

2.13 inch E-paper Display Series WAA0213A2BNA6NXXX000

Product Specifications

Customer	Standard
Description	2.13" E-PAPER DISPLAY Model
Name	WAA0213A2BNA6NXXX000
Date	2024/09/25
Revision	1.1

Design Engineering						
Approval Check Design						

REVISION HISTORY

Rev	Date	Item	Page	Remark
1.0	Aug.26.2024	New Creation	All	
1.1	Sep.25.2024	Update DC Characteristics	Р9	

WINSTAR Display 3/33 2.13 inch Series

CONTENTS

1. Over View	(5)
2. Features	(5)
3. Mechanical Specifications	(5)
4. Mechanical Drawing of EPD module	(6)
5. Input /Output Pin Assignment	(7-8)
6. Electrical Characteristics	(8)
6.1 Absolute Maximum Rating	(8)
6.2 Panel DC Characteristics	(9)
6.3 Panel AC Characteristics	(10)
6.3.1 MCU Interface Selection	(10)
6.3.2 MCU Serial Interface(4-wire SPI)	(10-11)
6.3.3 MCU Serial Interface(3-wire SPI)	(11-12)
6.3.4 Interface Timing	(12)
7. Command Table	(13-23)
8. Optical Specifications	(24)
9. Handling, Safety and Environment Requirements	(24)
10. Reliability test	(25)
11. Typical Application Circuit with SPI Interface	(26)
12. Typical Operating Sequence	(27)
12.1 Normal Operation Flow	(27)
12.2 Normal Operation Reference Program Code	(28)
13. Inspection method and condition	(29)
13.1 Inspection condition	(29)
13.2 Display area	(29)
13.3 General inspection standards for product	(30-32)
14. Packaging	(33)

1. Over View

WAA0213A2BNA6NXXX000 is an Active Matrix Electrophoretic Display (AM EPD), with interface and a reference system design. The display is capable to display images at 1-bit white, black and red full display capabilities. The 2.13inch active area contains 250×122 pixels. The module is a TFT-array driving electrophoresis display, with integrated circuits including gate driver, source driver, MCU interface, timing controller, oscillator, DC-DC, SRAM, LUT, VCOM. Module can be used in portable electronic devices, such as Electronic Shelf Label (ESL) System.

2.Features

- 250×122 pixels display
- High contrast High reflectance
- Ultra wide viewing angle Ultra low power consumption
- Pure reflective mode
- Bi-stable display
- Commercial temperature range
- Landscape portrait modes
- Hard-coat antiglare display surface
- Ultra Low current deep sleep mode
- On chip display RAM
- Waveform can stored in On-chip OTP or written by MCU
- Serial peripheral interface available
- On-chip oscillator
- On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage
- I²C signal master interface to read external temperature sensor
- Built-in temperature sensor

3. Mechanical Specifications

Parameter	Specifications	Unit	Remark
Screen Size	2.13	Inch	
Display Resolution	122(H)×250(V)	Pixel	DPI:130
Active Area	23.7046×48.55	mm	
Pixel Pitch	0.1943×0.1942	mm	
Pixel Configuration	Square		
Outline Dimension	29.2(H)×59.2 (V) ×1.0(D)	mm	
Module Weight	3.2±0.5	g	

*** WINSTAR WAA0213A2BNA6NXXX000 4. Mechanical Drawing of EPD module *59,20±0,20 0.50±0.10-P0.5*23=11.50±0.05-8.15±0.3--2.70 -48.55 A.A--14.30±0.30-3.66±0.3 0 -23.7046 A.A *29.20±0.20 12.50±0.10 --2.75 -0.30±0.03 STIFFENER 6.00±0.50

23	20	18	13 14 15	10	9	6 4 2	PIN NO.
VGL VCOM	VSH1 VGH	VSS VDD	SCL SDA VDDIO	RES# D/C# CS#	TSDA BS1 BUSY	NC VSH2 TSCL	Symbol NC GDR

