

MIC5501/2/3/4

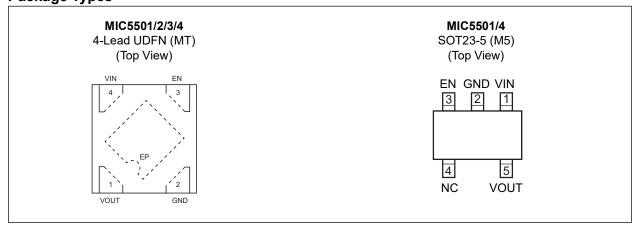
300 mA Single Output LDO in Small Packages

Features

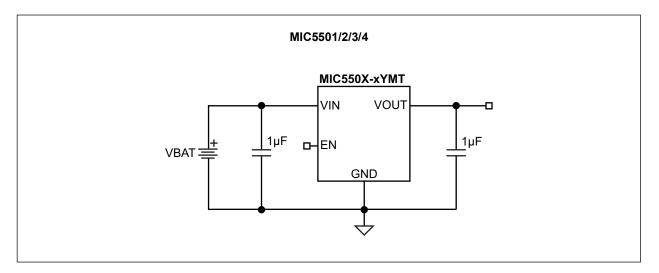
- · Input Voltage Range: 2.5V to 5.5V
- Fixed Output Voltages from 1.0V to 3.3V
- · 300 mA Ensured Output Current
- High Output Accuracy (±2%)
- Low Quiescent Current: 38 μA
- Stable with 1 µF Ceramic Output Capacitors
- · Low Dropout Voltage: 160 mV @ 300 mA
- · Output Discharge Circuit: MIC5502, MIC5504
- Internal Enable Pull-Down: MIC5503, MIC5504
- Thermal-Shutdown and Current-Limit Protection
- 4-Lead 1.0 mm x 1.0 mm Ultra Thin DFN Package
- MIC5501/4 5-Lead SOT23 Package

Applications

- Smartphones
- · DSC, GPS, PMP, and PDAs
- · Medical Devices
- · Portable Electronics
- 5V Systems


General Description

The MIC5501, MIC5502, MIC5503, and MIC5504 are advanced general-purpose LDOs ideal for powering general-purpose portable devices. The MIC5501/2/3/4 family of products provides a high-performance 300 mA LDO in an ultra-small 1 mm x 1 mm package. The MIC5502 and MIC5504 LDOs include an auto-discharge feature on the output that is activated when the enable pin is low. The MIC5503 and MIC5504 have an internal pull-down resistor on the enable pin that disables the output when the enable pin is left floating. This is ideal for applications where the control signal is floating during processor boot up.


Ideal for battery-powered applications, the MIC5501/2/3/4 offer 2% initial accuracy, low dropout voltage (160 mV at 300 mA), and low ground current (typically 38 μ A). The MIC5501/2/3/4 can also be put into a zero-off-mode current state, drawing virtually no current when disabled.

The MIC5501/2/3/4 have an operating junction temperature range of -40°C to +125°C.

Package Types

Typical Application Circuit

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Supply Voltage (V _{IN})	0.3V to +6V
Enable Voltage (V _{EN})	0.3V to V _{IN}
Power Dissipation (P _D)	Internally Limited, Note 1
	3 kV
Operating Ratings ‡	
Supply Voltage (V _{IN})	+2.5V to +5.5V

- † Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.
- **‡ Notice:** The device is not guaranteed to function outside its operating ratings.
- Note 1: The maximum allowable power dissipation of any T_A (ambient temperature) is $P_{D(MAX)} = (T_{J(MAX)} T_A)/\theta_{JA}$. Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown.
 - 2: Devices are ESD sensitive. Handling precautions are recommended. Human body model, 1.5 k Ω in series with 100 pF.

ELECTRICAL CHARACTERISTICS

Electrical Characteristics: $V_{IN} = V_{EN} = V_{OUT} + 1V$; $C_{IN} = C_{OUT} = 1 \mu F$; $I_{OUT} = 100 \mu A$; $T_J = +25 ^{\circ}C$, bold values indicate -40 $^{\circ}C$ to +125 $^{\circ}C$, unless noted.

