - INLVLxn Input Level Select on RX Pin

Value Description

1 Schmitt Trigger (ST, CMOS-Compatible) input used for port reads and interrupt-on-change
0 Low-Voltage Buffer (LVBUF, TTL-Compatible) input used for port reads and interrupt-on-change
Important:

« Refer to the “Pin Allocation Table" for details about pin availability per port
+ Unimplemented bits will read back as ‘0’
« Any peripheral using the 12C/13C pins read the inputs selected using the RxyFEAT register
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19.14.7 SLRCONXx
Name: SLRCONXx

Slew Rate Control Register

Bit 7 6 5 4 3 2 1 0
| SIRx7 | SLRx6 | SLRX5 | SLRx4 | SIRx3 | SLRx2 | SLRx1 [ SLRxO |
Access  R/W R/W R/W R/W R/W R/W R/W R/W
Reset 1 1 1 1 1 1 1 1

Bits 0, 1, 2, 3, 4,5, 6, 7 - SLRxn Slew Rate Control on RX Pin

1 PORT pin slew rate is limited
0 PORT pin slews at maximum rate
Important:

« Refer to the “Pin Allocation Table" for details about pin availability per port
+ Unimplemented bits will read back as ‘0’
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19.14.8 ODCONXx
Name: ODCONXx

Open-Drain Control Register

Bit 7 6 5 4 3 2 1 0
| ODCx7 | ODCx6 | ODCx5 | ODCx4 | ODCx3 | ODCx2 | ODCx1 | ODCx0 |
Access  R/W R/W RIW R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 0, 1, 2, 3,4, 5, 6, 7 - ODCxn Open-Drain Configuration on Rx Pin

1 PORT pin operates as open-drain drive (sink current only)
0 PORT pin operates as standard push-pull drive (source and sink current)
Important:

« Refer to the “Pin Allocation Table" for details about pin availability per port
+ Unimplemented bits will read back as ‘0’
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19.14.9 RxyFEAT

Name:

RxyFEAT

Rxy Pad Control Features

Bit 7 6 5 4 3 2 1 0
| SLEW[1:0] | I3CBUF[2:0] | SYSBUF[2:0] |
Access RIW R/W RIW R/W R/W R/W R/W R/W
Reset 0 0 1 0 0 0 0 0

Bits 7:6 - SLEW[1:0] |2C Specific Slew Rate Limiting Control(

11
10
01
00

I2C Fast mode Plus (1 MHz) slew rate enabled. The SLRxy bit is ignored.
Reserved

I2C Fast mode (400 kHz) slew rate enabled. The SLRxy bit is ignored.
Standard GPIO Slew Rate; enabled/disabled via the SLRxy bit.

Bits 5:3 - I3CBUF[2:0] 13C Module Input Buffer Selection(23)

111-110
101
100
011
010
001
000

Reserved

I3C Low-Voltage (LV) Buffer

I3C Fast Schmitt Trigger (FST) Buffer

SMBus 3.0 (1.35V) Buffer

SMBus 2.0 (2.1V) Buffer

12C Buffer

Standard GPIO Buffer (ST or LVBUF) selected via the INLVLx registers

Bits 2:0 - SYSBUF[2:0] 12C and PPS Module Input Buffer Selection(®

111-110
101
100
011
010
001
000

Notes:

Reserved()

I3C Low-Voltage (LV) Buffer®

I3C Fast Schmitt Trigger (FST) Buffer®

SMBus 3.0 (1.35V) Buffer

SMBus 2.0 (2.1V) Buffer

12C Buffer

Standard GPIO Buffer (ST or LVBUF) selected via the INLVLx registers

1. The SLEW bits control the slew rate of the standard GPIO driver when driven by the 12C module

only.

N

If the user configures the SYSBUF bits to select one of the I13C buffers (FST or LV), then the user

must also configure the I3CBUF bits to select the same 13C buffer for reliable and predicable
operation. However, if the user selects a non-13C buffer using the SYSBUF bits, then I3CBUF can
be configured to select any input buffer.

w

These bit selections are unimplemented on pins that do not support I3C. Refer to “Pin

Allocation Table” to determine the pins that support I13C functionality.
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19.15 Register Summary - 1/O Ports

Address| __ Name | @itPos.| 7 | 6 1 5 | 4 | 3 | 2| 1 | o0 |

0x030F
0x0310
0x0311
0x0312
0x0313
0x0314
0x0315
0x0316
0x0317

0x0415
0x0416
0x0417
0x0418
0x0419
0x041A
0x041B

0x041F
0x0420
0x0421
0x0422
0x0423
0x0424
0x0425

0x0429
0x042A
0x042B
0x042C
0x042D
0x042E
0x042F

0x0486
0x0487
0x0488
0x0489
0x048A

0x048C
0x048D
0x048E
0x048F
0x0490

0x0492
0x0493
0x0494
0x0495

RB5FEAT
RB6FEAT
Reserved
RCOFEAT
RC1FEAT
Reserved
RCAFEAT
RC5FEAT

Reserved

ANSELA
WPUA
ODCONA
SLRCONA
INLVLA

Reserved

ANSELB
WPUB
ODCONB
SLRCONB
INLVLB

Reserved

ANSELC
WPUC
ODCONC
SLRCONC
INLVLC

Reserved

PORTA
PORTB
PORTC

Reserved
TRISA
TRISB
TRISC

Reserved

LATA
LATB
LATC
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TO

7:0
7:0

7:0
7:0

7:0
7:0
7:0
7:0
7:0

7:0
7:0
7:0
7:0
7:0

7:0
7:0
7:0
7:0
7:0

7:0
7:0
7:0

7:0
7:0
7:0

7:0
7:0
7:0

SLEW[1:0]
SLEW[1:0]
SLEW[1:0]
SLEW[1:0]
SLEW[1:0]
SLEW[1:0]
ANSELB7
WPUB7 WPUB6
ODCB7 ODCB6
SLRB7 SLRB6
INLVLB7 INLVLB6
ANSELC7  ANSELC6
WPUC7 WPUC6
oDCC7 0oDCC6
SLRC7 SLRC6
INLVLC7 INLVLC6
RB7 RB6
RC6
TRISB7 TRISB6
TRISC7 TRISC6
LATB7 LATB6
LATC7 LATC6

ANSELAS
WPUAS
ODCA5

SLRAS
INLVLAS

WPUBS5
ODCB5
SLRB5
INLVLB5

ANSELC5
WPUC5
ODCC5

SLRC5
INLVLC5

RAS5
RB5
RC5

TRISAS
TRISB5
TRISC5

LATAS
LATB5
LATCS

I3CBUF[2:0]
I3CBUF[2:0]

I3CBUF[2:0]
I3CBUF[2:0]

ANSELA4
WPUA4
ODCA4

SLRA4
INLVLA4

ANSELC4
WPUC4
oDCc4

SLRC4
INLVLC4

RA4

RC4

TRISA4

TRISC4

LATA4

LATC4

WPUA3

INLVLA3

ANSELC3
WPUC3
0ODCC3

SLRC3
INLVLC3

RA3

RC3

Reserved

TRISC3

LATC3

ANSELA2
WPUA2
ODCA2

SLRA2
INLVLA2

RA2

RC2

TRISA2

LATA2

SYSBUF[2:0]
SYSBUF[2:0]

SYSBUF[2:0]
SYSBUF[2:0]

SYSBUF[1:0]
SYSBUF[1:0]

ANSELA1
WPUA1
ODCA1

SLRA1
INLVLA1

WPUC1
oDcCC1
SLRC1
INLVLC1

RA1

RC1

TRISA1

TRISC1

LATA1

LATC1

ANSELAQ
WPUAQ
ODCAO0

SLRAO
INLVLAO

WPUCO
oDcCco
SLRCO
INLVLCO

RAO

RCO

TRISAO

TRISCO

LATAQ

LATCO
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20. SRPORT - Signal Routing Port

The Signal Routing Port module allows for interconnection of multiple peripherals internal to a
device without the need for an external I/0 pin. A device may contain multiple Signal Routing Ports,
each Signal Routing Port consisting of eight pins that are represented by eight bits similar to regular
device ports.

This module can be used as a high-level input selection multiplexer for the entire device, which can
connect the output of digital peripherals into the inputs of other peripherals internally without using
any external I/0 pins. Using the Signal Routing Port to connect peripherals in this manner allows the
user to connect multiple core independent peripherals on the device to form hardware-based state
machines.

In addition to the input selection multiplexers, this module also offers a flip-flop for each Signal
Routing pin to latch the output value. The flip-flop may be bypassed to connect the output of one
peripheral directly to the input of another. Figure 20-1 shows the block diagram of a typical Signal
Routing Port.

The Signal Routing Port module offers many different features such as:

« 8 Signal Routing pins for each Signal Routing Port

« Software read/write through PORTW and LATW registers

+ Extensive clock selection and input source selection

+ Individual flip-flop for each bit to latch output value

+  Common clock source for all bits of a Signal Routing Port

+ Individual input control for each bit of Signal Routing Port

+ Individual output available to other modules via PPS input

+ Interrupt-on-Change, DMA and ADC triggers for each Signal Routing pin

Important:
1. There is one Signal Routing Port available on this device - PORTW.
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Figure 20-1. Signal Routing Port Module Block Diagram
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20.1 Operation
The operation of the Signal Routing Port module is controlled by the following registers:
+ Signal Routing Port Output (PORTW)
« Software Input to Signal Routing Port (LATW)
+ Signal Routing Port Clock Selection (PORTWCLK)
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+ Signal Routing Port Data Flip Flop Control (PORTWDF)
« Signal Routing Port Input Selection (PORTWINX)
+ Signal Routing Port Control Register (PORTWCON)

Although the registers used to control the Signal Routing Port module may seem very similar to the
registers of a typical I/0 port, their operation is quite different as explained in the following sections
of this chapter.

20.1.1 Signal Routing Port Clock

The PORTWCLK register offers an extensive selection of clock sources for the Signal Routing Port
module. This acts as a clock input to the PORTW data register, allowing for the formation of
hardware-based state machines and delay operations. All the pins in a Signal Routing Port are
clocked using this common clock. If a device has multiple Signal Routing Ports, each Signal Routing
Port has its own clock input and control.

The PORTWCON register contains the clock enable bits for all Signal Routing Ports on the device. The
PWCLKEN bit enables/disables the module clock and synchronizers. When PWCLKEN = 0, the module
clock to the PORTW data register is disabled and all Signal Routing Port SFRs can be written and read
from. When PWCLKEN = 1, the PORTW data register is clocked as per the PORTWCLK selection. Only
LATW register has read/write access, all other registers are read-only when the clock is enabled.

20.1.2 Signal Routing Port Input

The input to the Signal Routing Port is selected using the PORTWINX registers. There is a separate
PORTWINX register for each pin of the Signal Routing Port. Several core independent peripherals are
available as input selections to the multiplexer as shown in the PORTWINX Input Selections table
below. In addition to the core independent peripherals, the following inputs are also added to each
multiplexer:

+ The corresponding LATWn register bit - allows for software writes to the Signal Routing pin.

+ Input from the immediate next Signal Routing pin RW[n+1] - allows for shift register operation.

* An external I/0 pin - allows physical inputs.

As previously mentioned, one of the input selections available to the PORTWINXx register is the
LATWn register bit. The LATW register allows the user to write a value to the Signal Routing Port from

software. Unlike a typical I/0 port, LATW is a separate register from the actual data register as shown
in Figure 20-1 block diagram.

Important:

1. To perform a software write to one of the Signal Routing pins using the LATW register,
the PORTWINX register for that Signal Routing pin must select the corresponding
LATWn bit as input to the Signal Routing Port.

2. Reading the LATW register returns the most recently written value to the LATW register
and not the actual input to the Signal Routing Port. The actual input to the Signal
Routing Port is selected using PORTWINX register and can be read using the PORTW
register. This is similar to the standard I/0 pins read/write operations.

The following input selection multiplexers are available on this device:
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Table 20-1. PORTWINXx Input Selections

IN[3:0] PORTWINO PORTWIN1 PORTWIN2 PORTWIN3 PORTWIN4 PORTWINS5 PORTWING PORTWIN7

111 CLC1_ouT CLC2_ouT CLC3_0ouUT
110 CCP1_OUT PWM1S1P1_OUT PWM2S1P1_OUT
101 SPI1_SS SP11_SDO SPI1_SCK
100 TU16A_OUT TU16B_OUT TMR2_OUT
011 CLKREF_OUT HLVD_OUT CLKREF_OUT
010 RCO RC1 Reserved
001 RW1 RW2 RW3
000 LATWO LATW1 LATW2
Note:

1.

20-pin devices only. Reserved on 14-pin devices.

CLC4_OuUT
CCP1_OUT
SPI1_SS
TMR4_OUT
HLVD_OUT
RC3
RW4
LATW3

CLC1_OouT
CCP2_OUT
SPI1_SDO
TU16A_OUT
CLKREF_OUT
RC4
RW5
LATW4

CLC2_OuT
PWM1S1P2_OUT
SPI1_SCK
TU16B_OUT
HLVD_OUT
RC5
RW6
LATW5

CLC3_0OuUT
PWM2S1P2_OUT
SPI1_SDO
TMR2_OUT
CLKREF_OUT
RC6(M
RW7
LATW6

CLC4_OouT
CCP2_OUT
SPI1_SCK
TMR4_OUT
HLVD_OUT
RC7M
RWO
LATW7



20.1.3 Signal Routing Port Output and Data Register

The output of the Signal Routing Port is available through the RWn virtual pins. The status of these
Signal Routing pins can be read using the PORTW data register.

PORTW is a bidirectional port register. However, unlike a typical I/0 port, PORTW consists of

two different registers internally which are not user-accessible - ‘PORTW read’ and ‘PORTW write’
registers as shown in Figure 20-1. Reading from the PORTW register returns result from the ‘PORTW
read’ register, which reads the selected Signal Routing Port input (as per PORTWINXx selection).
Writing to the PORTW register writes to the ‘PORTW write’ register, which is the actual data register.
While the PORTW register can be read any time, writes to the PORTW register can only happen when
the clock to the module is disabled (PWCLKEN = 0).

The ‘PORTW write’ register is enabled using DFn bits in the PORTWDF register. The PORTWDF
register controls whether the Signal Routing Port input is connected to the flip-flop (data register)
or not. When enabled, the input from the PORTWINXx selection is routed through the ‘PORTW
write' register (data register) to the output. When disabled, the Signal Routing Port input is directly
connected to the output, thus creating a completely asynchronous path between the input and
output of the Signal Routing Port. Each bit in the PORTWDF register can individually enable/disable
the flip-flop for each bit in the Signal Routing Port. See Figure 20-1 for details.

Unlike a typical I/0 port, the ‘PORTW write’ register can be clocked by various clock sources. Refer
to the Signal Routing Port Clock section for more details. When the clock to the module is disabled
(PWCLKEN = 0), the ‘PORTW write’ register is clocked using the instruction clock (Fosc/4), which
allows PORTW write operations in software. This allows software to initialize the state of a Signal
Routing pin before the clock is enabled. When the module clock is enabled (PWCLKEN = 1), the
‘PORTW write’ register is clocked using the clock input from the PORTWCLK register selection. This
prevents any software writes to the ‘PORTW write’ register (data register). In this case, the ‘PORTW
write’ register can only be written through the Signal Routing Port input from PORTWINX register
selection. This allows the formation of hardware-based state machines by interconnecting multiple
core independent peripherals through a flip-flop to the output using a specific clock.

In addition to the ‘PORTW read'’ register, the Signal Routing Port outputs (RWn Signal Routing pins)
are also routed through PPS and are available for use by other modules as PPS inputs. See the “PPS
Inputs” section in the “PPS - Peripheral Pin Select Module” chapter for more information.

Important:

1. Reading PORTW from ‘PORTW read’ register reads the value of the ‘PORTW write’ data
register only when the flip-flop is enabled for the corresponding bit using the PORTWDF
register. If the flip-flop is disabled, an asynchronous path is created and ‘PORTW read’
reads the unlatched value as per the PORTWINX input selection.

2. There must be one instruction cycle delay between write and read of the PORTW
register, otherwise the previously written value will be read. This is because it takes one
clock for the data to be latched from the ‘PORTW write’ register to the ‘PORTW read’
register.

20.1.4 Interrupt-on-Change and DMA/ADC Triggers

All the Signal Routing Ports on this device support Interrupt-on-Change. The Interrupt-on-Change
feature for PORTW is provided using the IOCWP, IOCWN and IOCWEF registers. The logical OR of all
the Interrupt-on-Change flags for all the Signal Routing Ports is available at the system-level as IOCV
interrupt as shown in Figure 20-2 below. See the “IOC - Interrupt-on-Change” chapter for more
information.
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Figure 20-2. Interrupt-on-Change for Signal Routing Port
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In addition to the Interrupt-on-Change, the output of each pin of the Signal Routing Port is also a
trigger for the DMA and ADC as shown in the Figure 20-1. The IOCWP and IOCWN registers are used
to select the edge of the output pin transition that generates a trigger.

The following steps are used to configure a Signal Routing pin RWn as a DMA or ADC trigger:

1. Select the edge that may trigger the DMA/ADC by setting the appropriate bit in the IOCWP
and IOCWN registers. Setting IOCWPn bit enables positive edge trigger. Setting the IOCWNnN bit
enables negative edge trigger. Setting both IOCWPn and IOCWNn bits enable trigger on either
edge.

2. Select the “IOCWFn Flag” as the trigger source in the DMANSIRQ, DMANAIRQ, or ADACT registers
as appropriate.

See the “Types of Hardware Triggers” section in the “DMA - Direct Memory Access” chapter
and the “Auto-Conversion Trigger” section in the “ADC - Analog-to-Digital Converter with
Computation Module” chapter for more information.

Important: While the individual IOCWFn Interrupt-on-Change flags are available as
triggers to the DMA and ADC modules, there is only one system-level Interrupt-on-Change
interrupt source available as IOCSR which is the logical OR of all Interrupt-on-Change flags
of all the Signal Routing Ports on the device. This system-level Interrupt-on-Change vector
for Signal Routing Port (IOCSR) is separate and independent from the Interrupt-on-Change
vector for I/0 ports (I0C). See the “Interrupt Priority” section in the “VIC - Vectored
Interrupt Controller Module” chapter for more information.