5. Input /Output Pin Assignment

No.	Name	I/O	Description	Remark
1	NC		Do not connect with other NC pins	Keep Open
2	GDR	О	N-Channel MOSFET Gate Drive Control	
3	RESE	I	Current Sense Input for the Control Loop	
4	NC	NC	Do not connect with other NC pins	Keep Open
5	VSH2	С	Positive Source driving voltage(Red)	
6	TSCL	О	This pin is I ² C Interface to digital temperature sensor Clock pin. External pull up resistor is required when connecting to I ² C slave. When not in use: VSS	
7	TSDA	I/O	This pin is I ² C Interface to digital temperature sensor Data pin. External pull up resistor is required when connecting to I ² C slave. When not in use: VSS	
8	BS1	I	Bus Interface selection pin	Note 5-5
9	BUSY	О	Busy state output pin	Note 5-4
10	RES#	I	Reset signal input. Active Low.	Note 5-3
11	D/C#	I	Data /Command control pin	Note 5-2
12	CS#	I	Chip select input pin	Note 5-1
13	SCL	I	Serial Clock pin (SPI)	
14	SDA	I/O	Serial Data pin (SPI)	
15	VDDIO	P	Power Supply for interface logic pins It should be connected with VCI	
16	VCI	P	Power Supply for the chip	
17	VSS	P	Ground	
18	VDD	С	Core logic power pin VDD can be regulated internally from VCI. A capacitor should be connected between VDD and VSS	
19	VPP	P	FOR TEST	
20	VSH1	С	Positive Source driving voltage	
21	VGH	С	Power Supply pin for Positive Gate driving voltage and VSH1	
22	VSL	С	Negative Source driving voltage	

23	VGL		Power Supply pin for Negative Gate driving voltage VCOM and VSL	
24	VCOM	С	VCOM driving voltage	

I = Input Pin, O =Output Pin, I/O = Bi-directional Pin (Input/output), P = Power Pin, C = Capacitor Pin Note 5-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS# is pulled LOW.

- Note 5-2: This pin is (D/C#) Data/Command control pin connecting to the MCU in 4-wire SPI mode. When the pin is pulled HIGH, the data at SDA will be interpreted as data. When the pin is pulled LOW, the data at SDA will be interpreted as command.
- Note 5-3: This pin (RES#) is reset signal input. The Reset is active low.
- Note 5-4: This pin is Busy state output pin. When Busy is High, the operation of chip should not be interrupted, command should not be sent. The chip would put Busy pin High when —Outputting display waveform -Communicating with digital temperature sensor

Note 5-5: Bus interface selection pin

BS1 State	MCU Interface
L	4-lines serial peripheral interface(SPI) - 8 bits SPI
Н	3- lines serial peripheral interface(SPI) - 9 bits SPI

6. Electrical Characteristics

6.1 Absolute Maximum Rating

Parameter	Symbol	Rating	Unit
Logic supply voltage	VCI	-0.5 to +6.0	V
Logic Input voltage	VIN	-0.5 to VCI +0.5	V
Logic Output voltage	VOUT	-0.5 to VCI +0.5	V
Operating Temp range	TOPR	0 to +40	° C
Storage Temp range	TSTG	-25 to+70	° C
Optimal Storage Temp	TSTGo	23±2	° C
Optimal Storage Humidity	HSTGo	55±10	%RH

Note:

Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Panel DC Characteristics tables.

WINSTAR Display 8/33 2.13 inch Series

6.2 Panel DC Characteristics

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =25°C.

Parameter Parameter	Symbol	Conditions	Applica ble pin	Min.	Typ.	Max	Units
Single ground	V_{SS}	-		-	0	-	V
Logic supply voltage	V_{CI}	-	VCI	2.2	3.0	3.7	V
Core logic voltage	$ m V_{DD}$		VDD	1.7	1.8	1.9	V
High level input voltage	$ m V_{IH}$	-	-	0.8 V _{CI}	-	-	V
Low level input voltage	V_{IL}	-	-	-	-	0.2 V _{CI}	V
High level output voltage	$ m V_{OH}$	IOH = -100uA	-	0.9 VCI	-	-	V
Low level output voltage	$V_{ m OL}$	IOL = 100uA	-	-	-	0.1 V _{CI}	V
Typical power	P_{TYP}	$V_{\rm CI} = 3.0 \rm V$	-	-	7.8	12	mW
Deep sleep mode	P _{STPY}	$V_{CI} = 3.0 V$	-	-	0.003	0.015	mW
Typical operating current	Iopr_V _{CI}	$V_{CI} = 3.0 V$	-	-	2.6	4	mA
Image update time	-	25 °C	-	-	22	-	sec
Sleep mode current	Islp_V _{CI}	DC/DC off No clock No input load Ram data retain	-	-	20		uA
Deep sleep mode current	Idslp_V _{CI}	DC/DC off No clock No input load Ram data not retain	-	-	1	5	uA

Notes: 1. The typical power is measured with following transition from horizontal 3 scale pattern to vertical 3 scale pattern.