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
		-2.0 —		2.0		Variation from nominal V _{OUT}
Output Voltage Accuracy	V _{OUT}	-3.0	_	3.0	%	Variation from nominal V _{OUT} ; -40°C to +125°C
Line Regulation	_	_	0.02	0.3	%/V	$V_{IN} = V_{OUT} + 1V \text{ to } 5.5V;$ $I_{OUT} = 100 \ \mu\text{A}$
Load Regulation (Note 1)	_	_	8	40	mV	I _{OUT} = 100 μA to 300 mA
Dranaut Valtaga (Note 2)	\ \/	_	80	190	mV	I _{OUT} = 150 mA
Dropout Voltage (Note 2)	V _{DO}	_	160	380	IIIV	I _{OUT} = 300 mA
Cround Din Current (Note 2)		_	38	55		I _{OUT} = 0 mA
Ground Pin Current (Note 3)	I _{GND}	_	42	65	μA	I _{OUT} = 300 mA
Ground Pin Current in Shutdown	I _{GND(SHDN)}	_	0.05	1	μA	V _{EN} = 0V
Ripple Rejection	PSRR	_	60	_	dB	f = 1 kHz; C _{OUT} = 1 μF
Current Limit	I _{LIM}	400	630	900	mA	V _{OUT} = 0V
Output Voltage Noise	e _n	_	175	_	μV _{RMS}	C _{OUT} = 1 μF, 10 Hz to 100 kHz
Auto-Discharge NFET Resistance	_	_	25	_	Ω	MIC5502, MIC5504 Only; V _{EN} = 0V; V _{IN} = 3.6V; I _{OUT} = -3 mA
Enable Input						
Enable Pull-Down Resistor	_		4	_	ΜΩ	For MIC5503 and MIC5504 use only
Enable Input Voltage		_	_	0.2	V	Logic-Low
Enable Input Voltage	V _{EN}	1.2	_	_	\ \ \	Logic-High

MIC5501/2/3/4

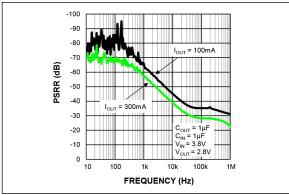
ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics: $V_{IN} = V_{EN} = V_{OUT} + 1V$; $C_{IN} = C_{OUT} = 1 \mu F$; $I_{OUT} = 100 \mu A$; $T_J = +25 ^{\circ}C$, **bold** values indicate -40 $^{\circ}C$ to +125 $^{\circ}C$, unless noted.

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
Enable Input Current	,	_	0.01	1		V _{EN} = 0V
MIC5501, MIC5502	IEN	_	0.01	1	μA	V _{EN} = 5.5V
Enable Input Current		_	0.01	1		V _{EN} = 0V
MIC5503, MIC5504	^I EN	_	1.4	2	μA	V _{EN} = 5.5V
Turn-On Time	t _{ON}	_	50	125	μs	C _{OUT} = 1 μF; I _{OUT} = 150 mA

- **Note 1:** Regulation is measured at constant junction temperature using low duty cycle pulse testing. Changes in output voltage due to heating effects are covered by the thermal regulation specification.
 - 2: Dropout voltage is defined as the input-to-output differential at which the output voltage drops 2% below its nominal value measured at 1V differential. For outputs below 2.5V, dropout voltage is the input-to-output differential with the minimum input voltage 2.5V.
 - **3:** Ground pin current is the regulator quiescent current. The total current drawn from the source is the sum of the load current plus the ground pin current.

TEMPERATURE SPECIFICATIONS (Note 1)


Parameters	Symbol	Min.	Тур.	Max.	Units	Conditions
Temperature Ranges						
Storage Temperature Range	T _S	-65	_	+150	°C	_
Maximum Junction Temperature Range	T _{J(MAX)}	-40	_	+150	°C	_
Operating Junction Temperature Range	TJ	-40	_	+125	°C	_
Lead Temperature	_	_	_	+260	°C	Soldering, 10s
Package Thermal Resistances	•		•	•	•	
Thermal Resistance 1 mm x 1 mm Ultra Thin DFN 4-Ld	θ_{JA}	_	250	_	°C/W	_
Thermal Resistance SOT23-5	θ_{JA}	_	253	_	°C/W	_

Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability.

Note:

2.0 TYPICAL PERFORMANCE CURVES

The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

FIGURE 2-1: Power Supply Rejection Ratio.