20.2 Software Setup

To setup the Signal Routing Port connection, the user must decide on the source peripheral, the
destination peripheral, and whether the source peripheral output needs to be clocked through a
flip-flop (data register). If the clocked option is selected, a flip-flop will be introduced into the input
path.

1. Set up the PORTWDF bits to select the pins that need the data flip flop enabled. If the flip-flop
is enabled for any Signal Routing Port pin, then select an appropriate clock source using the
PORTWCLK register.

2. Select the appropriate inputs to each bit of the Signal Routing Port using the PORTWINx
registers.
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3. Set the input PPS register for the destination peripheral to point to the appropriate Signal
Routing Port bit. See the “PPS Inputs” section in the “PPS - Peripheral Pin Select Module”
chapter for more information.

4. |If Interrupt-on-Change, DMA or ADC triggers are used, set up the IOCWP and IOCWN registers
accordingly.

5. Initialize the Signal Routing Port by writing to PORTW register. (Optional)

If flip-flop is enabled, enable the clock by setting the appropriate clock enable bit in the
PORTWCON register.

Example 20-1. Signal Routing Port Setup Example — 4-Bit Shift Register

// Enable flip flops and select appropriate clock
PORTWPDF = 0xO0F;
PORTWCLK = 0x02;

// Point IN[0:3] to RW[n+1] for shift reg
PORTWINO ig

PORTWIN1
PORTWINZ2
PORTWIN3

1;
1g
1;

// Write initial data
PORTW = 0b0110;

// Enable Signal Routing Port clock
PORTWCONbits.CLKEN = 1;

// Turn on the input clock
// and wait for the number of clocks to shift
// then stop the input clock

// Disable Signal Routing Port clock and read shifted data

PORTWCONbits.CLKEN = 0;
uint8 t shiftedData = PORTW;

20.3 Register Definitions: Signal Routing Port
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20.3.1 PORTW

Name: PORTW
Address: 0x499

Signal Routing Port Output

Bit 7 6 5 4 3 2 1 0
| Rw7 | RW6 | RW5 | RwW4 | RW3 | RW2 | RW1 [ Rwo |
Access  R/W R/W RIW R/W RIW R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 0, 1, 2, 3, 4, 5, 6, 7 - RWn Output data for software read of Signal Routing port
Reset States: POR/BOR = 00000000
All Other Resets = 00000000

Notes:

1. Writes to PORTW update the ‘PORTW write’ register whereas reads come from ‘PORTW read’
register. See Signal Routing Port Output section for details.

2. There must be one instruction cycle between write and read of this register, otherwise previous
value will be read.

3. PORTW is not updated when a debug session is active.

This register can only be written when the clock to the module is disabled. See Signal Routing
Port Clock section for details.
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20.3.2 LATW

Name: LATW
Address: 0x49A

Software Input to Signal Routing Port

Bit 7 6 5 4 3 2 1 0
| LATW7 | LATW6 | LATW5 | LATW4 | LATW3 | LATW2 | LATW1 [ LATWO |
Access  R/W R/W RIW R/W RIW R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 0, 1, 2, 3,4, 5, 6, 7 - LATWn Input data for software write of Signal Routing Port
Reset States: POR/BOR = 00000000
All Other Resets = 00000000

Note:

1. Reads from LATW return the LATW register value, not the actual Signal Routing Port value. To
read the value of the Signal Routing Port bit, PORTW read is recommended.
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20.3.3 PORTWCLK

Name: PORTWCLK
Address: 0x04A3

Signal Routing Port Clock Selection

Bit 7 6 5 4 3 2 1 0
| | | | CLK[4:0] |
Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0

Bits 4:0 - CLK[4:0] Signal Routing Port Clock Input Selection

Table 20-2. Virtual Port Clock Input Selections

CLK

11111 - 10110 Reserved
10101 CLC4_OouUT
10100 CLC3_0ouUT
10011 CLC2_OouT
10010 CLC1_ouT
10001 PWM2S1P2_OUT
10000 PWM2S1P1_OUT
01111 PWM1S1P2_OUT
01110 PWM1S1P1_OUT
01101 CCP2_0UT
01100 CCP1_OUT
01011 TU16B_OUT
01010 TU16A_OUT
01001 TMR4_OUT
01000 TMR2_OUT
00111 CLKREF_OUT
00110 EXTOSC
00101 SOSC
00100 MFINTOSC (32 kHz)
00011 MFINTOSC (500 kHz)
00010 LFINTOSC
00001 HFINTOSC
00000 Fosc

Reset States: POR/BOR = 00000
All Other Resets = 00000

Note: This register can only be written when the clock to the module is disabled. See Signal Routing
Port Clock for details.
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20.3.4 PORTWDF

Name: PORTWDF
Address: 0x04A4

Signal Routing Port Data Flip Flop Control

Bit 7 6 5 4 3 2 1 0
| DF7 | DF6 | DF5 | DF4 | DF3 | DF2 | DFl | DFO |
Access  R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 0, 1, 2, 3, 4, 5, 6, 7 - DFn Signal Routing Port Data Flip Flop Enable
Reset States: POR/BOR = 00000000
All Other Resets = 00000000

Value Description

1 Signal Routing Port input routed through flip-flop to output
0 Signal Routing Port input connected directly to output
Note:

1. This register can only be written when the clock to the module is disabled. See Signal Routing
Port Clock section for details.
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20.3.5 PORTWINO

Name: PORTWINO
Address: 0x049B

Signal Routing Port Input

Bit 7 6 5 4 3 2 1 0
| | | | [ IN[2:0] |
Access R/W R/W R/W
Reset 0 0 0

Bits 2:0 - IN[2:0] Signal Routing Port Input Selection
Refer to PORTWINX - Signal Routing Port Input Selection for a list of input selections for all Signal
Routing Port bits.
Reset States: POR/BOR =000
All Other Resets = 000

Note:

1. This register can only be written when the clock to the module is disabled. See Signal Routing
Port Clock section for details.
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20.3.6 PORTWIN1

Name: PORTWIN1
Address: 0x049C

Signal Routing Port Input

Bit 7 6 5 4 3 2 1 0
| | | | [ IN[2:0] |
Access R/W R/W R/W
Reset 0 0 0

Bits 2:0 - IN[2:0] Signal Routing Port Input Selection
Refer to PORTWINX - Signal Routing Port Input Selection for a list of input selections for all Signal
Routing Port bits.
Reset States: POR/BOR =000
All Other Resets = 000

Note:

1. This register can only be written when the clock to the module is disabled. See Signal Routing
Port Clock section for details.
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20.3.7 PORTWIN2

Name: PORTWIN2
Address: 0x049D

Signal Routing Port Input

Bit 7 6 5 4 3 2 1 0
| | | | [ IN[2:0] |
Access R/W R/W R/W
Reset 0 0 0

Bits 2:0 - IN[2:0] Signal Routing Port Input Selection
Refer to PORTWINX - Signal Routing Port Input Selection for a list of input selections for all Signal
Routing Port bits.
Reset States: POR/BOR =000
All Other Resets = 000

Note:

1. This register can only be written when the clock to the module is disabled. See Signal Routing
Port Clock section for details.
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20.3.8 PORTWIN3

Name: PORTWIN3
Address: 0x049E

Signal Routing Port Input

Bit 7 6 5 4 3 2 1 0
| | | | [ IN[2:0] |
Access R/W R/W R/W
Reset 0 0 0

Bits 2:0 - IN[2:0] Signal Routing Port Input Selection
Refer to PORTWINX - Signal Routing Port Input Selection for a list of input selections for all Signal
Routing Port bits.
Reset States: POR/BOR =000
All Other Resets = 000

Note:

1. This register can only be written when the clock to the module is disabled. See Signal Routing
Port Clock section for details.
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20.3.9 PORTWIN4

Name: PORTWIN4
Address: 0x049F

Signal Routing Port Input

Bit 7 6 5 4 3 2 1 0
| | | | [ IN[2:0] |
Access R/W R/W R/W
Reset 0 0 0

Bits 2:0 - IN[2:0] Signal Routing Port Input Selection
Refer to PORTWINX - Signal Routing Port Input Selection for a list of input selections for all Signal
Routing Port bits.
Reset States: POR/BOR =000
All Other Resets = 000

Note:

1. This register can only be written when the clock to the module is disabled. See Signal Routing
Port Clock section for details.
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20.3.10 PORTWIN5

Name: PORTWINS5
Address: 0x04A0

Signal Routing Port Input

Bit 7 6 5 4 3 2 1 0
| | | | [ IN[2:0] |
Access R/W R/W R/W
Reset 0 0 0

Bits 2:0 - IN[2:0] Signal Routing Port Input Selection
Refer to PORTWINX - Signal Routing Port Input Selection for a list of input selections for all Signal
Routing Port bits.
Reset States: POR/BOR =000
All Other Resets = 000

Note:

1. This register can only be written when the clock to the module is disabled. See Signal Routing
Port Clock section for details.
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20.3.11 PORTWING6

Name: PORTWING
Address: 0x04A1

Signal Routing Port Input

Bit 7 6 5 4 3 2 1 0
| | | | [ IN[2:0] |
Access R/W R/W R/W
Reset 0 0 0

Bits 2:0 - IN[2:0] Signal Routing Port Input Selection
Refer to PORTWINX - Signal Routing Port Input Selection for a list of input selections for all Signal
Routing Port bits.
Reset States: POR/BOR =000
All Other Resets = 000

Note:

1. This register can only be written when the clock to the module is disabled. See Signal Routing
Port Clock section for details.
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20.3.12 PORTWIN7

Name: PORTWIN7
Address: 0x04A2

Signal Routing Port Input

Bit 7 6 5 4 3 2 1 0
| | | | [ IN[2:0] |
Access R/W R/W R/W
Reset 0 0 0

Bits 2:0 - IN[2:0] Signal Routing Port Input Selection
Refer to PORTWINX - Signal Routing Port Input Selection for a list of input selections for all Signal
Routing Port bits.
Reset States: POR/BOR =000
All Other Resets = 000

Note:

1. This register can only be written when the clock to the module is disabled. See Signal Routing
Port Clock section for details.
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20.3.13 PORTWCON

Name: PORTWCON
Address: 0x4A5

Signal Routing Port Control Register

Bit 7 6 5 4 3 2 1 0
| | | | | | | CLKEN |
Access R/W
Reset 0

Bit 0 - CLKEN PORTW Clock Enable
Reset States: POR/BOR =0
All Other Resets =0

Value Description

1 Clock input for PORTW is enabled. All PORTW registers are read-only, except LATW which is read/write.
0 Clock input for PORTW is disabled. All PORTW registers, including LATW, have read/write access.
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20.4 Register Summary - Signal Routing Port

Chddress|—Name —Loitpos] 7 |6 |5 | 4 | 3 | 2 | 1 % =
7:0 RW7 RW6 RW5 RW4 RW3 RW2 RW1 RWO

0x0499
0x049A
0x049B
0x049C
0x049D
0x049E
0x049F
0x04A0
0x04A1
0x04A2
0x04A3
0x04A4
0x04A5
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PORTW
LATW
PORTWINO
PORTWIN1
PORTWIN2
PORTWIN3
PORTWIN4
PORTWINS
PORTWING
PORTWIN7
PORTWCLK
PORTWDF
PORTWCON

7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0

LATW7

DF7

LATW6

DF6

LATW5

DF5

LATW4

DF4

LATW3

DF3

LATW2

CLK[4:0]
DF2

LATWA
IN[2:0]
IN[2:0]
IN[2:0]
IN[2:0]
IN[2:0]
IN[2:0]
IN[2:0]
IN[2:0]

DF1

LATWO

DFO
CLKEN
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21. 10C - Interrupt-on-Change

21.1 Overview

The pins denoted in the table below can be configured to operate as interrupt-on-change (I0C) pins
for this device. An interrupt can be generated by detecting a signal that has either a rising edge or a
falling edge. Any individual PORT pin, or combination of PORT pins, can be configured to generate an
interrupt.

Table 21-1. I0C Pin Availability per Device

[ ) [ ]

14-pin devices

20-pin devices ° ° °

Important: If MCLRE = 1 or LVP = 1, the MCLR pin port functionality is disabled and I0C on

that pin is not available.

The interrupt-on-change module has the following features:
+ Interrupt-on-change enable (Host Switch)

+ Individual pin configuration

+ Rising and falling edge detection

*+ Individual pin interrupt flags

The following figure is a block diagram of the IOC module.

Figure 21-1. Interrupt-on-Change Block Diagram (PORTA Example)

Positive
] Edge
Detect ’7
I0C

IOCAPX Flag > Write to IOCAFXf
rax X Set/Reset > e fo xheg
Logic
Neqati IOCIE IOC interrupt
|| Negative to CPU core
Edge
Detect ’7

IOCANX

From all other %
I0CnFx flags «

21.2 Enabling the Module

For individual PORT pins to generate an interrupt, the IOC Interrupt Enable (IOCIE) bit of the
Peripheral Interrupt Enable (PIEx) register must be set. If the IOC Interrupt Enable bit is disabled,
the edge detection on the pin will still occur, but an interrupt will not be generated.

21.3 Individual Pin Configuration

Arising edge detector and a falling edge detector are present for each PORT pin. To enable a pin to
detect a rising edge, the associated bit of the IOCxP register must be set. To enable a pin to detect
a falling edge, the associated bit of the IOCxN register must be set. A PORT pin can be configured
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to detect rising and falling edges simultaneously by setting both associated bits of the IOCxP and
IOCxN registers, respectively.

21.4 Interrupt Flags

The bits located in the IOCXF registers are status flags that correspond to the interrupt-on-change
pins of each port. If an expected edge is detected on an appropriately enabled pin, then the status
flag for that pin will be set, and an interrupt will be generated if the IOCIE bit is set. The IOCIF bit
located in the corresponding Peripheral Interrupt Request (PIRX) register, is all the IOCxF bits ORd
together. The IOCIF bit is read-only. All of the IOCxF Status bits must be cleared to clear the IOCIF bit.

21.5 Clearing Interrupt Flags

The individual status flags (IOCxF register bits) will be cleared by resetting them to zero. If another
edge is detected during this clearing operation, the associated status flag will be set at the end of
the sequence, regardless of the value actually being written.

To ensure that no detected edge is lost while clearing flags, only AND operations masking out known
changed bits must be performed. The following sequence is an example of clearing an IOC interrupt
flag using this method.

Example 21-1. Clearing Interrupt Flags (PORTA Example)

MOVLW Oxff
XORWE' IOCAF, W
ANDWE IOCAF, F

21.6 Operation in Sleep

An interrupt-on-change event will wake the device from Sleep mode, if the IOCIE bit is set. If an
edge is detected while in Sleep mode, the IOCxF register will be updated prior to the first instruction
executed out of Sleep.

21.7 Register Definitions: Interrupt-on-Change Control
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21.7.1 10CxF
Name: IOCxF

Interrupt-on-Change Flag Register

Bit 7 6 5 4 3 2 1 0
| 10CxF7 | 10CxF6 | I1OCxF5 | 10CxF4 | 10CxF3 | 10CxF2 | 1OCxF1 [ 10CxFO |
Access  R/W/HS R/W/HS R/W/HS R/W/HS R/W/HS R/W/HS R/W/HS R/W/HS
Reset 0 0 0 0 0 0 0 0

Bits 0, 1, 2, 3, 4, 5, 6, 7 - IOCxFn Interrupt-on-Change Flag

Value Condition Description

1 IOCxP[n] =1 A positive edge was detected on the Rx[n] pin

1 IOCXN[n] =1 A negative edge was detected on the Rx[n] pin

0 IOCxP[Nn] = x and IOCxN[n] = x No change was detected, or the user cleared the detected change
Important:

* If MCLRE = 1 or LVP = 1, the MCLR pin port functionality is disabled and 10C on that pin
is not available

+ Refer to the “Pin Allocation Table” for details about pins with configurable IOC per port
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21.7.2 10CxN
Name: |IOCxN

Interrupt-on-Change Negative Edge Register Example

Bit 7 6 5 4 3 2 1 0
| 10CxN7 | 1OCxN6 | IOCxN5 | I0CxN4 | 10CxN3 | 1OCxN2 | IOCxN1 [ 10CxNO |
Access  R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 0, 1, 2, 3,4, 5, 6, 7 - IOCxNn Interrupt-on-Change Negative Edge Enable

1 Interrupt-on-change enabled on the IOCx pin for a negative-going edge. Associated Status bit and interrupt flag
will be set upon detecting an edge.
0 Falling edge interrupt-on-change disabled for the associated pin
Important:

* If MCLRE =1 or LVP = 1, the MCLR pin port functionality is disabled and 10C on that pin
is not available

+ Refer to the “Pin Allocation Table” for details about pins with configurable I0C per port
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21.7.3 10CxP
Name: |IOCxP

Interrupt-on-Change Positive Edge Register

Bit 7 6 5 4 3 2 1 0
| 10CxP7 | 10CxP6 | 10CxP5 | 10CxP4 | 10CxP3 | 10CxP2 | 10CxP1 [ 10CxPO |
Access  R/W R/W R/W R/W RIW R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 0, 1, 2, 3, 4, 5, 6, 7 - IOCxPn Interrupt-on-Change Positive Edge Enable

1 Interrupt-on-change enabled on the IOCx pin for a positive-going edge. Associated Status bit and interrupt flag
will be set upon detecting an edge.
0 Rising edge interrupt-on-change disabled for the associated pin.
Important:

* If MCLRE =1 or LVP = 1, the MCLR pin port functionality is disabled and 10C on that pin
is not available

+ Refer to the “Pin Allocation Table” for details about pins with configurable I0C per port
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21.8 Register Summary - Interrupt-on-Change Control

pddress) Name sitbos L7 L s L S L

0x041B
0x041C
0x041D
0x041E

0x0424
0x0425
0x0426
0x0427
0x0428

0x042E
0x042F
0x0430
0x0431
0x0432

0x0456
0x0457
0x0458
0x0459
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IOCAP
I0CAN
IOCAF

Reserved

10CBP
I0OCBN
IOCBF

Reserved

10CCP
IOCCN
I0CCF

Reserved

10CWP

IOCWN
IOCWF

7:0
7:0

7:0
7:0
7:0

7:0
7:0
7:0

7:0
7:0
7:0

10CBP7
I0OCBN7
IOCBF7

I0CCP7
IOCCN7
I0CCF7

10CWP7
IOCWN7
I0CWF7

10CBP6
I0CBN6
I0CBF6

I0CCP6
IOCCN6
I0CCF6

I0CWP6
IOCWN6
IOCWF6

5
IOCAP5 I0CAP4
IOCANS IOCAN4
IOCAF5 I0CAF4
I0CBP5
I0CBN5
IOCBF5
10CCP5 10CCP4
IOCCN5 I0CCN4
I0CCF5 IOCCF4
IOCWP5 I0CWP4
IOCWN5 IOCWN4
IOCWF5 IOCWF4

3
I0CAP3
IOCAN3
I0CAF3

10CCP3
I0OCCN3
IOCCF3

I0CWP3
IOCWN3
IOCWF3

I0CAP2 I0CAP1
I0OCAN2 I0CAN1
IOCAF2 IOCAF1
I0CCP1
IOCCN1
I0CCF1
10CWP2 I0CWP1
IOCWN2 IOCWN1
I0CWF2 I0CWF1

IOCAPO
I0CANO
IOCAFO

I0CCPO
IOCCNO
I0CCFO

I0CWPO
IOCWNO
IOCWFO
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22. PPS - Peripheral Pin Select Module

22.1 Overview

The Peripheral Pin Select (PPS) module connects peripheral inputs and outputs to the device 1/0
pins. Only digital signals are included in the selections.