- 2. The deep sleep power is the consumed power when the panel controller is in deep sleep mode.
- 3. The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by WINSTAR.
- 4. Electrical measurement: Multimeter

WINSTAR Display 9/33 2.13 inch Series

6.3 Panel AC Characteristics

6.3.1 MCU Interface Selection

The pin assignment at different interface mode is summarized in Table 6-4-1. Different MCU mode can be set by hardware selection on BS1 pins. The display panel only supports 4-wire SPI or 3-wire SPI interface mode.

Pin Name	Data/Comma	nd Interface	(Control Signa	l
Bus interface	SDA	SCL	CS#	D/C#	RES#
BS1=L 4-wire SPI	SDA	SCL	CS#	D/C#	RES#
BS1=H 3-wire SPI	SDA	SCL	CS#	L	RES#

6.3.2 MCU Serial Interface (4-wire SPI)

The serial interface consists of serial clock SCL, serial data SDA, D/C#, CS#. This interface supports Write mode and Read mode.

Function	CS#	D/C#	SCL
Write command	L	L	†
Write data	L	Н	†

Note: ↑ stands for rising edge of signal

In the write mode SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM /Data Byte register or command Byte register according to D/C# pin.

Figure 6-1: Write procedure in 4-wire SPI mode

In the Read mode:

- 1. After driving CS# to low, MCU need to define the register to be read.
- 2. SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0 with D/C# keep low.
- 3. After SCL change to low for the last bit of register, D/C# need to drive to high.
- 4. SDA is shifted out an 8-bit data on every falling edge of SCL in the order of D7, D6, ... D0.
- 5. Depending on register type, more than 1 byte can be read out. After all byte are read, CS# need to drive to high to stop the read operation.

WINSTAR Display 10/33 2.13 inch Series

Figure 6-2: Read procedure in 4-wire SPI mode

6.3.3 MCU Serial Interface (3-wire SPI)

The 3-wire serial interface consists of serial clock SCL, serial data SDA and CS#. This interface also supports Write mode and Read mode.

The operation is similar to 4-wire serial interface while D/C# pin is not used. There are altogether 9-bits will be shifted into the shift register on every ninth clock in sequence: D/C# bit, D7 to D0 bit. The D/C# bit (first bit of the sequential data) will determine the following data byte in the shift register is written to the Display Data RAM (D/C# bit = 1) or the command register (D/C# bit = 0).

Function	CS#	D/C#	SCL
Write command	L	Tie	†
Write data	L	Tie	1

Note: † stands for rising edge of signal

Figure 6-3: Write procedure in 3-wire SPI mode

In the Read mode:

- 1. After driving CS# to low, MCU need to define the register to be read.
- 2. D/C=0 is shifted thru SDA with one rising edge of SCL
- 3. SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0.
- 4. D/C=1 is shifted thru SDA with one rising edge of SCL
- 5. SDA is shifted out an 8-bit data on every falling edge of SCL in the order of D7, D6, ... D0.
- 6. Depending on register type, more than 1 byte can be read out. After all byte are read, CS# need to drive to high to stop the read operation.

WINSTAR Display 11/33 2.13 inch Series

Figure 6-4: Read procedure in 3-wire SPI mode

6.3.4 Interface Timing

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =25°C.

Serial Interface Timing Characteristics

 $(VCI - VSS = 2.2V \text{ to } 3.7V, TOPR = 25^{\circ}C, CL=20pF)$

Write mode

Symbol	Parameter	Min	Тур	Max	Unit
f _{SCL}	SCL frequency (Write Mode)			20	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	60			ns
tcshld	Time CS# has to remain low after the last falling edge of SCLK	65			ns
tcsнigh	Time CS# has to remain high between two transfers	100			ns
tsclhigh	Part of the clock period where SCL has to remain high	25			ns
tscllow	Part of the clock period where SCL has to remain low	25			ns
tsisu	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10			ns
tsiHLD	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	40			ns