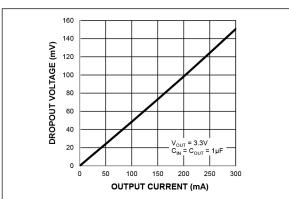
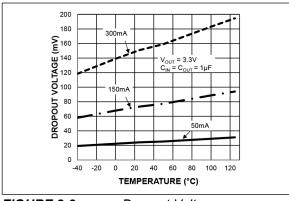
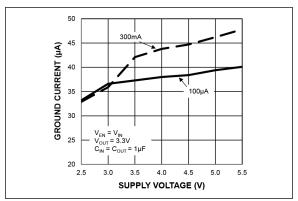




FIGURE 2-2: Dropout Voltage vs. Output Current.

FIGURE 2-3: Dropout Voltage vs. Temperature.

FIGURE 2-4: Ground Current vs. Supply Voltage.

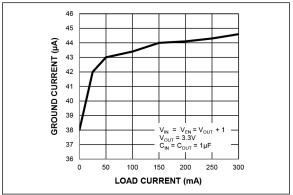
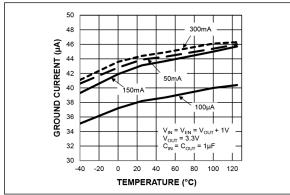



FIGURE 2-5: Ground Current vs. Load Current.

FIGURE 2-6: Ground Current vs. Temperature.

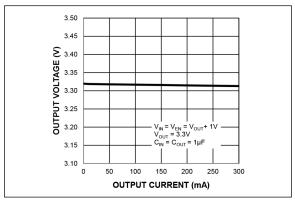


FIGURE 2-7: Current.

Output Voltage vs. Output

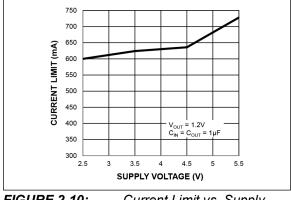


FIGURE 2-10: Voltage.

Current Limit vs. Supply

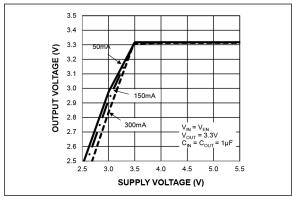
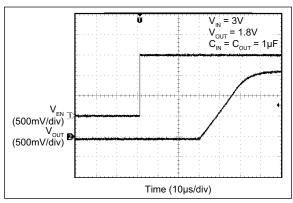



FIGURE 2-8: Voltage.

Output Voltage vs. Supply

FIGURE 2-11:

Enable Turn-On.

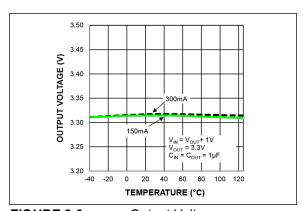
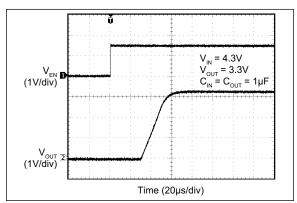



FIGURE 2-9:

Output Voltage vs.

Temperature.

FIGURE 2-12:

Enable Turn-On.

MIC5501/2/3/4

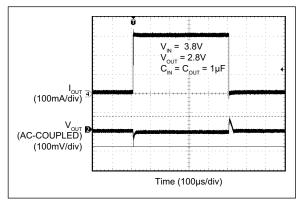


FIGURE 2-13: Load Transient.

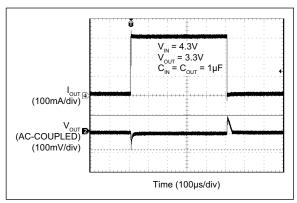


FIGURE 2-14: Load Transient.

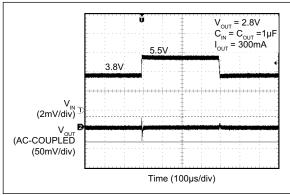


FIGURE 2-15: Line Transient.

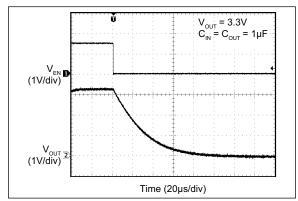


FIGURE 2-16: Auto-Discharge (No Load).

3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

4-Lead UDFN Pin Number	SOT23-5 Pin Number	Pin Name	Description
1	5	VOUT	Output Voltage. When disabled the MIC5502 and MIC5504 switches on an internal 25Ω load to discharge the external capacitors.
2	2	GND	Ground.
3	3	EN	Enable Input: Active-High. High = ON; Low = OFF. For MIC5501 and MIC5502 do not leave floating. MIC5503 and MIC5504 have an internal pull-down and this pin may be left floating.
4	1	VIN	Supply Input.
_	4	NC	No Connection. Pin is not internally connected.
EP	_	ePAD	Exposed Heatsink Pad. Connect to GND for best thermal performance.