Important: All analog inputs and outputs remain fixed to their assigned pins and cannot
be changed through PPS.

Input and output selections are independent as shown in the figure below.

Figure 22-1. PPS Block Diagram

- T T T T 1
| abcPPS | ________
| RAOPPS |
: RAO [ | : |
Peripheral abc |
| | | RAO |
1
| | ! |
| | | |
| | | |
| |
| | ! |
Rx
| Peripheral xyz | y |
: Rxy X | : |
|
| xyzPP$ | | RxyPPS |
Input selections Output selections

22.2 PPS Inputs

Each digital peripheral has a dedicated PPS Peripheral Input Selection (xxxPPS) register with which
the input pin to the peripheral is selected. Devices that have 20 leads or less (8/14/16/20) allow PPS
routing to any I/0 pin, while devices with 28 leads or more allow PPS routing to I1/0s contained within
two ports (see the table below).

Important: The notation “xxx” in the generic register name is a placeholder for the
peripheral identifier. For example, xxx = TOCKI for the TOCKIPPS register.

Multiple peripherals can operate from the same source simultaneously. Port reads always return the
pin level regardless of peripheral PPS selection. If a pin also has analog functions associated, the
ANSEL bit for that pin must be cleared to enable the digital input buffer.
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Table 22-1. PPS Input Selection Table
Peripheral

PPS Input
Register

Interrupt O INTOPPS
Interrupt 1 INT1PPS
Interrupt 2 INT2PPS
Timer0 Clock TOCKIPPS
Timer1 Clock T1CKIPPS
Timer1 Gate T1GPPS
Timer2 Input T2INPPS
Timer4 Input T4INPPS
Universal TUINOPPS
Timer Input 0
Universal TUIN1PPS
Timer Input 1
CCP1 CCP1PPS
CCP2 CCP2PPS
PWM Input0 PWMINOPPS
PWM Input 1 PWMIN1PPS

PWM1 PWM1ERSPPS
External Reset
Source

PWM2 PWM2ERSPPS
External Reset

Source

CWG1 CWG1PPS
CLCx Input 1 CLCINOPPS
CLCx Input2 ~ CLCIN1PPS
CLCx Input3  CLCIN2PPS

CLCx Input4  CLCIN3PPS

UART1 U1RXPPS
Receive
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Default

Pin

Selection
at POR

RAZ2

RA4

RA5

RA2

RA5

RA4

RAS5

RC1

RA1

RCO

RC5

RC3

RC5

RC3

RAS5

RC1

RAZ2

RC3

RC4

RC1

RA5

RC5

POR
‘b000
010
‘b000
100
‘b000
101
‘b000
010
‘b000
101
‘b000
100
‘b000
101
‘b010
001
‘b000
001
‘b010
000
‘b010
101
‘b010
011
‘b010
101
‘b010
011
‘b000
101

‘b010
001

‘b000
010
‘b010
011
‘b010
100
‘b010
001
‘b000
101
‘b010
101

Default

Pin

Selection
at POR

RAZ2

RA4

RA5

RA2

RA5

RA4

RA5

RC1

RA1

RCO

RC5

RC3

RC5

RC3

RA5

RC1

RA2

RA2

RC3

RB6

RB5

RB5

14-Pin Devices 20-Pin Devices

Register
Reset
Value at

Register
Reset
Value at

POR
*b000
010
‘*b000
100
‘*b000
101
‘b000
010
‘*b000
101
‘*b000
100
‘*b000
101
‘b010
001
*b000
001
‘b010
000
‘b010
101
‘b010
011
‘b010
101
‘b010
011
‘b000
101

‘b010
001

‘*b000
010
‘*b000
010
‘b010
011
‘b001
110
‘b001
101
‘b001
101
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........... continued

Peripheral PPS Input 14-Pin Devices 20-Pin Devices

Register Default | Register Available Default | Register Available
Pin Reset Input Port Pin Reset Input Port
Selection | Value at Selection | Value at
at POR POR at POR POR
UART1 Clear U1CTSPPS RC4 ‘b010 A — C — RB7 ‘b001 A B C —
to Send 100 111
UART2 U2RXPPS RC1 ‘b0l0 A — C W RC1 ‘b010 A B C W
Receive 001 001
UART2 Clear U2CTSPPS RCO ‘b010 A — C — RCO ‘b010 A B C —
to Send 000 000
SPI1 Clock SPI1SCKPPS RCO ‘b010 A — C W RB6 ‘b001 A B C W
000 110
SPI1 Data SPI1SDIPPS RC1 ‘b010 A — C W RB5 ‘b001 A B C W
001 101
SPI1 Client SPI1SSPPS RC3 ‘b0l0 A — C W RC6 ‘b010 A B C W
Select 011 110
[2C1 Clock  12C1SCLPPS(™ RCO ‘b010 A — C — RB6 ‘b001 A B C —
000 110
12C1 Data 12C1SDAPPS(M RC1 ‘b010 A — C — RB5 ‘b001 A B C —
001 101
ADC Auto- ADACTPPS RC3 ‘b010 A — C W RC3 ‘b010 A B C W
Conversion 011 011
Trigger
Note:

1. Bidirectional pin. The corresponding output must select the same pin.

22.3 PPS Outputs

Each digital peripheral has a dedicated Pin Rxy Output Source Selection (RxyPPS) register with which
the pin output source is selected. With few exceptions, the port TRIS control associated with that pin
retains control over the pin output driver. Peripherals that control the pin output driver as part of
the peripheral operation will override the TRIS control as needed. The I2C module is an example of
such a peripheral.

Important: The notation ‘Rxy’ is a placeholder for the pin identifier. The 'x’ holds the place
of the PORT letter and the 'y’ holds the place of the bit number. For example, Rxy = RAQO for
the RAOPPS register.

The table below shows the output codes for each peripheral, as well as the available Port selections.

Table 22-2. PPS Output Selection Table

Available Output Ports
RxyPPS Output Source - - - -
14-Pin Devices 20-Pin Devices
— B

Ox1F ADGRDB A C A C
Ox1E ADGRDA A — C A B C
0x1D 12C1 SDAM A — C A B C
0x1C 12C1 SCLM A = C A B C
0x1B SPI1 SS A — C A B C
Ox1A SPI1 SDO A — C A B C
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........... continued

Available Output Ports
RxyPPS Output Source - - - -
14-Pin Devices 20-Pin Devices
— B

0x19 SPI1 SCK A C A C
0x18 UART2 TXDE A — C A B (o
0x17 UART2 RTS A — C A B C
0x16 UART2 TX A — C A B C
0x15 UART1 TXDE A — C A B C
0x14 UART1 RTS A — C A B (o
0x13 UART1 TX A — C A B C
0x12 CLC40UT A — C A B C
0x11 CLC30UT A — C A B C
0x10 CLC20UT A — C A B (o
OxOF cLC1ouT A — C A B C
OxO0E CWG1D A — C A B C
0x0D CWG1C A — C A B C
0x0C CWG1B A — C A B (o
0x0B CWG1A A — C A B C
0x0A PWM2S1P2_OUT A — C A B C
0x09 PWM2S1P1_OUT A — C A B C
0x08 PWM1S1P2_OUT A — C A B (o
0x07 PWM1S1P1_OUT A — C A B C
0x06 CCP2 A — C A B C
0x05 CCP1 A — C A B C
0x04 TU16B A — C A B (o
0x03 TU16A A — C A B C
0x02 TMRO A — (o A B C
0x01 CLKR A — C A B C
0x00 LATxy A — C A B (o
Note:

1. Bidirectional pin. The corresponding input must select the same pin.

22.4 Bidirectional Pins

PPS selections for peripherals with bidirectional signals on a single pin must be made so that the
PPS input and PPS output select the same pin. The 12C Serial Clock (SCL) and Serial Data (SDA) are
examples of such pins.

Important: The I2C default pins and a limited number of other alternate pins are 12C and
SMBus compatible. SDA and SCL signals can be routed to any pin; however, pins without
12C compatibility will operate at standard LVBUF/ST logic levels as selected by the port’s
INLVL register.

22.5 PPS Lock

The PPS module provides an extra layer of protection to prevent inadvertent changes to the PPS
selection registers. The PPSLOCKED bit is used in combination with specific code execution blocks to
lock/unlock the PPS selection registers.
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Important: The PPSLOCKED bit is clear by default (PPSLOCKED = 0), which allows the PPS
selection registers to be modified without an unlock sequence.

PPS selection registers are locked when the PPSLOCKED bit is set (PPSLOCKED = 1). Setting the
PPSLOCKED bit requires a specific lock sequence as shown in the examples below in both C and
assembly languages.

PPS selection registers are unlocked when the PPSLOCKED bit is clear (PPSLOCKED = 0). Clearing the
PPSLOCKED bit requires a specific unlock sequence as shown in the examples below in both C and
assembly languages.

Important: All interrupts must be disabled before starting the lock/unlock sequence to
ensure proper execution.

Example 22-1. PPS Lock Sequence (assembly language)

; suspend interrupts
BCF INTCONO, GIE
BANKSEL PPSLOCK

; required sequence, next 5 instructions
MOVLW 0x55

MOVWFEF PPSLOCK

MOVLW OxAA

MOVWFEF PPSLOCK
; Set PPSLOCKED bit

BSF PPSLOCK, PPSLOCKED
; restore interrupts

BSF INTCONO, GIE

Example 22-2. PPS Lock Sequence (C language)

INTCONObits.GIE = 0; //Suspend interrupts
PPSLOCK = 0x55; //Required sequence
PPSLOCK = OxAA; //Required sequence
PPSLOCKbits.PPSLOCKED = 1; //Set PPSLOCKED bit
INTCONObits.GIE = 1; //Restore interrupts

Example 22-3. PPS Unlock Sequence (assembly language)

; suspend interrupts
BCF INTCONO, GIE
BANKSEL PPSLOCK
; required sequence, next 5 instructions

MOVLW 0x55

MOVWE PPSLOCK

MOVLW OxAA

MOVWE PPSLOCK
; Clear PPSLOCKED bit

BCF PPSLOCK, PPSLOCKED
; restore interrupts

BSF INTCONO, GIE
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Example 22-4. PPS Unlock Sequence (C language)

INTCONObits.GIE = 0; //Suspend interrupts
PPSLOCK = 0x55; //Required sequence
PPSLOCK = OxAA; //Required sequence
PPSLOCKbits.PPSLOCKED = 0; //Clear PPSLOCKED bit
INTCONObits.GIE = 1; //Restore interrupts

22.5.1 PPS One-Way Lock

The PPSTWAY Configuration bit can also be used to prevent inadvertent modification to the PPS
selection registers.

When the PPSTWAY bit is set (PPSTWAY = 1), the PPSLOCKED bit can only be set one time after a

device Reset. Once the PPSLOCKED bit has been set, it cannot be cleared again unless a device Reset
is executed.

When the PPSTWAY bit is clear (PPSTWAY = 0), the PPSLOCKED bit can be set or cleared as needed;
however, the PPS lock/unlock sequences must be executed.
22.6 Operation During Sleep

PPS input and output selections are unaffected by Sleep.

22.7 Effects of a Reset

A device Power-on Reset (POR) or Brown-out Reset (BOR) returns all PPS input selection registers

to their default values and clears all PPS output selection registers. All other Resets leave the
selections unchanged. Default input selections are shown in the PPS input register details table. The
PPSLOCKED bit is cleared in all Reset conditions.

22.8 Register Definitions: Peripheral Pin Select (PPS)
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22.8.1 xxxPPS
Name: xxXPPS

Peripheral Input Selection Register

Bit 7 6 5 4 3 2 1 0
| | | | PORT[1:0] | PIN[2:0] |
Access R/W R/W R/W R/W R/W
Reset m m m m m

Bits 4:3 - PORT[1:0] Peripheral Input PORT Selection(")
See the PPS Input Selection Table for the list of available Ports and default pin locations.

PORT

11 PORTW
10 PORTC
01 PORTB
00 PORTA

Reset States: POR = mmm
All other Resets = uuu

Bits 2:0 - PIN[2:0] Peripheral Input PORT Pin Selection®
Reset States: POR = mmm
All other Resets = uuu

Value Description

111 Peripheral input is from PORTx Pin 7 (Rx7)
110 Peripheral input is from PORTx Pin 6 (Rx6)
101 Peripheral input is from PORTx Pin 5 (Rx5)
100 Peripheral input is from PORTx Pin 4 (Rx4)
011 Peripheral input is from PORTx Pin 3 (Rx3)
010 Peripheral input is from PORTx Pin 2 (Rx2)
001 Peripheral input is from PORTx Pin 1 (Rx1)
000 Peripheral input is from PORTx Pin 0 (Rx0)
Notes:

1. The Reset value ‘m’ is determined by device default locations for that input.
2. Refer to the “Pin Allocation Table” for details about available pins per port.
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22.8.2 RxyPPS
Name: RxyPPS

Pin Rxy Output Source Selection Register

Bit 7 6 5 4 3 2 1 0
| | RxyPPS[6:0] |
Access R/W R/W R/W R/W RIW R/W R/W
Reset 0 0 0 0 0 0 0

Bits 6:0 - RxyPPS[6:0] Pin Rxy Output Source Selection
See the PPS Output Selection Table for the list of RxyPPS Output Source codes
Reset States: POR = 0000000
All other Resets = uuuuuuu
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22.8.3 PPSLOCK
Name: PPSLOCK
PPS Lock Register

Bit 7 6

0

| PPSLOCKED |

Access
Reset

Bit 0 - PPSLOCKED PPS Locked

Reset States: POR=0

All other Resets =0

R/W
0

Value Description

1 PPS is locked. PPS selections cannot be changed. Writes to any PPS register are ignored.

0 PPS is not locked. PPS selections can be changed, but may require the PPS lock/unlock sequence.
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22.9

[hddress| — Name | Bitos| 7| 6 | 5 | 4
7:0

0x0319
0x031A
0x031B
0x031C
0x031D
0x031E
0x031F

0x0325
0x0326
0x0327
0x0328
0x0329
0x032A
0x032B
0x032C
0x032D
0x032E
0x032F
0x0330
0x0331

0x0350
0x0351
0x0352
0x0353
0x0354
0x0355
0x0356
0x0357
0x0358

0x035F
0x0360
0x0361
0x0362

0x0364
0x0365
0x0366
0x0367

0x0368
0x0369
0x036A
0x036B

0x0383
0x0384
0x0385
0x0386
0x0387
0x0388

0x0398
0x0399
0x039A
0x039C
0x039D
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Register Summary - Peripheral Pin Select Module

RAOPPS
RA1PPS
RA2PPS
Reserved
RA4PPS
RA5PPS

Reserved

RB5PPS
RB6PPS
RB7PPS
RCOPPS
RC1PPS
Reserved
RC3PPS
RC4PPS
RC5PPS
RC6PPS
RC7PPS

Reserved

PPSLOCK
INTOPPS
INT1PPS
INT2PPS

TOCKIPPS

T1CKIPPS
T1GPPS

Reserved

T2INPPS
T4INPPS

Reserved

TUINTPPS
TUIN2PPS

Reserved

CCP1PPS
CCP2PPS

Reserved

PWMINOPPS

PWMIN1PPS

PWMXERSPPS

PWM2ERSPPS

Reserved

CWG1PPS

Reserved

CLCINOPPS

7:0
7:0

7:0
7:0

7:0
7:0
7:0
7:0
7:0

7:0
7:0
7:0
7:0
7:0

7:0
7:0
7:0
7:0
7:0
7:0
7:0

7:0
7:0

7:0
7:0

7:0
7:0

7:0
7:0
7:0
7:0

7:0

7:0

PORT[1:0]
PORT[1:0]
PORT[1:0]
PORT[1:0]
PORT[1:0]
PORT[1:0]

PORT[1:0]
PORT[1:0]

PORT[1:0]
PORT[1:0]

PORT[1:0]
PORT[1:0]

PORT[1:0]
PORT[1:0]
PORT[1:0]
PORT[1:0]

PORT[1:0]

PORT[1:0]

RAOPPS[5:0]
RA1PPS[5:0]
RA2PPS[5:0]

RA4PPS[5:0]
RA5PPS[5:0]

RB5SPPS[5:0]
RB6PPS[5:0]
RB7PPS[5:0]
RCOPPS[5:0]
RC1PPS[5:0]

RC3PPS[5:0]
RC4PPS[5:0]
RC5PPS[5:0]
RC6PPS[5:0]
RC7PPS[5:0]

PIN[2:0]
PIN[2:0]

PIN[2:0]
PIN[2:0]

PIN[2:0]
PIN[2:0]

PIN[2:0]
PIN[2:0]
PIN[2:0]
PIN[2:0]

PIN[2:0]

PIN[2:0]

IER N R

PPSLOCKED
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........... continued

pdress) ) Name sitbos L7 L s L s L L 3Ll L0

0x039E
0x039F
0x03A0
0x03A1
0x03A2
0x03A3
0x03A4
0x03A5

0x03A6
0x03A7
0x03A8
0x03A9
0x03AA

0x03AC
0x03AD
0x03AE
0x03AF

0x03B0
0x03B1
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CLCIN1TPPS
CLCIN2PPS
CLCIN3PPS
U2CTSPPS
U2RXPPS
U1CTSPPS
U1TRXPPS

Reserved
SPIXSCKPPS
SPIXSDIPPS

SPIXSSPPS

Reserved

12C1SCLPPS
12C1SDAPPS

Reserved

ADACTPPS

7:0
7:0
7:0
7:0
7:0
7:0

7:0
7:0
7:0

7:0
7:0

7:0

PORT[1:0]
PORT[1:0]
PORT[1:0]
PORT[1:0]
PORT[1:0]
PORT[1:0]
PORT[1:0]

PORT[1:0]
PORT[1:0]
PORT[1:0]

PORT[1:0]
PORT[1:0]

PORT[1:0]

PIN[2:0]
PIN[2:0]
PIN[2:0]
PIN[2:0]
PIN[2:0]
PIN[2:0]
PIN[2:0]

PIN[2:0]
PIN[2:0]
PIN[2:0]

PIN[2:0]
PIN[2:0]

PIN[2:0]

352



23. MVIO - Multi-Voltage I/0

The Multi-Voltage I/0 (MVIO) feature allows a subset of the 1/0 pins to be powered by a different
I/0 voltage domain than the rest of the I/0 pins. This eliminates the need of having external level
shifters for communication or control of external components running on a different voltage level.
The MVIO-capable I/0 pads are supplied by a voltage applied to the Vppjox power pin(s), while the
regular I/0 pins are supplied by the voltage applied to the Vpp device power pin(s). The MVIO pins
on the Vppjox power domain are capable of the same digital behavior as regular 1/0 pins on Vpp
power domain like GPIO, serial communication, and PPS functionality. However, the MVIO pins do
not support analog inputs or outputs.

23.1 Features

* A Subset of the Device I/0 pins can be Powered by Vpp)ox

+  The Vppiox Supply can Ramp up and down Independently of the Vpp supply
« Standard and Low-Voltage Operation Determined by the Configuration Bits
+ Customizable Buffer Selection for I3C and 12C/PPS Modules

*  Vppiox Supply Status bit

+ Interrupt for Vppjox Supply Voltage

« ADC Channel for Measuring Vppjox Supply Voltage

23.2 Module Overview

A typical MVIO on an 8-bit PIC® microcontroller has an operating voltage range of 1.62V-5.5V.
However, the MVIO on this device is customized with additional features to support limited
operation in the 0.95V-1.62V range as well for low-voltage 13C and I12C data transfers.

Table 23-1. Operating Voltage Range for MVIO Domains

Voltage Range Additional Notes

Vpp Power Domain 1.8V -5.5V Device operating range

1.62V - 5.5v(M Standard operating range MVIO pads are fully functional
Vbpiox Power Domain Low-voltage operating range  MVIO pads are held in reset with

- (2)
0.95V - 1.62V limited 13C/12C functionality

Notes:
1.  The maximum voltage for Vppjox power domain is 3.63V when I3C is enabled.

2.  When the I3C low-voltage buffers are used within the 1.4V-1.62V range of Vppox power domain, a minimum device Vpp
of 2.4V is required for proper operation.

3. The Vppjox supply voltage can go below the device’s minimum Vpp of 1.8V. However, the Vpp must be within the
specified operating range for the device to be functional.

23.2.1 POR and Voltage Monitors

To prevent improper operation of the level shifters at low voltage, a Power-on Reset (POR) circuit is
included. The POR circuit is automatically enabled on supply power up and holds the corresponding
voltage domain logic in reset state until the power supply has reached sufficient voltage for the
corresponding voltage domain logic to operate properly. Once this supply voltage is reached, the
POR circuit on that voltage domain will power itself down to save power, and re-arm itself if the
supply voltage drops too low. For Vpp power domain, the device’s main POR circuit is used whereas
for Vppiox domain, a separate POR circuit is included in the MVIO domain. The POR and PORVDDIOx
bits in the PCONO and PCON1 registers are used to represent when the corresponding voltage
domain has recovered from a POR reset.
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Once the voltage domain logic is released by the POR circuit, it is important to ensure that both
the voltage domains (Vpp and Vppjox domains) are powered up and operating at sufficient voltage
for the level shifters to work properly. To achieve this, each MVIO domain consists of two voltage
monitors:

1. The first voltage monitor is powered using the main Vpp supply and becomes active when Vpp
reaches a sufficient voltage level. This voltage monitor is used to monitor the Vppox Voltage level
threshold has been achieved for level shifters to work.

2. The second voltage monitor is powered using the Vppox supply and becomes active when Vppox
reaches a sufficient voltage level. This voltage monitor is used to monitor the main Vpp voltage
level threshold has been achieved for level shifters to work.

This cross-coupled approach to voltage monitoring ensures that both - the monitor’s current
domain and the opposite voltage domain have reached the sufficient voltage for level shifters to
operate safely. Refer to Figure 23-1 for clarification. Refer to the Power Sequencing section for
different ways to power up both the voltage domains.

Important: To comply with the MIPI I13C® Specification, all the 13C SDA/SCL pads in the
MVIO domain are designed to be fail-safe, meaning the pads will not draw excess current
when the pad voltage is greater than the Vpp o4 Supply voltage. Refer to the “Electrical
Specifications” chapter for absolute maximum voltage ratings for the I3C pads on MVIO
domain.

Figure 23-1. POR and Voltage Monitors on MVIO Domain

Voltage Divider |—> ADC Input
Voltage
Monitor VDDIOXRDY Edge Detecter |——> VDDIOxIF

w POR (Interrupt Flag.)

Vbbiox

Pins on Vppiox
Domain

Voltage

|
|
|
|
[
|
|
|
|
|
|
|
| Monitor
Pins on Voo | PORT
Domain lE | H

23.2.2 Input Buffers on Pads with MVIO

The pads on MVIO domain are equipped with various types of input buffers as listed in Table 23-2.
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Table 23-2. Input Buffers on MVIO Pads

Input Buffer Vppiox Operating Range

Low Voltage Standard Standard
0.95V-1.62V 1.62V-3.63V 3.63V-5.5V

Standard GPIO Buffers

Low-Voltage Buffer (LVBUF) Yes Yes Yes
Regular ST Buffer - Yes Yes
12C/SMBus Buffers
12C Buffer - Yes Yes
SMBus 2.0 Buffer - Yes Yes
SMBus 3.0 Buffer Yes Yes Yes
13C Buffers

I3C Fast ST (FST) Buffer(" - Yes -
I3C Low-Voltage (LV) Buffer(23) Yes = =
Notes:

1. The maximum Vpp ox Operating voltage for I3C-FST buffer is 3.63V.

2. The I3C-LV buffer has a startup time before becoming fully operational, which is specified in the “Electrical
Specifications” chapter. During this time, the output of the buffer is 0 regardless of the status of the corresponding
pin.

The 1.4V-1.62V Vpp ox Operating range of the I13C LV buffer requires Vpp > 2.4V.

4. Both the 13C and 12C modules are equipped with dedicated 50 ns spike filters on SDA/SCL pads. While the spike filters

in the 12C module are always on and can work with all buffers, the spike filters in the 13C module need to be explicitly

enabled by the user and are limited to non-I3C buffers only. Refer to the “I3C - Improved Inter-Integrated Circuit
Module” chapter for more information.

The Vppjox Low-Voltage 0.95V-1.62V operation still requires the main device to be powered up with Vpp > 1.8V.

6. Refer to the “Electrical Specifications” chapter for threshold levels for the different input buffers. Some buffers may
have V| specifications higher than the lowest Vpp o4 Operating voltage.

The input buffers are selected using the I3CBUF and SYSBUF bits in the RxyFEAT register, where Rxy
represents the corresponding MVIO pin (like RCO). The I3CBUF bits are used to select an input buffer
for the 13C module, whereas the SYSBUF bits are used to select an input buffer for the I2C module,
which is also routed as an input selection through the Peripheral Pin Select (PPS) for other modules
on the device. The I3CBUF and SYSBUF selections work independently of each other, thus allowing
both 13C and I2C to operate on the same bus using the same set of SDA and SCL pins. Refer to the
"I/0 Ports" chapter for the RxyFEAT register definition.

A\ CAUTION

1. If the user configures the SYSBUF bits to select one of the I13C buffers (FST or LV),
then the user must also configure the I3CBUF bits to select the same 13C buffer for
reliable and predicable operation. However, if the user selects a non-13C buffer using
the SYSBUF bits, then I3CBUF can be configured to select any input buffer.

2. ltis highly recommended for the users to switch input buffers when the module using
the buffers is disabled. Switching buffers may cause the input signal to glitch, which
may be interpreted as a false Start or Stop condition in the case of I3C and 12C modules.
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Remember:

i Remember that the 13C SDA and SCL pins are not remappable through PPS on this device.
Hence, the input buffer selected using the I3CBUF bits feed into a fixed SDA/SCL pad for
one of the I3C modules available on the device. Refer to the “Pin Allocation Table” section
in the data sheet for more information on which MVIO pins are designated for I3C SDA and
SCL.

23.2.3 Output Drivers on Pads with MVIO

The pads on MVIO domain are equipped with various types of output drivers as listed in Table 23-3.
These output drivers are automatically selected based on certain conditions and the module that is
driving the output. Refer to “Electrical Specifications” chapter for voltage levels for the different
output drivers.

Table 23-3. Output Drivers on MVIO Pads

I2C module, PPS outputs, and 13C

. Standard 1.62V-5.5V module (when additional SDA delay is
Standard GPIO Driver(!
used)
Low voltage 0.95V-1.62V Not functional
13€ Driver Standard 1.62V-3.63V I3C module (when no additional SDA
Low voltage 0.95V-1.62V delay is used)
Standard 1.62V-5.5V Not used
12C Pull-down Driver 12C module and 13C module (when
Low voltage 0.95V-1.62V additional SDA delay is used)
Note:

1. The SLEW bits in the RxyFEAT register can be used to control the slew rate of the standard GPIO driver when driven by
the 12C module only.

A\ CAUTION

If the user assigns the same address to both the I12C and 13C modules, it is possible

that both the modules can attempt to drive the output together, thus resulting in an
unpredictable outcome. It is highly recommended for the user to ensure that unique
addresses be assigned to the 12C and 13C modules such that only one module responds to
a particular address on the bus.

23.3 Operation

This section describes the operation of the MVIO module.

23.3.1 Standard and Low-Voltage Operation

The MVIO on this device is customized to operate in a limited capacity below the 1.62V threshold. To
operate properly at a designated voltage level, the MVIO must be configured appropriately using the
VDDIOxMD configuration bit.

When operating in the standard range of 1.62V-5.5V, the VDDIOxMD configuration bit should be
configured to the “Standard Operating Range” setting. In this mode, the MVIO pads and the Vppox
voltage monitor are fully functional. The VDDIOXRDY bit in the MVIOSTAT register reflects the status
of the Vppjox supply voltage. Refer to Table 23-2 and Table 23-3 for a list of input buffers and output
drivers that are active in this operating range.
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When operating in the low-voltage range of 0.95V-1.62V, the VDDIOXMD configuration bit should

be configured to the “Low-Voltage Operating Range"” setting. In this mode, the MVIO circuitry in the
pads are held in reset. Since the voltage monitor on the Vppox domain is inactive at Vpp,ox < 1.62V,
the voltage monitor on the Vpp domain is used instead to enable limited functionality with certain
I3C and 12C buffers and drivers. The VDDIOXRDY bit is always high regardless of the Vpp ox supply
voltage representing that the corresponding MVIO domain is active in limited capacity. Refer to Table
23-2 and Table 23-3 for a list of input buffers and output drivers that are active in this operating
range.

Proper MVIO operation is not guaranteed if the VDDIOXMD configuration bit is incorrectly

A\ CAUTION . .
programmed for the corresponding operating range.

23.3.2 Power Sequencing

When the VDDIOxXMD bit is correctly configured as explained in the previous section, the MVIO
domains are designed to be independent of one another, thus allowing the Vpp and Vpp ox Voltages
to ramp up/down independently. The following power sequencing scenarios are covered:

* Vpp ramps up before Vppox
* Vppiox ramps up before Vpp
* Vpp loses and regains power while Vppoy is stable
*  Vppiox loses and regains power while Vpp is stable

23.3.3 Voltage Measurement

The Vppiox supply voltage is available as an internal input channel to the ADC. The voltage is
divided by ten to allow the use of any internal ADC reference. To measure Vpp ox/10, the user is
recommended to follow these steps:

Configure the voltage reference for the ADC
Select Vppiox/10 as the positive input to the ADC
Run a single-ended ADC conversion

W~

Calculate the voltage using the following equation:
v _ ADC Result X Vggg X 10
DDIOx = ADC Resolution

23.3.4 Interrupts and DMA Triggers

A change in the VDDIOXRDY status bit in the MVIOSTAT register acts as a trigger for an interrupt to
the CPU. This allows either a loss or gain of the Vppox supply voltage to generate an interrupt, which
is represented through the VDDIOXIF interrupt flag in the PIRx register. The interrupt can be enabled
or disabled by writing to the VDDIOXIE bit in the PIEx register.

An interrupt request is generated when the corresponding interrupt source is enabled and the
interrupt flag is set. The interrupt request remains active until the interrupt flag is cleared. Refer to
the “VIC - Vectored Interrupt Controller” chapter for more information.

The VDDIOXIF interrupt flag also acts as DMA trigger. The interrupt does not need to be enabled to
be used as a trigger for DMA transfers. Refer to the “Types of Hardware Triggers” section in the
“DMA - Direct Memory Access” chapter for more information on how to use these DMA triggers.

23.3.5 Sleep Mode

The different MVIO domains on the device will remain operational in Sleep mode as long as the
corresponding Vppjox Supply voltage is active.
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23.3.6 Debug Operation

When the CPU is halted in Debug mode, the MVIO continues normal operation. If the MVIO is
configured in a way that requires it to be periodically serviced by the CPU through interrupts or
some improper operation, a data loss may result during debugging.

23.3.7 Module Setup
The MVIO can be initialized by following these steps:

1. Setthe VDDIOXMD bit in the appropriate configuration register to select the proper operating
voltage range.

Optional: Enable the Vpp ox Interrupt by setting the VDDIOXIE bit in the appropriate PIEx register.

Read the VDDIOxRDY bit in the MVIOSTAT status register to check if the Vpp oy voltage is within
the acceptable range of operation.

4. Configure and use the PORT pins powered by Vppox as usual.

23.4 Register Definitions: MVIO
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23.4.1 MVIOSTAT

Name: MVIOSTAT
Address: 0x4A6

MVIO Status Register

Bit 7 6 5 4 3 2 1 0
| | | | | | VDDIO3RDY | VDDIO2RDY |
Access R R
Reset u u
Bit 1 - VDDIO3RDY Vpp o3 Voltage Monitor Ready
1

The internal voltage monitor on the Vpp o3 domain is ready, and the Vpp o3 supply voltage is within the

acceptable range of operation. The MVIO pin configurations are loaded from the corresponding PORT
registers.

The internal voltage monitor on the Vpp)o3 domain is not ready, or the Vppo3 supply voltage is not within the
acceptable range of operation. The MVIO pins are tri-stated.

Bit 0 - VDDIO2RDY Vpp 0> Voltage Monitor Ready

1 The internal voltage monitor on the Vpp o, domain is ready, and the Vpp o2 supply voltage is within the

acceptable range of operation. The MVIO pin configurations are loaded from the corresponding PORT
registers.

The internal voltage monitor on the Vpp o, domain is not ready, or the Vppo2 supply voltage is not within the
acceptable range of operation. The MVIO pins are tri-stated.
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23.5 Register Summary - MVIO

[hgdress| — Name [ Bitpos| 7| 6 | 5 | 4 | 3 | 2 | 1 | o
7:0

0x04A6 MVIOSTAT VDDIO3RDY VDDIO2RDY
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24. CLC - Configurable Logic Cell

The Configurable Logic Cell (CLC) module provides programmable logic that operates outside the
speed limitations of software execution. The logic cell takes up to 256 input signals and, through the
use of configurable gates, reduces those inputs to four logic lines that drive one of eight selectable
single-output logic functions.

Input sources are a combination of the following:

+ 1/0 pins

+ Internal clocks

+ Peripherals

+ Register bits

The output can be directed internally to peripherals and to an output pin.

The following figure is a simplified diagram showing signal flow through the CLC. Possible
configurations include:

+ Combinatorial Logic
- AND
- NAND
- AND-OR
- AND-OR-INVERT
- OR-XOR
- OR-XNOR
* Latches
- SR
- Clocked D with Set and Reset
- Transparent D with Set and Reset
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Figure 24-1. CLC Simplified Block Diagram
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1. See Figure 24-2 for input data selection and gating.
2. See Figure 24-3 for programmable logic functions.

24.1 CLC Setup

CLCx

set bit
CLCXIF

Programming the CLC module is performed by configuring the four stages in the logic signal flow.

The four stages are:
+ Data selection

+ Data gating
+ Logic function selection
« Output polarity

Each stage is set up at run time by writing to the corresponding CLC Special Function Registers. This

has the added advantage of permitting logic reconfiguration on-the-fly during program execution.

24.1.1 Data Selection

Data inputs are selected with CLCnSELO through CLCnSELS3 registers.

Important: Data selections are undefined at power-up.

Depending on the number of bits implemented in the CLCnSELy registers, there can be as
many as 256 sources available as inputs to the configurable logic. Four multiplexers are used to
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independently select these inputs to pass on to the next stage as indicated on the left side of the

following diagram.

Data inputs in the figure are identified by a generic numbered input name.

Figure 24-2. Input Data Selection and Gating
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Data GATE 2

lexg2

(Same as Data GATE 1)

Data GATE 3

lexg3

(Same as Data GATE 1)

Data GATE 4

lcxg4

(Same as Data GATE 1)

The CLC Input Selection table correlates the generic input name to the actual signal for each CLC

module. The table column labeled ‘DyS Value' indicates the MUX selection code for the selected data
input. DyS is an abbreviation for the MUX select input codes, D1S through D4S, where 'y’ is the gate

number.

24.1.2 Data Gating

Outputs from the input multiplexers are directed to the desired logic function input through the
data gating stage. Each data gate can direct any combination of the four selected inputs.