4.0 APPLICATION INFORMATION

MIC5501/2/3/4 are low-noise 300 mA LDOs. The MIC5502 and MIC5504 include an auto-discharge circuit that is switched on when the regulator is disabled through the enable (EN) pin. The MIC5503 and MIC5504 have an internal pull-down resistor on the EN pin to ensure the output is disabled if the control signal is tri-stated. The MIC5501/2/3/4 regulators are fully protected from damage due to fault conditions, offering linear current limiting and thermal shutdown. The MIC5501/2/3/4 are not suitable for RF transmitter systems.

4.1 Input Capacitor

The MIC5501/2/3/4 are high performance, high bandwidth devices. An input capacitor of 1 μ F is required from the input to ground to provide stability. Low-ESR ceramic capacitors provide optimal performance at a minimum of space. Additional high frequency capacitors, such as small-valued NPO dielectric-type capacitors, help filter out high frequency noise and are good practice in any RF-based circuit. X5R or X7R dielectrics are recommended for the input capacitor. Y5V dielectrics lose most of their capacitance over temperature and are therefore, not recommended.

4.2 Output Capacitor

The MIC5501/2/3/4 require an output capacitor of 1 μ F or greater to maintain stability. The design is optimized for use with low-ESR ceramic chip capacitors. High ESR capacitors are not recommended because they may cause high frequency oscillation. The output capacitor can be increased, but performance has been optimized for a 1 μ F ceramic output capacitor and does not improve significantly with larger capacitance.

X7R/X5R dielectric-type ceramic capacitors are recommended because of their temperature performance. X7R-type capacitors change capacitance by 15% over their operating temperature range and are the most stable type of ceramic capacitors. Z5U and Y5V dielectric capacitors change value by as much as 50% and 60%, respectively, over their operating temperature ranges. To use a ceramic chip capacitor with Y5V dielectric, the value must be much higher than an X7R ceramic capacitor to ensure the same minimum capacitance over the equivalent operating temperature range.

4.3 No-Load Stability

Unlike many other voltage regulators, the MIC5501/2/3/4 remain stable and in regulation with no load. This is especially important in CMOS RAM keep-alive applications.

4.4 Enable/Shutdown

The MIC5501/2/3/4 each come with an active-high enable pin that allows the regulator to be disabled. Forcing the EN pin low disables the regulator and sends it into an off mode current state drawing virtually zero current. When disabled, the MIC5502 and MIC5504 switches an internal 25Ω load on the regulator output to discharge the external capacitor.

Forcing the EN pin high enables the output voltage. The MIC5501 and MIC5502 enable pin uses CMOS technology and the EN pin cannot be left floating; a floating EN pin may cause an indeterminate state on the output. The MIC5503 and MIC5504 have an internal pull-down resistor on the enable pin to disable the output when the enable pin is floating.

4.5 Thermal Considerations

The MIC5501/2/3/4 are designed to provide 300 mA of continuous current in a very small package. Maximum ambient operating temperature can be calculated based on the output current and the voltage drop across the part. For example if the input voltage is 3.6V, the output voltage is 2.8V, and the output current is 300 mA. The actual power dissipation of the regulator circuit can be determined using Equation 4-1:

EQUATION 4-1:

$$P_D = (V_{IN} - V_{OUTI}) \times I_{OUT} + V_{IN} \times I_{GND}$$

Because this device is CMOS and the ground current is typically <100 μ A over the load range, the power dissipation contributed by the ground current is < 1% and can be ignored for this calculation:

EQUATION 4-2:

$$P_D = (3.6V - 2.8V) \times 300 mA = 0.240W$$

To determine the maximum ambient operating temperature of the package, use the junction-to-ambient thermal resistance of the device and Equation 4-3:

EQUATION 4-3:

$$P_{D(MAX)} = \frac{T_{J(MAX)} - T_A}{\theta_{JA}}$$

Where:

 $T_{J(MAX)}$ = 125°C, the max. junction temp. of the die. θ_{JA} = Thermal resistance of 250°C/W for the UDFN package.

Substituting PD for $P_{D(MAX)}$ and solving for the ambient operating temperature will give the maximum operating conditions for the regulator circuit. The junction-to-ambient thermal resistance for the minimum footprint is 250°C/W.