The gate stage is more than just signal direction. The gate can be configured to direct each input

signal as inverted or noninverted data. Directed signals are ANDed together in each gate. The output

of each gate can be inverted before going on to the logic function stage.
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The gating is in essence a 1-to-4 input AND/NAND/OR/NOR gate. When every input is inverted and
the output is inverted, the gate is an AND of all enabled data inputs. When the inputs and output are
not inverted, the gate is an OR or all enabled inputs.

Table 24-1 summarizes the basic logic that can be obtained in gate 1 by using the gate logic select
bits. The table shows the logic of four input variables, but each gate can be configured to use less
than four. If no inputs are selected, the output will be ‘0" or ‘1’, depending on the gate output polarity
bit.

Table 24-1. Data Gating Logic

CLenslsy GyPoL

0x55 1 AND
0x55 0 NAND
OxAA 1 NOR
OxAA 0 OR
0x00 0 Logic ‘0’
0x00 1 Logic ‘1’

It is possible (but not recommended) to select both the true and negated values of an input. When
this is done, the gate output is ‘0’, regardless of the other inputs, but may emit logic glitches
(transient-induced pulses). If the output of the channel must be ‘0’ or ‘1’, the recommended method
is to set all gate bits to ‘0’ and use the gate polarity bit to set the desired level.

Data gating is configured with the logic gate select registers as follows:
+ Gate 1: CLCnGLSO
+ Gate 2: CLCnGLS1
+ Gate 3: CLCnGLS2
+ Gate 4: CLCnGLS3

Note: Register number suffixes are different than the gate numbers because other variations of this
module have multiple gate selections in the same register.

Data gating is indicated in the right side of Figure 24-2. Only one gate is shown in detail. The
remaining three gates are configured identically, except when the data enables correspond to the
enables for that gate.

24.1.3 Logic Function
There are eight available logic functions including:
* AND-OR
+ OR-XOR
+ AND
* SR Latch
+ D Flip-Flop with Set and Reset
+ D Flip-Flop with Reset
+ J-K Flip-Flop with Reset
+ Transparent Latch with Set and Reset
Logic functions are shown in the following diagram. Each logic function has four inputs and one

output. The four inputs are the four data gate outputs of the previous stage. The output is fed to the
inversion stage and from there to other peripherals, an output pin, and back to the CLC itself.
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Figure 24-3. Programmable Logic Functions

Rev. 100001228
9/13/2016

AND-OR OR-XOR
lexg1 — lexg1
lexg2 — lexg2
lexq lexq
lexg3 — lexg3
lexgd — lexg4
MODE<2:0> =000 MODE<2:0> =001
4-input AND S-R Latch
lexg1 lexg
S Qr— lexq
g2 lexg2
lexq
lexg3 loxg3
R
lexg4 Icxg4
MODE<2:0> =010 MODE<2:0> =011
1-Input D Flip-Flop with S and R 2-Input D Flip-Flop with R
lexg4 —
5 lexg4
lcxg2 — D Q— lexq D Q— lexq
lexg2
lexgt —p ¢ lxgt —>
lexg3 — lexg3 —
MODE<2:0> =100 MODE<2:0> =101
J-K Flip-Flop with R 1-Input Transparent Latch with S and R
lexg4 E——
lexg2 —J Q— lexq 5
lcxg2 — D Q— lexq
lexg! —p
lexgd — K
R
loxg3 —LE
lexg3 —
lexg1 —
MODE<2:0> =110 MODE<2:0> =111

24.1.4 Output Polarity
The last stage in the Configurable Logic Cell is the output polarity. Setting the POL bit inverts the
output signal from the logic stage. Changing the polarity while the interrupts are enabled will cause
an interrupt for the resulting output transition.

24.2 CLC Interrupts

An interrupt will be generated upon a change in the output value of the CLCx when the appropriate
interrupt enables are set. A rising edge detector and a falling edge detector are present in each CLC
for this purpose.

The CLCxIF bit of the associated PIR register will be set when either edge detector is triggered and
its associated enable bit is set. The INTP bit enables rising edge interrupts and the INTN bit enables
falling edge interrupts.
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To fully enable the interrupt, set the following bits:
« The CLCxIE bit of the respective PIE register

+ The INTP bit (for a rising edge detection)

« The INTN bit (for a falling edge detection)

If priority interrupts are not used:

1. Clear the IPEN bit of the INTCON register.

2. Setthe GIE bit of the INTCON register.

3. Setthe GIEL bit of the INTCON register.

If the CLC is a high-priority interrupt:

1. Setthe IPEN bit of the INTCON register.

2. Setthe CLCxIP bit of the respective IPR register.
3. Set the GIEH bit of the INTCON register.

If the CLC is a low-priority interrupt:

1. Setthe IPEN bit of the INTCON register.

2. Clear the CLCxIP bit of the respective IPR register.
3. Set the GIEL bit of the INTCON register.

The CLCxIF bit of the respective PIR register must be cleared in software as part of the interrupt
service. If another edge is detected while this flag is being cleared, the flag will still be set at the end
of the sequence.

24.3 Effects of a Reset

The CLCNCON register is cleared to ‘0’ as the result of a Reset. All other selection and gating values
remain unchanged.

24.4 Output Mirror Copies

Mirror copies of all CLCxOUT bits are contained in the CLCDATA register. Reading this register reads
the outputs of all CLCs simultaneously. This prevents any reading skew introduced by testing or
reading the OUT bits in the individual CLCnCON registers.

24.5 Operation During Sleep

The CLC module operates independently from the system clock and will continue to run during
Sleep, provided that the input sources selected remain Active.

The HFINTOSC remains Active during Sleep when the CLC module is enabled and the HFINTOSC is
selected as an input source, regardless of the system clock source selected.

In other words, if the HFINTOSC is simultaneously selected as both the system clock and as a CLC
input source then, when the CLC is enabled, the CPU will go Idle during Sleep, but the CLC will
continue to operate and the HFINTOSC will remain Active. This will have a direct effect on the Sleep
mode current.

24.6 CLC Setup Steps
These steps need to be followed when setting up the CLC:
Disable the CLC by clearing the EN bit.
Select the desired inputs using the CLCnSELO through CLCNSELS3 registers.
Clear any ANSEL bits associated with CLC input pins.

W~

Set all TRIS bits associated with inputs. However, a CLC input will also operate if the pin is
configured as an output, in which case the TRIS bits must be cleared.
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5. Enable the chosen inputs through the four gates using the CLCnGLSO through CLCnGLS3
registers.

Select the gate output polarities with the GyPOL bits.
Select the desired logic function with the MODE bits.

Select the desired polarity of the logic output with the POL bit (this step may be combined with
the previous gate output polarity step).

9. If driving a device pin, configure the associated pin PPS control register and also clear the TRIS bit
corresponding to that output.

10. Configure the interrupts (optional). See the CLC Interrupts section.
11. Enable the CLC by setting the EN bit.

24.7 Register Overlay

All CLCs in this device share the same set of registers. Only one CLC instance is accessible at a
time. The value in the CLCSELECT register is one less than the selected CLC instance. For example, a
CLCSELECT value of ‘0" selects CLC1.

24.8 Register Definitions: Configurable Logic Cell
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24.8.1 CLCSELECT
Name: CLCSELECT
Address: 0x1A4
CLC Instance Selection Register

Selects which CLC instance is accessed by the CLC registers

Bit 7 6 5 4 3 2 1 0
| | | | | | SLCT[2:0] |
Access R/W R/W R/W
Reset 0 0 0

Bits 2:0 - SLCT[2:0] CLC instance selection

n Shared CLC registers of instance n+1 are selected for read and write operations
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24.8.2 CLCnCON

Name: CLCnCON
Address: O0x1A5

Configurable Logic Cell Control Register

Bit 7 6 5 4 3 2 1 0
| EN | | our | INTP | INTN | MODE[2:0] |
Access R/W R R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0

Bit 7 - EN CLC Enable

Value Description
1 Configurable logic cell is enabled and mixing signals
0 Configurable logic cell is disabled and has logic zero output

Bit 5 - OUT Logic cell output data, after LCPOL. Sampled from CLCxOUT.

Bit 4 - INTP Configurable Logic Cell Positive Edge Going Interrupt Enable

Value Description
1 CLCxIF will be set when a rising edge occurs on CLCxOUT
0 Rising edges on CLCxOUT have no effect on CLCxIF

Bit 3 - INTN Configurable Logic Cell Negative Edge Going Interrupt Enable
VEINS Description
1 CLCxIF will be set when a falling edge occurs on CLCXOUT
0 Falling edges on CLCxOUT have no effect on CLCxIF

Bits 2:0 - MODE[2:0] Configurable Logic Cell Functional Mode Selection

Value Description

111 Cellis 1-input transparent latch with Set and Reset
110 Cell is J-K flip-flop with Reset

101 Cell is 2-input D flip-flop with Reset

100 Cell is 1-input D flip-flop with Set and Reset

011 Cell is SR latch

010 Cell is 4-input AND

001 Cell is OR-XOR

000 Cell is AND-OR
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24.8.3 CLCnPOL

Name: CLCnPOL
Address: O0x1A6

Signal Polarity Control Register

Bit 7 6 5 4 3 2 1 0
| POL | | | G4aPOL | G3POL | GzPOL [ G1POL |
Access R/W R/W R/IW R/W R/W
Reset 0 X X X X
Bit 7 - POL CLCxOUT Output Polarity Control
1 The output of the logic cell is inverted
0 The output of the logic cell is not inverted

Bits 0, 1, 2, 3 - GyPOL Gate Output Polarity Control
Reset States: POR/BOR = xxxx

All Other Resets = uuuu
Value Description

1 The gate output is inverted when applied to the logic cell
0 The output of the gate is not inverted
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24.8.4 CLCnSELO

Name:
Address:

CLCnSELO
Ox1A7

Generic CLCn Data 1 Select Register

Bit 7 6 5 4 3 2 1 0
| | | D1S[5:0]
Access R/W R/W R/W R/W R/W R/W
Reset X X X X X X

Bits 5:0 - D1S[5:0] CLCn Data Input Selection

Table 24-2. CLC Input Selection

DyS (cont.) Input Source (cont.) DyS (cont.) Input Source (cont.)

[0]1 0000 0000
[11 0000 0001
[2] 0000 0010
[31 0000 0011
[4]1 0000 0100
[5]1 0000 0101
[6] 0000 0110
[710000 0111
[8]1 0000 1000
[91 0000 1001
[10] 0000 1010
[11] 0000 1011
[12] 0000 1100
[13]1 0000 1101
[14] 0000 1110
[15]1 0000 1111

Note:

1. Requests clock.

CLCINOPPS
CLCIN1TPPS
CLCIN2PPS
CLCIN3PPS
FOSC
HFINTOSC®"
LFINTOSC™
MFINTOSC™
MFINTOSC (31.25 kHz)™
SFINTOSC (1 MHz)™
SOscm
EXTOSC™
ADCRC™
10C
IOCV (Virtual Ports)
CLKR

Reset States: POR/BOR = xxxxxx
All Other Resets = uuuuuu
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[16] 0001
[17] 0001
[18] 0001
[19]1 0001
[20] 0001
[21]1 0001
[22] 0001
[23]1 0001
[24] 0001
[25]1 0001
[26] 0001
[27]1 0001
[28] 0001
[29] 0001
[30]1 0001
[3110001

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

TMRO
TMR1
TMR2
TMR4
TU16A
TU16B
CCP1
CCP2
PWM1S1P1_OUT
PWM1S1P2_OUT
PWM2S1P1_OUT
PWM2S1P2_OUT
CWG1A
CWG1B
CLC1
CLC2

[32] 0010
[33]1 0010
[34]1 0010
[35] 0010
[36] 0010
[37]1 0010
[38] 0010
[39] 0010
[40] 0010
[41] 0010
[42] 0010
[43] 0010
[44] 0010
[45] 0010
[46] 0010
[47] 0010

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

CLC3
CLC4
U1TX
u2TXx
SPI1_SDO
SPI1_SCK
SPI1_SS
[2C1_SCL
I2C1_SDA
13C1_SCL
I13C1_SDA
13C2_SCL
13C2_SDA
HLVD_OUT
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24.8.5 CLCnSEL1

Name: CLCnSEL1
Address: O0x1AS8

Generic CLCn Data 1 Select Register

Bit 7 6 5 4 3 2 1 0
| | | D2S[5:0] |
Access R/W R/W R/W R/W R/W R/W
Reset X X X X X X

Bits 5:0 - D2S[5:0] CLCn Data2 Input Selection
Reset States: POR/BOR = xxxxxx
All Other Resets = uuuuuu

Value Description

n Refer to the CLC Input Selection table for input selections
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24.8.6 CLCnSEL2

Name: CLCnSEL2
Address: 0x1A9

Generic CLCn Data 1 Select Register

Bit 7 6 5 4 3 2 1 0
| | | D3S[5:0] |
Access R/W R/W R/W R/W R/W R/W
Reset X X X X X X

Bits 5:0 - D3S[5:0] CLCn Data3 Input Selection
Reset States: POR/BOR = xxxxxx
All Other Resets = uuuuuu

Value Description

n Refer to the CLC Input Selection table for input selections
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24.8.7 CLCnSEL3

Name: CLCnSEL3
Address: Ox1AA

Generic CLCn Data 4 Select Register

Bit 7 6 5 4 3 2 1 0
| | | D45S[5:0] |
Access R/W R/W R/W R/W R/W R/W
Reset X X X X X X

Bits 5:0 - D4S[5:0] CLCn Data4 Input Selection
Reset States: POR/BOR = xxxxxx
All Other Resets = uuuuuu

Value Description

n Refer to the CLC Input Selection table for input selections
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24.8.8 CLCnGLSO

Name: CLCNnGLSO
Address: Ox1AB

CLCn Gate1 Logic Select Register

Bit 7 6 5 4 3 2 1 0
| GIDAT | GID4N | GID3T | GID3N | GI1D2T | GID2N | GI1D1T | GIDIN |
Access RIW R/W R/W R/W R/W R/W R/W R/W
Reset X X X X X X X X

Bits 1, 3, 5, 7 - G1DyT dyT: Gate1 Data 'y’ True (noninverted)
Reset States: POR/BOR = xxxx
All Other Resets = uuuu

Value Description

1 dyT is gated into g1
0 dyT is not gated into g1

Bits 0, 2, 4, 6 - GIDyN dyN: Gate1 Data 'y’ Negated (inverted)
Reset States: POR/BOR = xxxx
All Other Resets = uuuu

Value Description

1 dyN is gated into g1
0 dyN is not gated into g1
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24.8.9 CLCnGLS1

Name: CLCNGLS1
Address: O0x1AC

CLCn Gate2 Logic Select Register

Bit 7 6 5 4 3 2 1 0
| G2D4T | G2D4N | G2D3T | G2D3N | G2D2T | G2D2N | G2D1T | G2DIN |
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset X X X X X X X X

Bits 1, 3, 5, 7 - G2DyT dyT: Gate2 Data 'y’ True (noninverted)
Reset States: POR/BOR = xxxx
All Other Resets = uuuu

Value Description

1 dyT is gated into g2
0 dyT is not gated into g2

Bits 0, 2, 4, 6 - G2DyN dyN: Gate2 Data 'y’ Negated (inverted)
Reset States: POR/BOR = xxxx
All Other Resets = uuuu

Value Description

1 dyN is gated into g2
0 dyN is not gated into g2
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24.8.10 CLCnGLS2

Name: CLCNnGLS2
Address: O0x1AD

CLCn Gate3 Logic Select Register

Bit 7 6 5 4 3 2 1 0
| G3D4T | G3D4N | G3D3T | G3D3N | G3D2T | G3D2N | G3D1T | G3DIN |
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset X X X X X X X X

Bits 1, 3, 5, 7 - G3DyT dyT: Gate3 Data 'y’ True (noninverted)
Reset States: POR/BOR = xxxx
All Other Resets = uuuu

Value Description

1 dyT is gated into g3
0 dyT is not gated into g3

Bits 0, 2, 4, 6 - G3DyN dyN: Gate3 Data 'y’ Negated (inverted)
Reset States: POR/BOR = xxxx
All Other Resets = uuuu

Value Description

1 dyN is gated into g3
0 dyN is not gated into g3
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24.8.11 CLCnGLS3

Name: CLCNnGLS3
Address: Ox1AE

CLCn Gate4 Logic Select Register

Bit 7 6 5 4 3 2 1 0
| GADAT | G4D4AN | G4D3T | G4D3N | G4D2T | G4D2N | G4D1T | G4DIN |
Access RIW R/W R/W R/W R/W R/W R/W R/W
Reset X X X X X X X X

Bits 1, 3, 5, 7 - G4DyT dyT: Gate4 Data 'y’ True (noninverted)
Reset States: POR/BOR = xxxx
All Other Resets = uuuu

Value Description

1 dyT is gated into g4
0 dyT is not gated into g4

Bits 0, 2, 4, 6 - G4ADyN dyN: Gate4 Data 'y’ Negated (inverted)
Reset States: POR/BOR = xxxx
All Other Resets = uuuu

Value Description

1 dyN is gated into g4
0 dyN is not gated into g4
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24.8.12 CLCDATA
Name: CLCDATA
Address: 0x1A3
CLC Data Output Register
Mirror copy of CLC outputs

Bit 7 6 5 4 3 2 1 0

| | | | CLC40UT | CLC30UT | CLC20UT | CLCTOUT |
Access R/W R/W R/W R/W
Reset 0 0 0 0

Bits 0, 1, 2, 3 - CLCxOUT Mirror copy of CLCx_out

Value Description
1 CLCx_outis 1
0 CLCx_outis 0
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24.9

0x01A3
0x01A4
0x01A5
0x01A6
0x01A7
0x01A8
0x01A9
0x01AA
0x01AB
0x01AC
0x01AD
O0x01AE
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Register Summary - CLC Control

I S T B T N O N S N

CLCDATA
CLCSELECT
CLCnCON
CLCnPOL
CLCNnSELO
CLCNnSEL1
CLCnSEL2
CLCNnSEL3
CLCNGLSO
CLCNGLS1
CLCNGLS2
CLCNGLS3

7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0

EN
POL

G1D4T
G2D4T
G3DA4T
G4DAT

G1D4N
G2D4N
G3D4N
G4D4N

out

G1D3T
G2D3T
G3D3T
G4D3T

INTP

G1D3N
G2D3N
G3D3N
G4D3N

3 2 1
CLC4OUT  CLC30UT = CLC20UT
SLCT[2:0]
INTN MODE[2:0]
G4POL G3POL G2POL
D1S[5:0]
D2S[5:0]
D3S[5:0]
D4S[5:0]
G1D2T G1D2N G1D1T
G2D2T G2D2N G2D1T
G3D2T G3D2N G3D1T
GA4D2T G4D2N G4D1T

CLc1ouT

G1POL

G1D1N
G2D1N
G3D1N
G4D1N
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25.

25.1

CLKREF - Reference Clock Output Module

The reference clock output module provides the ability to send a clock signal to the clock reference
output pin (CLKR). The reference clock output can be routed internally as an input signal for other
peripherals, such as the timers and CLCs.

The reference clock output module has the following features:

+ Selectable clock source using the CLKRCLK register
+ Programmable clock divider
+ Selectable duty cycle

The figure below shows the simplified block diagram of the clock reference module.
Figure 25-1. Clock Reference Block Diagram

Rev. 10-0002618
112312019

DIV
: EN >: Counter Reset Q\
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50 111
See kel DC RxyPPS
CLKRCLK 5 4 110
Register ] 2 1321 101
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* P u cle
o8 11 Y=y
[0}
8 o10
[0)
©l2 . gg1 To Peripherals
¢ 000
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Figure 25-2. Clock Reference Timing
ks
R
CLKRCLK
EN J
CLKR Output
DIV =001
oc i0 |+ I e B
Duty Cycle
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CLKR Output - CLKRCLK/2
DIV =001
oc o ot ] ] ] ]
Duty Cycle

(25%)

Clock Source
The clock source of the reference clock peripheral is selected with the CLK bits.
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25.1.1 Clock Synchronization
The CLKR output signal is ensured to be glitch-free when the EN bit is set to start the module and
enable the CLKR output. When the reference clock output is disabled, the output signal will be
disabled immediately.

25.2 Programmable Clock Divider

The module takes the clock input and divides it based on the value of the DIV bits.
The following configurations are available:

+ Base clock frequency value

+ Base clock frequency divided by 2

+ Base clock frequency divided by 4

+ Base clock frequency divided by 8

+ Base clock frequency divided by 16
+ Base clock frequency divided by 32
+ Base clock frequency divided by 64
+ Base clock frequency divided by 128

25.3 Selectable Duty Cycle

The DC bits are used to modify the duty cycle of the output clock. A duty cycle of 0%, 25%, 50%, or
75% can be selected for all clock rates when the DIV value is not 0b000. When DIV = 0b000, the duty
cycle defaults to 50% for all values of DC except 0000, in which case the duty cycle is 0% (constant
low output).

Important: The DC value at Reset is 10. This makes the default duty cycle 50% and not 0%.

Important: Clock dividers and clock duty cycles can be changed while the module is
enabled but doing so may cause glitches to occur on the output. To avoid possible glitches,
clock dividers and clock duty cycles will be changed only when the EN bit is clear.

25.4 Operation in Sleep Mode
The reference clock module continues to operate and provide a signal output in Sleep for all clock
source selections except Fosc (CLK = 0).

25.5 Register Definitions: Reference Clock

Long bit name prefixes for the Reference Clock peripherals are shown in the following table. Refer
to the “Long Bit Names" section in the “Register and Bit Naming Conventions” chapter for more
information.

Table 25-1. Reference Clock Long Bit Name Prefixes

Peripheral Bit Name Prefix

CLKR CLKR
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25.5.1 CLKRCON

Name: CLKRCON
Address: 0x100

Reference Clock Control Register

Bit 7 6 5 4 3 2 1 0
| EN | | | DC[1:0] | DIV[2:0] |
Access R/W R/W R/W R/W R/W R/W
Reset 0 1 0 0 0 0

Bit 7 - EN Reference Clock Module Enable

1 Reference clock module enabled
0 Reference clock module is disabled

Bits 4:3 - DC[1:0] Reference Clock Duty Cycle(V

11 Clock outputs duty cycle of 75%
10 Clock outputs duty cycle of 50%
01 Clock outputs duty cycle of 25%
00 Clock outputs duty cycle of 0%

Bits 2:0 - DIV[2:0] Reference Clock Divider

111 Base clock value divided by 128
110 Base clock value divided by 64
101 Base clock value divided by 32
100 Base clock value divided by 16
011 Base clock value divided by 8
010 Base clock value divided by 4
001 Base clock value divided by 2
000 Base clock value

Note:

1. Bits are valid for DIV 2 001. For DIV = 000, duty cycle is fixed at 50%.
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25.5.2 CLKRCLK

Name: CLKRCLK
Address: 0x101

Clock Reference Clock Selection Register

Bit 7 6 5 4 3 2 1 0
| | | | | CLK[3:0] |
Access R/W R/W R/W R/W
Reset 0 0 0 0

Bits 3:0 - CLK[3:0] CLKR Clock Selection

Table 25-2. Clock Reference Module Clock Sources

CLK Clock Source

1111 - 1011 Reserved
1010 CLC4_ouT
1001 CLC3_ouT
1000 CLC2_ouT
0111 CcLC1_ouTt
0110 EXTOSC
0101 SOSC
0100 MFINTOSC (32 kHz)
0011 MFINTOSC (500 kHz)
0010 LFINTOSC
0001 HFINTOSC
0000 Fosc
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25.6 Register Summary - Reference CLK

Chddress|— Name —Loitposl 7|6 | 5 | 4 | 5 | 2 | 1 %
0x0100 CLKRCON 7:0 EN DC[1:0] DIV[2:0]
0x0101 CLKRCLK 7:0 CLK[3:0]
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26. TMRO - Timer0 Module
The Timer0 module has the following features:
+ 8-bit timer with programmable period
« 16-bit timer
+ Selectable clock sources
+ Synchronous and asynchronous operation
« Programmable prescaler (Independent of Watchdog Timer)
+ Programmable postscaler
* Interrupt on match or overflow
+ Output on I/O pin (via PPS) or to other peripherals
+ Operation during Sleep

Figure 26-1. TimerO Block Diagram
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26.1 Timer0 Operation

Timer0 can operate as either an 8-bit or 16-bit timer. The mode is selected with the MD16 bit.

26.1.1 8-Bit Mode
In this mode, Timer0 increments on the rising edge of the selected clock source. A prescaler on the

clock input gives several prescale options (see the prescaler control bits, CKPS). In this mode, as
shown in Figure 26-1, a buffered version of TMROH is maintained.

This is compared with the value of TMROL on each cycle of the selected clock source. When the two
values match, the following events occur:

+ TMROL is reset
+ The contents of TMROH are copied to the TMROH buffer for next comparison

26.1.2 16-Bit Mode
In this mode, Timer0 increments on the rising edge of the selected clock source. A prescaler on
the clock input gives several prescale options (see the prescaler control bits, CKPS). In this mode,
TMROH:TMROL form the 16-bit timer value. As shown in Figure 26-1, reads and writes of the TMROH
register are buffered. The TMROH register is updated with the contents of the high byte of Timer0
when the TMROL register is read. Similarly, writing the TMROL register causes a transfer of the
TMROH register value to the TimerO high byte.

This buffering allows all 16 bits of TimerO0 to be read and written at the same time. TimerO rolls
over to 0x0000 on incrementing past 0xFFFE. This makes the timer free-running. While actively
operating in 16-bit mode, the Timer0 value can be read but not written.

26.2 Clock Selection

Timer0 has several options for clock source selections, the option to operate synchronously/
asynchronously and an available programmable prescaler. The CS bits are used to select the clock
source for TimerO.

26.2.1 Synchronous Mode

When the ASYNC bit is clear, TimerO0 clock is synchronized to the system clock (Fosc/4). When
operating in Synchronous mode, TimerO0 clock frequency cannot exceed Fosc/4. During Sleep mode,
the system clock is not available and Timer0 cannot operate.

26.2.2 Asynchronous Mode

When the ASYNC bit is set, Timer0 increments with each rising edge of the input source (or output of
the prescaler, if used). Asynchronous mode allows Timer0Q to continue operation during Sleep mode
provided the selected clock source operates during Sleep.

26.2.3 Programmable Prescaler

Timer0 has 16 programmable input prescaler options ranging from 1:1 to 1:32768. The prescaler
values are selected using the CKPS bits. The prescaler counter is not directly readable or writable.
The prescaler counter is cleared on the following events:

« Awrite to the TMROL register
+ Awrite to either the TOCONO or TOCON1 registers
* Any device Reset

26.2.4 Programmable Postscaler

Timer0 has 16 programmable output postscaler options ranging from 1:1 to 1:16. The postscaler
values are selected using the OUTPS bits. The postscaler divides the output of Timer0 by the
selected ratio. The postscaler counter is not directly readable or writable. The postscaler counter
is cleared on the following events:
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« Awrite to the TMROL register
« Awrite to either the TOCONO or TOCON1 registers
* Any device Reset

26.3 Timer0 Output and Interrupt

26.3.1 Timer0 Output

TMRO_out toggles on every match between TMROL and TMROH in 8-bit mode or when
TMROH:TMROL rolls over in 16-bit mode. If the output postscaler is used, the output is scaled by
the ratio selected. The Timer0 output can be routed to an I/0 pin via the RxyPPS output selection
register or internally to a number of Core Independent Peripherals. The Timer0 output can be
monitored through software via the OUT output bit.

26.3.2 TimerO0 Interrupt

The TimerO0 Interrupt Flag (TMROIF) bit is set when the TMRO_out toggles. If the Timer0 interrupt is
enabled (TMROIE), the CPU will be interrupted when the TMROIF bit is set. When the postscaler bits
(TOOUTPS) are set to 1:1 operation (no division), the TOIF flag bit will be set with every TMRO match
or rollover. In general, the TMROIF flag bit will be set every TOOUTPS +1 matches or rollovers.

26.3.3 Timer0 Example

Timer0 Configuration:

+ Timer0 mode = 16-bit

+ Clock Source = Fosc/4 (250 kHz)
+ Synchronous operation

* Prescaler =1:1

* Postscaler = 1:2 (TOOUTPS = 1)

In this case, the TMRO_out toggles every two rollovers of TMROH:TMROL.
i.e., (OXFFFF)*2%(1/250 kHz) = 524.28 ms

26.4 Operation During Sleep

When operating synchronously, Timer0 will halt when the device enters Sleep mode. When
operating asynchronously and the selected clock source is active, Timer0 will continue to increment
and wake the device from Sleep mode if the Timer0 interrupt is enabled.

26.5 Register Definitions: Timer0 Control
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26.5.1 TOCONO

Name: TOCONO
Address: 0x105

Timer0Q Control Register 0

Bit 7 6 5 4 3 2 1 0
| EN | | our | wMmD16 | OUTPS[3:0] |
Access R/W R R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0

Bit 7 - EN TMRO Enable

1 The module is enabled and operating
0 The module is disabled

Bit 5 - OUT TMRO Output

Bit 4 - MD16 16-Bit Timer Operation Select

1 TMRO is a 16-bit timer
0 TMRO is an 8-bit timer

Bits 3:0 - OUTPS[3:0] TMRO Output Postscaler (Divider) Select

1111 1:16 Postscaler

1110 1:15 Postscaler
1101 1:14 Postscaler
1100 1:13 Postscaler
1011 1:12 Postscaler
1010 1:11 Postscaler
1001 1:10 Postscaler
1000 1:9 Postscaler
0111 1:8 Postscaler
0110 1.7 Postscaler
0101 1:6 Postscaler
0100 1:5 Postscaler
0011 1:4 Postscaler
0010 1:3 Postscaler
0001 1:2 Postscaler
0000 1:1 Postscaler
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26.5.2 TOCON1

Name:
Address:

TOCON1

0x106

Timer0O Control Register 1

Bit

Access R/W

7 6 5 4 3 2 1 0
| CS[2:0] | ASYNC | CKPS[3:0] |
R/W RIW R/W RIW R/W RIW RIW
0 0 0 0 0 0 0 0

Reset

Bits 7:5 - CS[2:0] Timer0 Clock Source Select

111
110
101
100
011
010
001
000

Bit 4 - ASYNC TMRO Input Asynchronization Enable

The input to the TMRO counter is not synchronized to system clocks
The input to the TMRO counter is synchronized to Fosc/4

1
0

Bits 3:0 - CKPS[3:0] Prescaler Rate Select

1111
1110
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000

1:32768
1:16384
1:8192
1:4096
1:2048
1:1024
1:512
1:256
1:128
1:64
1:32
1:16

1:8

1:4

1:2

1:1
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CLC1_OuT

SOSC
MFINTOSC (500 kHz)

LFINTOSC

HFINTOSC
Fosc/4

Pin selected by TOCKIPPS (Inverted)
Pin selected by TOCKIPPS (Noninverted)
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26.5.3 TMROH

Name: TMROH
Address: 0x104

TimerQ Period/Count High Register

Bit 7 6 5 4 3 2 1 0
| TMROH[7:0] |
Access  R/W R/W RIW R/W RIW R/W R/W R/W
Reset 1 1 1 1 1 1 1 1

Bits 7:0 - TMROH[7:0] TMRO Most Significant Counter

0 to 255 MD16=0 8-bit Timer0 Period Value. TMROL continues counting from 0 when this value is reached.
0 to 255 MD16=1 16-bit Timer0 Most Significant Byte
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26.5.4 TMROL

Name: TMROL
Address: 0x103

TimerQ Period/Count Low Register

Bit 7 6 5 4 3 2 1 0
| TMROL[7:0] |
Access  R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 - TMROL[7:0] TMRO Least Significant Counter

Value Condition Description
0 to 255 MD16=0 8-bit Timer0 Counter bits
0 to 255 MD16=1 16-bit Timer0 Least Significant Byte
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26.6 Register Summary - Timer0O

I S T T N S N S

0x0103 TMROL TMROL[7:0]

0x0104 TMROH 7:0 TMROH[7:0]

0x0105 TOCONO 7:0 EN out MD16 OUTPS[3:0]
0x0106 TOCON1 7:0 CS[2:0] ASYNC CKPS[3:0]

393

@ MICROCHIP



27. TMR1 - Timerl Module with Gate Control

The Timer1 module is a 16-bit timer/counter with the following features:

16-bit timer/counter register pair (TMRxH:TMRXxL)
Programmable internal or external clock source

2-bit prescaler

Clock source for optional comparator synchronization

Multiple Timer1 gate (count enable) sources
Interrupt-on-overflow

Wake-up on overflow (external clock, Asynchronous mode only)
16-bit read/write operation

Time base for the capture/compare function with the CCP modules
Special event trigger (with CCP)

Selectable gate source polarity

Gate Toggle mode

Gate Single Pulse mode

Gate value status

Gate event interrupt

Important: References to the module Timer1 apply to all the odd numbered timers on

this device.
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Figure 27-1. Timer1 Block Diagram

TxGATE

GSPM

NOTE (5) Single Pulse D Q— GVAL
Acq. Control
|_ = Ql—+
D Q
GPOL A GGO/DONE
-] o ¢ Interrupt
oN ® - PU setbit
GT™M det TMRXGIF
o—
— GE
set flag bit
TMRXIF L on
EN _
- q TMRX® / » To Comparators (6)
x_overflow i
= TMRxH | TMRXL <1_ o bl 0 Synchronized Clock Input

TXCLK

A

Prescaler )
1248 Synchronize ]
> det
Yoo L
Fosc/2
CKPS Internal Sleep
Clock Input

Notes:

This signal comes from the pin selected by Timer1 PPS register.
TMRXx register increments on rising edge.

Synchronize does not operate while in Sleep.

See TxCLK for clock source selections.

See TXGATE for gate source selections.

oA WwWwN -

Synchronized comparator output must not be used in conjunction with synchronized input clock.

27.1 Timerl Operation

The Timer1 module is a 16-bit incrementing counter accessed through the TMRx register. Writes to
TMRx directly update the counter. When used with an internal clock source, the module is a timer
that increments on every instruction cycle. When used with an external clock source, the module can
be used as either a timer or counter and increments on every selected edge of the external source.

Timer1 is enabled by configuring the ON and GE bits. Table 27-1 shows the possible Timer1 enable
selections.
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Table 27-1. Timerl Enable Selections

1 1 Count enabled
1 0 Always on

0 1 Off

0 0 Off

27.2 Clock Source Selection

The CS bits select the clock source for Timer1. These bits allow the selection of several possible
synchronous and asynchronous clock sources.

27.2.1 Internal Clock Source
When the internal clock source is selected, the TMRx register will increment on multiples of Fosc as
determined by the Timer1 prescaler.

When the Fgsc internal clock source is selected, the TMRx register value will increment by four
counts every instruction clock cycle. Due to this condition, a two LSB error in resolution will occur
when reading the TMRx value. To utilize the full resolution of Timer1, an asynchronous input signal
must be used to gate the Timer1 clock input.

Important: In Counter mode, a falling edge must be registered by the counter prior to the
first incrementing rising edge after any one or more of the following conditions:

* Timer1 enabled after POR
*  Write to TMRxH or TMRXL
* Timer1 is disabled

« Timer1 is disabled (ON = 0) when TxCKl is high, then Timer1 is enabled (ON = 1) when
TxCKI is low. Refer to the figure below.

Figure 27-2. Timerl Incrementing Edge

TxCKI=1 —
When TMRXx
Enabled

TxCKI=0
When TMRXx
Enabled L

Notes:
1. Arrows indicate counter increments.

2. In Counter mode, a falling edge must be registered by the counter prior to the first incrementing
rising edge of the clock.

27.2.2 External Clock Source
When the external clock source is selected, the TMRx module may work as a timer or a counter.
When enabled to count, Timer1 is incremented on the rising edge of the external clock input of
the TXCKIPPS pin. This external clock source can be synchronized to the system clock or it can run
asynchronously.
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27.3 Timerl Prescaler

Timer1 has four prescaler options allowing 1, 2, 4 or 8 divisions of the clock input. The CKPS bits
control the prescale counter. The prescale counter is not directly readable or writable; however, the
prescaler counter is cleared upon a write to TMRXx.