The maximum power dissipation must not be exceeded for proper operation.

For example, when operating the MIC5501-YMT at an input voltage of 3.6V and 300 mA load with a minimum footprint layout, the maximum ambient operating temperature T_A can be determined as follows:

EQUATION 4-4:

$$0.240W = (125^{\circ}C - T_A)/250^{\circ}C/W$$

 $T_A = 65^{\circ}C$

Therefore, the maximum ambient operating temperature allowed in a 1 mm × 1 mm UDFN package is 65°C. For a full discussion of heat sinking and thermal effects on voltage regulators, refer to the "Regulator Thermals" section of Microchip's Designing with Low-Dropout Voltage Regulators handbook.

5.0 TYPICAL APPLICATION SCHEMATICS

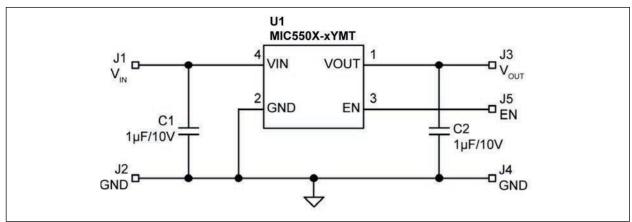


FIGURE 5-1: MIC550x.xYMT Typical Application Schematic.

TABLE 5-1: BILL OF MATERIALS

Item	Part Number	Manufacturer	Description	Qty.
C1, C2	GRM155R61A105KE15D	Murata	Capacitor, 1 µF Ceramic, 10V, X5R, Size 0402	2
	MIC5501-x.xYMT			
U1	MIC5502-x.xYMT	Miorochin	300 mA Single Output LDO in Small	4
01	MIC5503-x.xYMT	Microchip	Packages	1
	MIC5504-x.xYMT			

6.0 PCB LAYOUT RECOMMENDATIONS

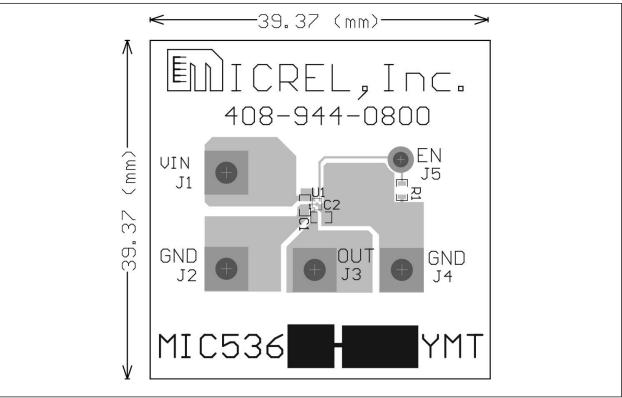


FIGURE 6-1: Top Layer.

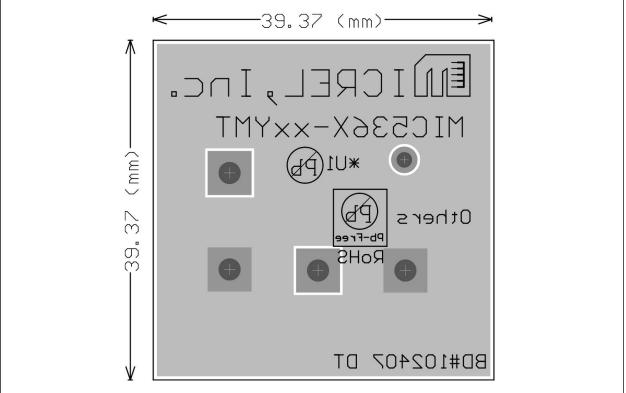


FIGURE 6-2: Bottom Layer.

7.0 PACKAGING INFORMATION

7.1 Package Marking Information

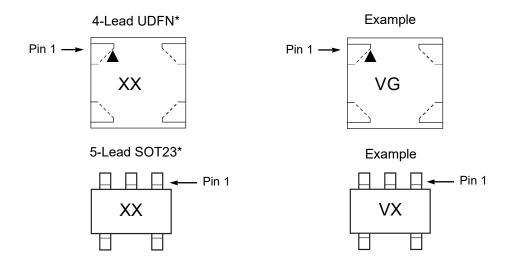
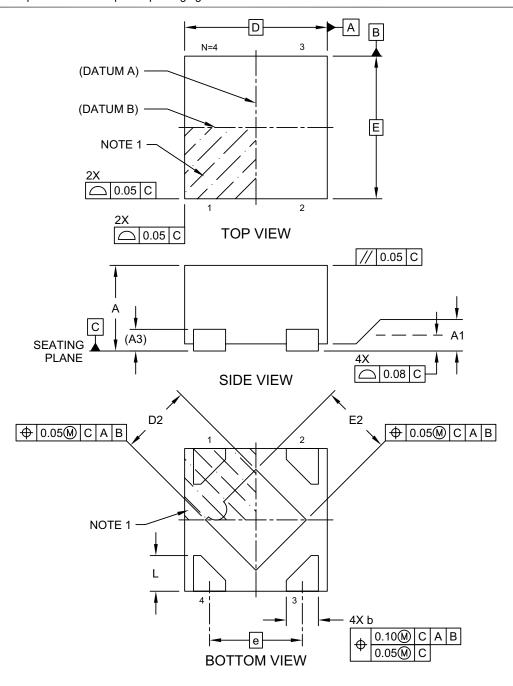


TABLE 7-1: ABBREVIATED TOP MARK

Device	Dookogo	Feature				Out	put Vol	tage			
Device	Package	reature	1.0V	1.2V	1.8V	2.2V	2.5V	2.8V	3.0V	3.1V	3.3V
MIC5501	4L UDFN (MT)	General Purpose	_	_	VG	_	_	_	_	_	_
MIC5501	5L SOT23 (M5)	General Purpose	_	_	_	_	_	_	VX	_	_
MIC5502	4L UDFN (MT)	Auto-Discharge	_	_	XG	_	_	XM	XP	_	_
MIC5502	5L SOT23 (M5)	Auto-Discharge	_	_	_	_	_	_	_	_	_
MIC5503	4L UDFN (MT)	EN Pull-Down	_	XV	ΥV	_	_	_	_	_	_
MIC5503	5L SOT23 (M5)	EN Pull-Down	_	_	_	_	_	_	_	_	_
MIC5504	4L UDFN (MT)	Auto-Discharge & EN Pull-Down	СХ	ZX	GX	UW	UX	MX	PX	TX	sx
MIC5504	5L SOT23 (M5)	Auto-Discharge & EN Pull-Down	_	WX4	WXG		WXJ	WXM	WXP	_	wxs

Legend: XX...X Product code or customer-specific information
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')
NNN Alphanumeric traceability code

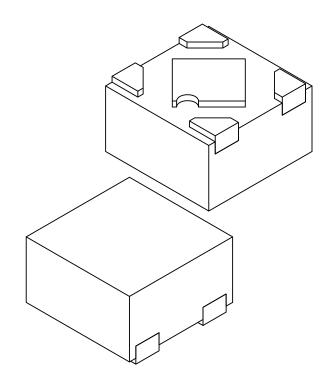
(e3) Pb-free JEDEC® designator for Matte Tin (Sn)
This package is Pb-free. The Pb-free JEDEC designator ((e3))
can be found on the outer packaging for this package.


•, ▲, ▼ Pin one index is identified by a dot, delta up, or delta down (triangle mark).

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. Package may or may not include the corporate logo.

Underbar () and/or Overbar () symbol may not be to scale.

4-Lead Ultra Thin Plastic Dual Flat, No Lead Package (HCA) - 1x1 mm Body [UDFN]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-1149 Rev A Sheet 1 of 2

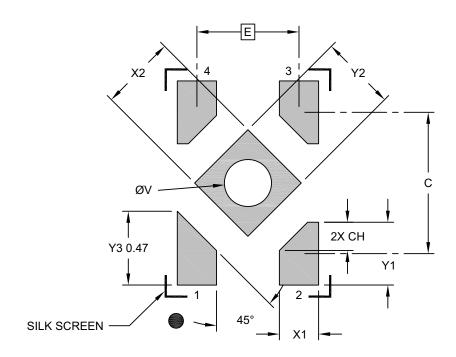
4-Lead Ultra Thin Plastic Dual Flat, No Lead Package (HCA) - 1x1 mm Body [UDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	
Number of Terminals	N		4		
Pitch	е		0.65 BSC		
Overall Height	Α	0.50	0.55	0.60	
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3	0.152 REF			
Overall Length	D		1.00 BSC		
Exposed Pad Length	D2	0.45	0.50	0.55	
Overall Width	Е		1.00 BSC		
Exposed Pad Width	E2	0.45	0.50	0.55	
Terminal Width	b	0.175 0.225 0.275			
Terminal Length	L	0.20	0.25	0.30	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