27.4 Secondary Oscillator

A secondary low-power 32.768 kHz oscillator circuit is built-in between pins SOSCI (input) and SOSCO
(amplifier output). This internal circuit is to be used in conjunction with an external 32.768 kHz
crystal. The secondary oscillator is not dedicated only to Timer1; it can also be used by other
modules.

The oscillator circuit is enabled by setting the SOSCEN bit of the OSCEN register. This can be used as
one of the Timer1 clock sources selected with the CS bits. The oscillator will continue to run during
Sleep.

Important: The oscillator requires a start-up and stabilization time before use. Thus, the
SOSCEN bit of the OSCEN register must be set and a suitable delay observed prior to
enabling Timer1. A software check can be performed to confirm if the secondary oscillator
is enabled and ready to use. This is done by polling the secondary oscillator ready Status
bit. Refer to the “OSC - Oscillator Module (with Fail-Safe Clock Monitor)” chapter for
more details.

27.5 Timerl Operation in Asynchronous Counter Mode

When the SYNC Control bit is set, the external clock input is not synchronized. The timer increments
asynchronously to the internal phase clocks. If the external clock source is selected, then the timer
will continue to run during Sleep and can generate an interrupt on overflow, which will wake up the
processor. However, special precautions in software are needed to read/write the timer.

Important: When switching from synchronous to asynchronous operation, it is possible
to skip an increment. When switching from asynchronous to synchronous operation, it is
possible to produce an additional increment.

27.5.1 Reading and Writing TMRXx in Asynchronous Counter Mode

Reading TMRxH or TMRxL while the timer is running from an external asynchronous clock will
ensure a valid read (taken care of in hardware). However, the user must keep in mind that reading
the 16-bit timer in two 8-bit values itself poses certain problems, since there may be a carry-out of
TMRXL to TMRxH between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A
write contention may occur by writing to the timer registers, while the register is incrementing. This
may produce an unpredictable value in the TMRxH:TMRXL register pair.

27.6 Timerl 16-Bit Read/Write Mode

Timer1 can be configured to read and write all 16 bits of data to and from the 8-bit TMRxL and
TMRxH registers, simultaneously. The 16-bit read and write operations are enabled by setting the
RD16 bit. To accomplish this function, the TMRxH register value is mapped to a buffer register called
the TMRxH buffer register. While in 16-bit mode, the TMRxH register is not directly readable or
writable and all read and write operations take place through the use of this TMRxH buffer register.

When a read from the TMRXL register is requested, the value of the TMRxH register is
simultaneously loaded into the TMRxH buffer register. When a read from the TMRxH register is
requested, the value is provided from the TMRxH buffer register instead. This provides the user with
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the ability to accurately read all 16 bits of the Timer1 value from a single instance in time (refer

to Figure 27-3 for more details). In contrast, when not in 16-bit mode, the user must read each
register separately and determine if the values have become invalid due to a rollover that may have
occurred between the read operations.

When a write request of the TMRxL register is requested, the TMRxH buffer register is
simultaneously updated with the contents of the TMRxH register. The value of TMRxH must be
preloaded into the TMRxH buffer register prior to the write request for the TMRXL register. This
provides the user with the ability to write all 16 bits to the TMRx register at the same time. Any
requests to write to TMRxH directly does not clear the Timer1 prescaler value. The prescaler value is
only cleared through write requests to the TMRXL register.

Figure 27-3. Timerl 16-Bit Read/Write Mode Block Diagram

From
TMRXx
Circuitr
¥ y
TMRX ¢ Set TMRXIF
TMRxL High Byte on Overflow
AN 8
Read TMRxL
s Write TMRXL
N8
TMRxH
8
V 8
< £ > Internal Data Bus

27.7 Timerl Gate

Timer1 can be configured to count freely or the count can be enabled and disabled using Timer1
gate circuitry. This is also referred to as Timer1 gate enable. Timer1 gate can also be driven by
multiple selectable sources.

27.7.1 Timerl Gate Enable

The Timer1 Gate Enable mode is enabled by setting the GE bit. The polarity of the Timer1 Gate
Enable mode is configured using the GPOL bit.

When Timer1 Gate Enable mode is enabled, Timer1 will increment on the rising edge of the Timer1

clock source. When Timer1 Gate signal is inactive, the timer will not increment and hold the current
count. Enable mode is disabled, no incrementing will occur and Timer1 will hold the current count.

See Figure 27-4 for timing details.

Table 27-2. Timerl Gate Enable Selections

N 1 Counts
Holds Count
Holds Count

o = O

P 1
™ 0
™ 0 Counts
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Figure 27-4. Timerl Gate Enable Mode

TMRXGE

TXGPOL

TXGVAL ! :

Timer N N+1X N +2 X N+3X N+4

27.7.2 Timerl Gate Source Selection

The gate source for Timer1 is selected using the GSS bits. The polarity selection for the gate source is
controlled by the GPOL bit.

Any of the above mentioned signals can be used to trigger the gate. The output of the CMPx
can be synchronized to the Timer1 clock or left asynchronous. For more information refer to the
“Comparator Output Synchronization” section.

27.7.3 Timerl Gate Toggle Mode
When Timer1 Gate Toggle mode is enabled, it is possible to measure the full-cycle length of a Timer1
Gate signal, as opposed to the duration of a single-level pulse. The Timer1 gate source is routed
through a flip-flop that changes state on every incrementing edge of the signal. See the figure below
for timing details.

Timer1 Gate Toggle mode is enabled by setting the GTM bit. When the GTM bit is cleared, the
flip-flop is cleared and held clear. This is necessary to control which edge is measured.

Important: Enabling Toggle mode at the same time as changing the gate polarity may
result in indeterminate operation.
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Figure 27-5. Timerl Gate Toggle Mode

TMRxGE
TxGPOL

TXGTM
TXTXG_IN

TXCKI ! :

-

Timerl N (N+1XN+2XN+3X N+4 XN+ 5XN+6XN+ 7 N+8

TXGVAL |

27.7.4 Timerl Gate Single Pulse Mode

When Timer1 Gate Single Pulse mode is enabled, it is possible to capture a single pulse gate event.
Timer1 Gate Single Pulse mode is first enabled by setting the GSPM bit. Next, the GGO/DONE must
be set. The Timer1 will be fully enabled on the next incrementing edge. On the next trailing edge of
the pulse, the GGO/DONE bit will automatically be cleared. No other gate events will be allowed to

increment Timer1 until the GGO/DONE bit is once again set in software.

Figure 27-6. Timer1 Gate Single Pulse Mode

TMRXGE
TXGPOL
TXGSPM
Cleared by hardware on

TxGGO/ <«— Set by software ‘ l falling edge of TXGVAL
DONE

Counting enabled on
rising edge of TxG

L — S 1

TXGVAL :

TIMERL N XN+1X 0 N+2
: Cleared by
TMRXGIE | €—Cleared by software |<— Set by hardware on <+ Software

falling edge of TXGVAL
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Clearing the GSPM bit will also clear the GGO/DONE bit. See the figure below for timing details.

Enabling the Toggle mode and the Single Pulse mode simultaneously will permit both sections to
work together. This allows the cycle times on the Timer1 gate source to be measured. See the figure
below for timing details.

Figure 27-7. Timer1 Gate Single Pulse and Toggle Combined Mode

TMRXGE

TxGPOL

TXGSPM

TXGTM

LI

Cleared by hardware on
TxGGO/ <— Set by software | falling edge of TXGVAL
DONE

Counting enabled on
rising edge of TXG

'
'

TXGVAL | |

'
'

TIMERL N XN+ 1 N+2><N+3><N+45

Set by hardware on ; Cleared by

TMRXGIF | €—Cleared by software falling edge of TXGVAL ™ *+— software

27.7.5 Timerl Gate Value Status

When Timer1 gate value status is utilized, it is possible to read the most current level of the gate
control value. The value is stored in the GVAL bit in the TXGCON register. The GVAL bit is valid even
when the Timer1 gate is not enabled (GE bit is cleared).

27.7.6 Timerl Gate Event Interrupt

When Timer1 gate event interrupt is enabled, it is possible to generate an interrupt upon the
completion of a gate event. When the falling edge of GVAL occurs, the TMRXGIF flag bit in one of the
PIR registers will be set. If the TMRXGIE bit in the corresponding PIE register is set, then an interrupt
will be recognized.

The TMRXGIF flag bit operates even when the Timer1 gate is not enabled (the GE bit is cleared). For
more information on selecting high- or low-priority status for the Timer1 gate event interrupt, see
the “VIC - Vectored Interrupt Controller Module” chapter.

27.8 Timerl Interrupt

The TMRXx register increments to FFFFh and rolls over to 0000h. When TMRXx rolls over, the Timer1
interrupt flag bit of the PIRx register is set. To enable the interrupt-on-rollover, the following bits
must be set:

+ The ON bit of the TXCON register
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« The TMRXIE bits of the PIEx register
+ Global interrupts must be enabled

The interrupt is cleared by clearing the TMRXIF bit as a task in the Interrupt Service Routine. For
more information on selecting high- or low-priority status for the Timer1 overflow interrupt, see the
“VIC - Vectored Interrupt Controller Module” chapter.

Important: The TMRx register and the TMRXxIF bit must be cleared before enabling
interrupts.

27.9 Timerl Operation During Sleep

Timer1 can only operate during Sleep when configured as an asynchronous counter. In this mode,
many clock sources can be used to increment the counter. To set up the timer to wake the device:

* The ON bit must be set

+ The TMRXIE bit of the PIEx register must be set

+ Global interrupts must be enabled

« The SYNC bit must be set

+ Configure the TxCLK register for using any clock source other than Fosc and Fosc/4

The device will wake up on an overflow and execute the next instruction. If global interrupts are
enabled, the device will call the IRS. The secondary oscillator will continue to operate in Sleep
regardless of the SYNC bit setting.

27.10 CCP Capture/Compare Time Base

The CCP modules use TMRx as the time base when operating in Capture or Compare mode. In
Capture mode, the value in TMRx is copied into the CCPRx register on a capture event. In Compare
mode, an event is triggered when the value in the CCPRx register matches the value in TMRx. This
event can be a Special Event Trigger.

27.11 CCP Special Event Trigger

When any of the CCPs are configured to trigger a special event, the trigger will clear the TMRx
register. This special event does not cause a Timer1 interrupt. The CCP module may still be
configured to generate a CCP interrupt. In this mode of operation, the CCPRx register becomes the
period register for Timer1. Timer1 must be synchronized and Fosc/4 must be selected as the clock
source to utilize the Special Event Trigger. Asynchronous operation of Timer1 can cause a Special
Event Trigger to be missed. In the event that a write to TMRxH or TMRXxL coincides with a Special
Event Trigger from the CCP, the write will take precedence.

27.12 Peripheral Module Disable

When a peripheral is not used or inactive, the module can be disabled by setting the Module Disable
bit in the PMD registers. This will reduce power consumption to an absolute minimum. Setting the
PMD bits holds the module in Reset and disconnects the module’s clock source. The Module Disable
bits for Timer1 (TMR1MD) are in the PMDx register. See the “PMD - Peripheral Module Disable”
chapter for more information.

27.13 Register Definitions: Timerl Control

Long bit name prefixes for the Timer registers are shown in the table below, where ‘X’ refers to the
Timer instance number. Refer to the “Long Bit Names" section in the “Register and Bit Naming
Conventions"” chapter for more information.
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Table 27-3. Timerl Register Bit Name Prefixes

Peripheral Bit Name Prefix

Timer1 T
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27.13.1 TxCON

Name: TxCON
Address: 0x0109

Timer Control Register

Bit 7 6 5 4 3 2 1 0
| | | CKPS[1:0] | | SYNC | RDI6 [ ON |
Access RIW R/W R/W R/W R/W
Reset 0 0 0 0 0

Bits 5:4 - CKPS[1:0] Timer Input Clock Prescaler Select
Reset States: POR/BOR =00
All Other Resets = uu

Value Description

11 1:8 Prescaler value
10 1:4 Prescaler value
01 1:2 Prescaler value
00 1:1 Prescaler value

Bit 2 - SYNC Timer External Clock Input Synchronization Control
Reset States: POR/BOR =0
All Other Resets =u

Value Condition Description

x CS = Fosc/4 or Fosc This bit is ignored. Timer uses the incoming clock as is.
1 All other clock sources Do not synchronize external clock input

0 All other clock sources Synchronize external clock input with system clock

Bit 1 - RD16 16-Bit Read/Write Mode Enable
Reset States: POR/BOR=0
All Other Resets = u

VEIS Description
1 Enables register read/write of Timer in one 16-bit operation
0 Enables register read/write of Timer in two 8-bit operations

Bit0 - ON Timer On
Reset States: POR/BOR =0
All Other Resets = u

Value Description
1 Enables Timer
0 Disables Timer
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27.13.2 TxGCON

Name: TxGCON
Address: 0x010A

Timer Gate Control Register

Bit 7 6 5 4 3 2 1 0
| GE | GPOL | GIM | GSPM |GGO/DONE| GVAL | | |
Access R/W R/W R/W R/W R/W R
Reset 0 0 0 0 0 X

Bit 7 - GE Timer Gate Enable
Reset States: POR/BOR =0
All Other Resets = u

1 ON=1 Timer counting is controlled by the Timer gate function
0 ON=1 Timer is always counting
X ON=0 This bit is ignored

Bit 6 - GPOL Timer Gate Polarity
Reset States: POR/BOR =0
All Other Resets =u

Value Description
Timer gate is active-high (Timer counts when gate is high)

1
0 Timer gate is active-low (Timer counts when gate is low)

Bit 5 - GTM Timer Gate Toggle Mode
Timer Gate flip-flop toggles on every rising edge when Toggle mode is enabled.
Reset States: POR/BOR =0
All Other Resets = u

VEIS Description
1 Timer Gate Toggle mode is enabled
0 Timer Gate Toggle mode is disabled and Toggle flip-flop is cleared

Bit 4 - GSPM Timer Gate Single Pulse Mode
Reset States: POR/BOR =0
All Other Resets = u

1 Timer Gate Single Pulse mode is enabled and is controlling Timer gate
0 Timer Gate Single Pulse mode is disabled

Bit 3 - GGO/DONE Timer Gate Single Pulse Acquisition Status
This bit is automatically cleared when TxGSPM is cleared.
Reset States: POR/BOR =0
All Other Resets =u

Value Description
1 Timer Gate Single Pulse Acquisition is ready, waiting for an edge
0 Timer Gate Single Pulse Acquisition has completed or has not been started

Bit 2 - GVAL Timer Gate Current State
Indicates the current state of the timer gate that can be provided to TMRxH:TMRxL
Unaffected by the Timer Gate Enable (GE) bit
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27.13.3 TxCLK

Name: TxCLK
Address: 0x010C

Timer Clock Source Selection Register

Bit 7 6 5 4 3 2 1 0
| | | | | CS[3:0] |
Access R/W R/W R/W R/W
Reset 0 0 0 0

Bits 3:0 - CS[3:0] Timer Clock Source Selection

Table 27-4. Timer Clock Sources

CS Clock Source
Timer1

1111 CLC4_OouT
1110 CLC3_OuT
1101 CLC2_ouT
1100 CLC1_OuT
1011 TMRO_OUT
1010 CLKREF_OUT
1001 EXTOSC

1000 SOSC

0111 MFINTOSC (32 kHz)
0110 MFINTOSC (500 kHz)
0101 SFINTOSC
0100 LFINTOSC
0011 HFINTOSC
0010 Fosc

0001 Fosc/4

0000 Pin selected by T1CKIPPS

Reset States: POR/BOR = 0000
All Other Resets = uuuu
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27.13.4 TxGATE

Name: TxGATE
Address: 0x010B

Timer Gate Source Selection Register

Bit 7 6 5 4 3 2 1 0
| | | | GSS[3:0]
Access R/W R/W R/W R/W
Reset 0 0 0 0

Bits 3:0 - GSS[3:0] Timer Gate Source Selection

Table 27-5. Timer Gate Sources

1111 - 1110

@ MICROCHIP

GSS

1101
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000

Reserved
CLC4_OUT
CLC3_0UT
CLC2_0uUT
CLC1_OuT

PWM2S1P2_OUT
PWM2S1P1_OUT
PWM1S1P2_OUT
PWM1S1P1_OUT
CCP2_OUT
CCP1_OUT
TMR4_Postscaler_ OUT
TMR2_Postscaler_OUT
TMRO_OUT
Pin selected by T1GPPS
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27.13.5 TMRx

Name: TMRx
Address: 0x0107

Timer Register

Bit 15 14 13 12 11 10 9 8
| TMRX([15:8]
Access  R/W R/W R/W R/W RIW R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| TMRXx[7:0]
Access  R/W R/W RIW R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 15:0 - TMRx[15:0] Timer Register Value

Reset States: POR/BOR = 0000000000000000
All Other Resets = uuuuuuuuUUUUUUUU

Notes: The individual bytes in this multibyte register can be accessed with the following register

names:

*  TMRxH: Accesses the high byte TMRx[15:8]
*  TMRXxL: Accesses the low byte TMRx[7:0]

@ MICROCHIP
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27.14 Register Summary - Timerl

I S T S R

0x0107 TMR1
0x0109 T1CON
0x010A T1GCON
0x010B T1GATE
0x010C T1CLK

@ MICROCHIP

15:8
7:0
7:0
7:0
7:0

GE

GPOL

GTM

TMR1[7:0

TMR1[15:8]

CKPS[1:0]
GSPM

GGO/DONE

SYNC
GVAL

GSS[3:0]
CS[3:0]

RD16

s 2 1 0
1

ON
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28.

+ 8-bit timer and period registers

TMR2 - Timer2 Module

The Timer2 module is an 8-bit timer that incorporates the following features:

+ Readable and writable

+ Software programmable prescaler (1:1 to 1:128)

+ Software programmable postscaler (1:1 to 1:16)
* Interrupt on T2TMR match with T2PR
* One-shot operation

+ Full asynchronous operation

* Includes Hardware Limit Timer (HLT)

« Alternate clock sources

+ External timer Reset signal sources

+ Configurable timer Reset operation

See the figure below for a block diagram of Timer2.

Important: References to module Timer2 apply to all the even numbered timers on this

device (Timer2, Timer4, etc.).

Figure 28-1. Timer2 with Hardware Limit Timer (HLT) Block Diagram

RSEL
TxINPPS :
TxIN X-{PPS]

External
Reset
Sources®

CKPOL

MODE

MODE[3]

reset Lr\

(
[

MODE[4:3] = 'b01

cs
TXINPPS
TxIN[X]

See
TxCLKCON

)

register®

ON
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Sync
(2 Clocks)

CSYNC

TMRXx_ers Edge Detector
Level Detector
Mode Control
(2 clock Sync)
enable
TMRx_clk

Prescaler

CKPS

MODE[4:1] = 'b1011

4202019

CCP_pset"

10

=iy

Fosc/4 PSYNC

Clear ON
Q

Comparator

—e— Postscaler

Set flag bit
TMRxIF

™ Rx_postscaLed
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28.1

28.1.1

28.1.2

28.1.3

Notes:

1. Signal to the CCP peripheral for PWM pulse trigger in PWM mode.
2. See RSEL for external Reset sources.

3. See CS for clock source selections.

Timer2 Operation
Timer2 operates in three major modes:

+ Free-Running Period
+ One Shot
+ Monostable

Within each operating mode, there are several options for starting, stopping and Reset. Table 28-1
lists the options.

In all modes, the T2TMR count register increments on the rising edge of the clock signal from the
programmable prescaler. When T2TMR equals T2PR, a high level output to the postscaler counter is
generated. T2TMR is cleared on the next clock input.

An external signal from hardware can also be configured to gate the timer operation or force a
T2TMR count Reset. In Gate modes, the counter stops when the gate is disabled and resumes when
the gate is enabled. In Reset modes, the T2TMR count is reset on either the level or edge from the
external source.

The T2TMR and T2PR registers are both directly readable and writable. The T2TMR register is cleared
and the T2PR register initializes to 0xFF on any device Reset. Both the prescaler and postscaler
counters are cleared on the following events:

* Awrite to the T2TMR register

* Awrite to the T2CON register

* Any device Reset

+ External Reset source event that resets the timer

Important: T2TMR is not cleared when T2CON is written.

Free-Running Period Mode

The value of T2ZTMR is compared to that of the period register, T2PR, on each clock cycle. When

the two values match, the comparator resets the value of T2TMR to 0x00 on the next cycle and
increments the output postscaler counter. When the postscaler count equals the value in the OUTPS
bits of the T2CON register, a one clock period wide pulse occurs on the TMR2_postscaled output,
and the postscaler count is cleared.

One Shot Mode

The One Shot mode is identical to the Free-Running Period mode except that the ON bit is cleared
and the timer is stopped when T2TMR matches T2PR and will not restart until the ON bit is cycled
off and on. Postscaler (OUTPS) values other than zero are ignored in this mode because the timer is
stopped at the first period event and the postscaler is reset when the timer is restarted.

Monostable Mode

Monostable modes are similar to One Shot modes except that the ON bit is not cleared and the
timer can be restarted by an external Reset event.

@ MICROCHIP
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28.2 Timer2 Output

The Timer2 module’s primary output is TMR2_postscaled, which pulses for a single TMR2_clk
period upon each match of the postscaler counter and the OUTPS bits of the T2CON register. The
postscaler is incremented each time the T2TMR value matches the T2PR value. This signal can also
be selected as an input to other Core Independent Peripherals.

In addition, the Timer2 is also used by the CCP module for pulse generation in PWM mode. See
the “PWM Overview" and “PWM Period” sections in the “CCP - Capture/Compare/PWM Module”
chapter for more details on setting up Timer2 for use with the CCP and PWM modules.

28.3 External Reset Sources

In addition to the clock source, the Timer2 can also be driven by an external Reset source input. This
external Reset input is selected for each timer with the corresponding TxRST register. The external
Reset input can control starting and stopping of the timer, as well as resetting the timer, depending
on the mode used.

28.4 Timer2 Interrupt

Timer2 can also generate a device interrupt. The interrupt is generated when the postscaler counter
matches the selected postscaler value (OUTPS bits of T2CON register). The interrupt is enabled by
setting the TMR2IE interrupt enable bit. Interrupt timing is illustrated in the figure below.

Figure 28-2. Timer2 Prescaler, Postscaler, and Interrupt Timing Diagram

Rev. 10-000 2058
362019

CKPS| 'b010
TXPR| 1 |
OUTPS| b0001 |

TXTMR 0 { 1 { 0 X 1 { 0 { 1 X 0 )
TMRx_postscaled |_| |_|

TMRXIF ) | | @ ®©

Notes: 1. Setting the interrupt flag is synchronized with the instruction clock.
Synchronization may take as many as two instruction cycles.
2. Cleared by software.

28.5 PSYNC Bit

Setting the PSYNC bit synchronizes the prescaler output to Fosc/4. Setting this bit is required for
reading the Timer2 counter register while the selected Timer clock is asynchronous to Fosc/4.

Note: Setting PSYNC requires that the output of the prescaler is slower than Fosc/4. Setting PSYNC
when the output of the prescaler is greater than or equal to Fosc/4 may cause unexpected results.

28.6 CSYNC Bit

All bits in the Timer2 SFRs are synchronized to Fosc/4 by default, not the Timer2 input clock. As such,
if the Timer2 input clock is not synchronized to Fosc/4, it is possible for the Timer2 input clock to
transition at the same time as the ON bit is set in software, which may cause undesirable behavior
and glitches in the counter. Setting the CSYNC bit remedies this problem by synchronizing the ON
bit to the Timer2 input clock instead of Fosc/4. However, as this synchronization uses an edge of the
TMR2 input clock, up to one input clock cycle will be consumed and not counted by the Timer2 when
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CSYNC is set. Conversely, clearing the CSYNC bit synchronizes the ON bit to Fosc/4, which does not
consume any clock edges, but has the previously stated risk of glitches.

28.7

Operating Modes

The mode of the timer is controlled by the MODE bits. Edge Triggered modes require six Timer clock
periods between external triggers. Level Triggered modes require the triggering level to be at least
three Timer clock periods long. External triggers are ignored while in Debug mode.

Table 28-1. Operating Modes Table

| MODE | Output
Operation

Free-Running 00
Period
One Shot 01

@ MICROCHIP

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

Period Pulse

Period Pulse
with
Hardware Reset

One-shot

Edge-Triggered Start
(Note 1)

Edge-Triggered Start
and
Hardware Reset
(Note 1)

Operation

Software gate (Figure
28-3)
Hardware gate, active-
high
(Figure 28-4)

Hardware gate, active-low

Rising or falling edge
Reset
Rising edge Reset (Figure
28-5)
Falling edge Reset

Low-level Reset
High-level Reset (Figure
28-6)

Software start (Figure
28-7)
Rising edge start (Figure
28-8)

Falling edge start

Any edge start

Rising edge start and
Rising edge Reset (Figure
28-9)

Falling edge start and
Falling edge Reset

Rising edge start and
Low-level Reset (Figure
28-10)

Falling edge start and
High-level Reset

Timer Control

ON=1

ON =1 and
TMRx_ers =1

ON=1and
TMRx_ers =0

ON=1

ON=1

ON=1and
TMRx_ers

ON=1and
TMRx_ers ¢

ON=1and
TMRx_ers $

ON=1and
TMRx_ers

ON =1 and
TMRx_ers

ON=1and
TMRx_ers

ON=1and
TMRx_ers ¢

ON=0
— ON=0or
TMRx_ers =0
— ON=0or
TMRx_ers =1
TMRx_ers $
TMRx_ers 1 ON=0
TMRx_ers
_ ON=0or
TMRx_ers =0 1 Rx_ers =0
_ ON=0or
TMRx_ers =1 TMRx_ers =1
_ ON=0
or
Next clock after
TMRx_€rs T 1TMR = TxPR
(Note 2)
TMRx_ers
TMRx_ers =0
TMRx_ers =1
413



........... continued

m Output o . Timer Control
i eration
[4:3][[2:0] ~ Operation °

000 Reserved
Rising edge start ON=1and
. — ON=0
001 (Figure 28-11) TMRx_ers 1 o
Edge-Tri d Start =
Monostable 010 B¢ (:\Iii:r; o Falling edge start Tolvl|\] o Zfsni _ Next clock after
- TXTMR = TxPR
ON=1and (Note 3)
y 011 Any edge start TMRx_ers — ote
Reserved 100 Reserved
Reserved 101 Reserved
Level-Triggered L mglh;le\llgl statrfF?ndr ON=1and _ ON =
110 Start ow-level Reset (Figure TMRx_ers = 1 TMRx_ers = 0 = 0or
One Shot and 28-12) Held in Reset
Low-level start and ON=1and (Note 2)
111  Hardware Reset TMRx_ers =1

High-level Reset TMRx_ers = 0

Reserved 11 xxx Reserved

Notes:

1. If ON =0, then an edge is required to restart the timer after ON = 1.

2. When T2TMR = T2PR, the next clock clears ON and stops T2TMR at 00h.

3. When T2TMR = T2PR, the next clock stops T2TMR at 00h but does not clear ON.

28.8 Operation Examples
Unless otherwise specified, the following notes apply to the following timing diagrams:

+ Both the prescaler and postscaler are set to 1:1 (both the CKPS and OUTPS bits).

+ The diagrams illustrate any clock except Fosc/4 and show clock-sync delays of at least two
full cycles for both ON and TMRx_ers. When using Fosc/4, the clock-sync delay is at least one
instruction period for TMRx_ers; ON applies in the next instruction period.

* ON and TMRx_ers are somewhat generalized, and clock-sync delays may produce results that are
slightly different than illustrated.

+ The PWM Duty Cycle and PWM output are illustrated assuming that the timer is used for the
PWM function of the CCP module as described in the “PWM Overview” section. The signals are
not a part of the Timer2 module.

28.8.1 Software Gate Mode

This mode corresponds to legacy Timer2 operation. The timer increments with each clock input
when ON = 1 and does not increment when ON = 0. When the TXTMR count equals the TxPR period
count, the timer resets on the next clock and continues counting from zero. Operation with the ON
bit software controlled is illustrated in Figure 28-3. With TxPR = 5, the counter advances until TXxTMR
=5 and goes to zero with the next clock.
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Figure 28-3. Software Gate Mode Timing Diagram (MODE = *b00000)

Rev. 10-000195C
3612019

TMRx_clk

Instruction®—{esF, [ach [esh

TMRx_postscaled ‘_l ‘_l

PWM Duty 3 |
Cycle

PWM Output /N / \

Note: 1. BSF and BCF represent Bit-Set File and Bit-Clear File instructions executed by the CPU to
set or clear the ON bit of TXxCON. CPU execution is asynchronous to the timer clock input.

28.8.2 Hardware Gate Mode

The Hardware Gate modes operate the same as the Software Gate mode, except the TMRx_ers
external signal can also gate the timer. When used with the CCP, the gating extends the PWM period.
If the timer is stopped when the PWM output is high, then the duty cycle is also extended.

When MODE = ‘b00001, then the timer is stopped when the external signal is high. When MODE =
‘b00010, then the timer is stopped when the external signal is low.

Figure 28-4 illustrates the Hardware Gating mode for MODE = ‘b00001 in which a high input level
starts the counter.

Figure 28-4. Hardware Gate Mode Timing Diagram (MODE = ‘b00001)

Rev. 10-000 196C
3612019

TMRx_clk

TMRx_postscaled |_|

PWM Duty 3 |
Cycle

PWM Output / \ /
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28.8.3 Edge Triggered Hardware Limit Mode

In Hardware Limit mode, the timer can be reset by the TMRx_ers external signal before the timer
reaches the period count. Three types of Resets are possible:

* Reset onrising or falling edge (MODE = *b00011)
+ Reset on rising edge (MODE = *b00100)
+ Reset on falling edge (MODE = ‘b00101)

When the timer is used in conjunction with the CCP in PWM mode then an early Reset shortens the
period and restarts the PWM pulse after a two clock delay. Refer to Figure 28-5.

Figure 28-5. Edge Triggered Hardware Limit Mode Timing Diagram (MODE = *‘b00100)

Rev. 10-000187C

TMRx_clk

TxPR‘ 5 \

Instruction™ BSF BCF}{BSF

ON J \_[
TMRx_ers \

TMRx_postscaled ﬂ

PWM Duty
Cycle

PWM Output

Note: 1.BSF and BCF represent Bit-Set File and Bit-Clear File instructions executed by
the CPU to set or clear the ON bit of TXCON. CPU execution is asynchronous
to the timer clock input.
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28.8.4 Level Triggered Hardware Limit Mode

In the Level Triggered Hardware Limit Timer modes the counter is reset by high or low levels of the
external signal TMRx_ers, as shown in Figure 28-6. Selecting MODE = *b00110 will cause the timer
to reset on a low-level external signal. Selecting MODE = *b00111 will cause the timer to reset on a
high-level external signal. In the example, the counter is reset while TMRx_ers = 1. ON is controlled
by BSF and BCF instructions. When ON = 0, the external signal is ignored.

When the CCP uses the timer as the PWM time base, then the PWM output will be set high when
the timer starts counting and then set low only when the timer count matches the CCPRx value. The
timer is reset when either the timer count matches the TxPR value or two clock periods after the
external Reset signal goes true and stays true.

The timer starts counting, and the PWM output is set high on either the clock following the TxPR
match or two clocks after the external Reset signal relinquishes the Reset. The PWM output will
remain high until the timer counts up to match the CCPRx pulse-width value. If the external Reset
signal goes true while the PWM output is high, then the PWM output will remain high until the Reset
signal is released allowing the timer to count up to match the CCPRx value.

Figure 28-6. Level Triggered Hardware Limit Mode Timing Diagram (MODE = ‘b00111)

Rev. 10-000198C
1512019

TMRx_clk

TxPR| 5 |

Instruction® F BCF] BSH

oN__ | —
TMRx_ers—|—| |—|

&

TMRx_postscaled |_| |_|

PWM Duty
Cycle

PWM Output /—\—/ \ /

Note: 1. BSF and BCF represent Bit-Set File and Bit-Clear File instructions executed by the CPU to
set or clear the ON bit of TXCON. CPU execution is asynchronous to the timer clock input.
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28.8.5 Software Start One Shot Mode

In One Shot mode, the timer resets and the ON bit is cleared when the timer value matches the
TxPR period value. The ON bit must be set by software to start another timer cycle. Setting MODE =
‘b01000 selects One Shot mode which is illustrated in Figure 28-7. In the example, ON is controlled
by BSF and BCF instructions. In the first case, a BSF instruction sets ON and the counter runs

to completion and clears ON. In the second case, a BSF instruction starts the cycle, the BCF/BSF
instructions turn the counter off and on during the cycle, and then it runs to completion.

When One Shot mode is used in conjunction with the CCP PWM operation, the PWM pulse drive
starts concurrent with setting the ON bit. Clearing the ON bit while the PWM drive is active will
extend the PWM drive. The PWM drive will terminate when the timer value matches the CCPRx
pulse-width value. The PWM drive will remain off until the software sets the ON bit to start another
cycle. If the software clears the ON bit after the CCPRx match but before the TxPR match, then the
PWM drive will be extended by the length of time the ON bit remains cleared. Another timing cycle
can only be initiated by setting the ON bit after it has been cleared by a TxPR period count match.

Figure 28-7. Software Start One Shot Mode Timing Diagram (MODE = ‘b01000)

Rev. 10-000199C
362019

TxPRl 5 |

)

Instruction® {BsF) @ BC BSH
ON | | | | | |
TMRx_postscaled | | |

PWM Duty
Cycle

PWM Output / \ / \

Note: 1. BSF and BCF represent Bit-Set File and Bit-Clear File instructions executed by the CPU
to set or clear the ON bit of TXCON. CPU execution is asynchronous to the timer clock input.
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28.8.6 Edge Triggered One Shot Mode

The Edge Triggered One Shot modes start the timer on an edge from the external signal input after
the ON bit is set and clear the ON bit when the timer matches the TxPR period value. The following
edges will start the timer:

+ Rising edge (MODE = ‘b01001)
+ Falling edge (MODE = *b01010)
+ Rising or Falling edge (MODE = *b01011)

If the timer is halted by clearing the ON bit, then another TMRx_ers edge is required after the ON bit
is set to resume counting. Figure 28-8 illustrates operation in the rising edge One Shot mode.

When Edge Triggered One Shot mode is used in conjunction with the CCP, then the edge-trigger
will activate the PWM drive and the PWM drive will deactivate when the timer matches the CCPRx
pulse-width value and stay deactivated when the timer halts at the TxPR period count match.

Figure 28-8. Edge Triggered One Shot Mode Timing Diagram (MODE = *b01001)

Rev. 10-000 200C
3612019

TXPR| 5 |
Instruction®—{as} e =
| I —
CCP_pset [ ] [ ]

TMRx_postscaled | |

PWM Duty
Cycle

PWM Output / \ /

Note: 1. BSF and BCF represent Bit-Set File and Bit-Clear File instructions executed by the CPU to
set or clear the ON bit of TXCON. CPU execution is asynchronous to the timer clock input.
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28.8.7 Edge Triggered Hardware Limit One Shot Mode

In Edge Triggered Hardware Limit One Shot modes, the timer starts on the first external signal edge
after the ON bit is set and resets on all subsequent edges. Only the first edge after the ON bit is

set is needed to start the timer. The counter will resume counting automatically two clocks after all
subsequent external Reset edges. Edge triggers are as follows:

+ Rising edge start and Reset (MODE = *b01100)
+ Falling edge start and Reset (MODE = *b01101)

The timer resets and clears the ON bit when the timer value matches the TxPR period value. External
signal edges will have no effect until after software sets the ON bit. Figure 28-9 illustrates the rising
edge hardware limit one-shot operation.

When this mode is used in conjunction with the CCP, then the first starting edge trigger, and all
subsequent Reset edges, will activate the PWM drive. The PWM drive will deactivate when the timer
matches the CCPRx pulse-width value and stay deactivated until the timer halts at the TxPR period
match unless an external signal edge resets the timer before the match occurs.

Figure 28-9. Edge Triggered Hardware Limit One Shot Mode Timing Diagram (MODE = ‘b01100)

Rev. 10000 201C
3612019

TMRx_clk
TXPR | 5
Instruction® BSF

L

ON J
TMRx_ers

[ [%j

|

R o f1f2f3)4)s) 0 BB 066008
TMRXx_postscaled | |
eye 3 |
PWM Output / \ / \

Note: 1. BSF and BCF represen