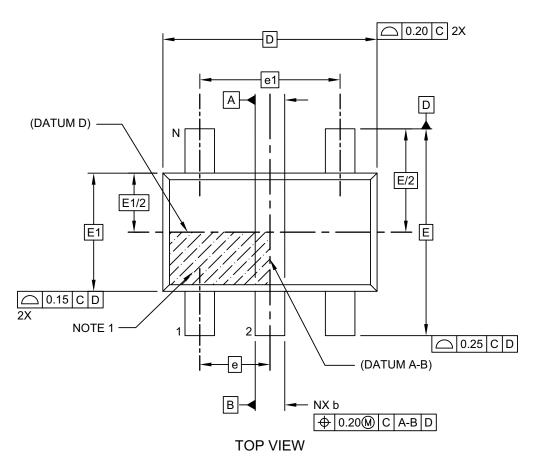
Microchip Technology Drawing C04-1149 Rev A Sheet 2 of 2

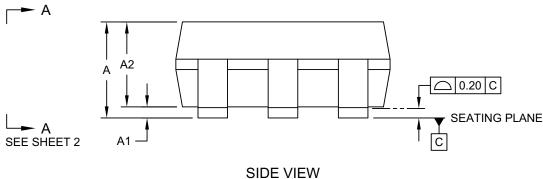
4-Lead Ultra Thin Plastic Dual Flat, No Lead Package (HCA) - 1x1 mm Body [UDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	Е		0.65 BSC	
Center Pad Width	X2			0.48
Center Pad Length	Y2			0.48
Contact Pad Spacing	С		0.90	
Contact Pad Width (X4)	X1			0.25
Contact Pad Length (X3)	Y1			0.40
Terminal 1 Pad Length	Y3			0.47
Contact Pad Chamfer (X3)	CH		0.18	
Thermal Via Diameter	V		0.30	

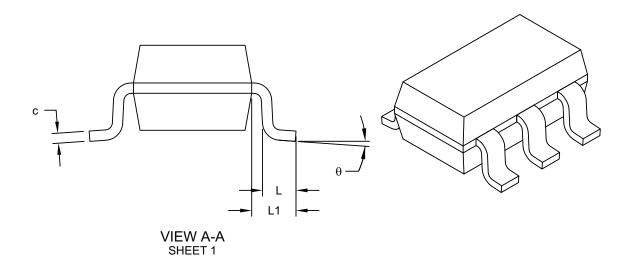

Notes:


- Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-3149 Rev A

5-Lead Plastic Small Outline Transistor (6BX) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



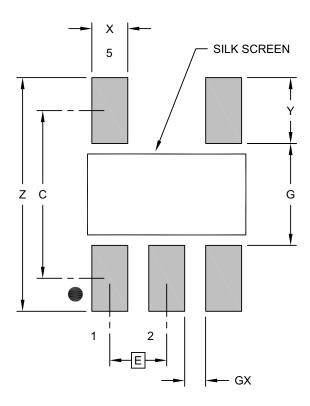
Microchip Technology Drawing C04-091-6BX Rev H Sheet 1 of 2

5-Lead Plastic Small Outline Transistor (6BX) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension I	Limits	MIN	NOM	MAX		
Number of Pins	N		5			
Pitch	е		0.95 BSC			
Outside lead pitch	e1		1.90 BSC			
Overall Height	Α	0.90	-	1.45		
Molded Package Thickness	A2	0.89	-	1.30		
Standoff	A1	-	-	0.15		
Overall Width	Е		2.80 BSC			
Molded Package Width	E1		1.60 BSC			
Overall Length	D		2.90 BSC			
Foot Length	L	0.30	-	0.60		
Footprint	L1	0.60 REF				
Foot Angle	θ	0°	-	10°		
Lead Thickness	С	0.08	-	0.26		
Lead Width	b	0.20	-	0.51		

Notes:


- 1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.
- Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-091-6BX Rev H Sheet 2 of 2

5-Lead Plastic Small Outline Transistor (6BX) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	Е	E 0.95 BSC		
Contact Pad Spacing	С		2.80	
Contact Pad Width (X5)	Х			0.60
Contact Pad Length (X5)	Υ			1.10
Distance Between Pads	G	1.70		
Distance Between Pads	GX	0.35		
Overall Width	Z			3.90

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2091-6BX Rev H

APPENDIX A: REVISION HISTORY

Revision A (April 2018)

- Converted Micrel document MIC5501/2/3/4 to Microchip data sheet DS20006006A.
- · Minor text changes throughout.

Revision B (October 2019)

- Updated Section 4.0 "Application Information" with adding this new sentence - The MIC5501/2/ 3/4 is not suitable for RF transmitter systems.
- Added on the Section 5.0 "Typical Application Schematics" and Section 6.0 "PCB Layout Recommendations" due to non availability of Evaluation Board document.

Revision C (March 2024)

- Replaced the TDFN package type with UDFN throughout the document.
- Updated the package drawings within Section 7.0 "Packaging Information".

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

					Examples:	
Device Part No.	-X.X Output Voltage	<u>X</u> Junction Temp. Range	XX Package	- <u>XX</u> Media Type	a) MIC5501-1.8YMT-T5:	MIC5501, 1.8V Fixed Output Voltage, -40°C to +125°C Temperature Range, 4-Lead UDFN, 500/Reel
Device:	MIC5501: MIC5502: MIC5503: MIC5504:	Single 300 i Single 300 i Down	mA LDO, Gener mA LDO, Auto-I mA LDO, Intern mA LDO, Auto-I	Discharge al EN Pull-	b) MIC5501-3.0YMT-TR:	MIC5501, 3.0V Fixed Output Voltage, -40°C to +125°C Temperature Range, 4-Lead UDFN, 5,000/Reel
	1.0 = 1.2 =	1.0V (MIC5504 1.2V (MIC5503	/MT)	ū	c) MIC5501-3.0YM5-TR:	MIC5501, 3.0V Fixed Output Voltage, -40°C to +125°C Temperature Range, 5-Lead SOT23, 3,000/Reel
Output Voltage:	1.8 = 2.2 = 2.5 = 2.8 =	1.8V (MIC5501 2.2V (MIC5504 2.5V (MIC5504 2.8V (MIC5502	/2/3/4) /MT))		d) MIC5502-2.8YMT-TR:	MIC5502, 2.8V Fixed Output Voltage, -40°C to +125°C Temperature Range, 4-Lead UDFN, 5,000/Reel
	3.0 = 3.1 = 3.3 =	3.0V (MIC5501 3.1V (MIC5504 3.3V (MIC5504	/2/4) /MT)		e) MIC5503-1.2YMT-TR:	MIC5503, 1.2V Fixed Output Voltage, -40°C to +125°C Temperature Range, 4-Lead UDFN, 5,000/Reel
Junction Temperature Range:	Y =	-40°C to +125°C,	RoHS-Complia	nt	f) MIC5504-1.0YMT-T5:	MIC5504, 1.0V Fixed Output Voltage, -40°C to +125°C Temperature Range, 4-Lead UDFN, 500/Reel
Package:	MT = M5 =	4-Lead 1 mm x 1 i 5-Lead SOT23	mm UDFN		g) MIC5504-2.2YMT-TR:	MIC5504, 2.2V Fixed Output Voltage, -40°C to +125°C Temperature Range, 4-Lead UDFN, 5,000/Reel
Media Type:	T5 = TR = TR = TZ =	500/Reel 3,000/Reel (SOT2 5,000/Reel (UDFN 10,000/Reel (UDF	1)		h) MIC5504-3.1YMT-TZ:	MIC5504, 3.1V Fixed Output Voltage, -40°C to +125°C Temperature Range, 4-Lead UDFN, 10,000/Reel
	•	available. Contact 3 are only available			catalog part nu used for ordering the device pact	identifier only appears in the mber description. This identifier is no purposes and is not printed on tage. Check with your Microchip package availability with the option.

NOTES:

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable" Code protection is constantly evolving. Microchip is committed to
 continuously improving the code protection features of our products.

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at https://www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPlC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, TimeCesium, TimeHub, TimePictra, TimeProvider, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, EyeOpen, GridTime, IdealBridge, IGaT, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, MarginLink, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mSiC, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, Power MOS IV, Power MOS 7, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, Turing, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2019 - 2024, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

ISBN: 978-1-6683-4257-2

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd.

Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 **Technical Support:**

http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX

Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi. MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo Tel: 81-3-6880- 3770

Korea - Daegu Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39

Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4485-5910 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-72400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820