Read mode

Symbol	Parameter	Min	Тур	Max	Unit
f _{SCL}	SCL frequency (Read Mode)			2.5	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	100			ns
tcshld	Time CS# has to remain low after the last falling edge of SCLK	50			ns
tcshigh	Time CS# has to remain high between two transfers	250			ns
tschiigh	Part of the clock period where SCL has to remain high	180			ns
tscllow	Part of the clock period where SCL has to remain low	180			ns
tsosu	Time SO(SDA Read Mode) will be stable before the next rising edge of SCL		50	1	ns
tsohld	Time SO (SDA Read Mode) will remain stable after the falling edge of SCL		0		ns

7. Command Table

R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descripti	on		
0	0	01	0	0	0	0	0	0	0	1	Driver Output control	Gate setti			
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao		A[8:0]= 1:	27h [POR], 296 MU	
0	_	-	_	_				_		-	-	MUX Gat	e lines se	tting as (A	[8:0] + 1).
0	1		0	0	0	0	0	0 B ₂	0 B ₁	A ₈ B ₀		B[2:0] = 0 Gate scar B[2]: GD Selects th GD=0 [PC G0 is the output se GD=1, G1 is the output se B[1]: SM Change s SM=0 [PC G0, G1, C interlaced SM=1, G0, G2, C B[0]: TB	no [POR] nning seq ne 1st outp DR], 1st gate of quence is canning of DR], 62, G32	uence and	nnel, gate 2, G3, nnel, gate 33, G2, te driver. nd right ga
														G295 to G	
0	0	03	0	0	0	0	0	0	1	1	Gate Driving voltage	Set Gate	driving vo	ltage	
0	1	00	0	0	0	A ₄	A ₃	A ₂	A ₁	Ao	Control	A[4:0] = 0	0h [POR]	ilage	
U	1		U	U	U	H4	A 3	H ₂	A ₁	A ₀				0V to 20V	Š.
												A[4:0]	VGH	A[4:0]	VGH
												00h	20	0Dh	15
												03h	10	0Eh	15.5
												04h	10.5	0Fh	16
												05h	11	10h	16.5
												06h	11.5	11h	17
	I I											07h	12	12h	17.5
												08h	12.5	13h	18
						1						07h	12	14h	40 E
														1711	18.5
												08h	12.5	15h	19
												08h	12.5	15h	19
												08h 09h	12.5 13	15h 16h	19 19.5

	man		D7	D6	D5	D4	D3	D2	D1	D0	Comm	and		Description
-	2000000	(8) (8) (8)	-2.8	1,55,50	550		10000	332263	3555	0.00	2-2000000000000000000000000000000000000	1999-2011-1912-		Section (Control of the Control of t
0	0	04	0	0	0	0	0	1	0	0	Contro	Driving	voltage	Set Source driving voltage A[7:0] = 41h [POR], VSH1 at 15V
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Contro			B[7:0] = A8h [POR], VSH2 at 5V.
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	B ₀				C[7:0] = 32h [POR], VSL at -15V
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co				Remark: VSH1>=VSH2
171	/B[7]	= 1						Αľ	7]/B[7	$r_1 = 0$)			C[7] = 0,
	11/VS		oltac	e se	ttina	from	2 4V					e setting	from 9V	
	.8V		onag	,0 00	tunig				17V	0, 12	Tonag	o oounig		versetting nem ev te m.v
	B[7:0]	VSH	1/VSH2	A/B	[7:0]	VSH1	/VSH2	_	A/B[7:0]	VS	H1/VSH2	A/B[7:0]	VSH1/VSH	2 C[7:0] VSL
	BEh	_	2.4	_	Fh		.7		23h		9	3Ch	14	0Ah -5
	8Fh 90h		2.5	372	0h	1,17	.8	 -	24h 25h	-	9.2	3Dh 3Eh	14.2	0Ch -5.5
	91h	-	2.7	_	2h		6	\vdash	26h	+	9.6	3Fh	14.6	0Eh -6
	92h		2.8		3h		.1		27h	+	9.8	40h	14.8	10h -6.5
177	93h		2.9	1770	4h	27.77	.2		28h		10	41h	15	12h -7
_	94h	-	3		5h		.3		29h		10.2	42h	15.2	14h -7.5
	95h 96h	_	3.1	_	6h 7h	_	.5		2Ah	-	10.4	43h	15.4	16h -8
	96n 97h		3.3		8h		.6	\vdash	2Bh 2Ch	_	10.6	44h 45h	15.6 15.8	18h -8.5 1Ah -9
	98h	_	3.4		9h	_	.7		2Dh	+	11	46h	16	1An -9 1Ch -9.5
	99h	_	3.5	-	Ah	_	.8		2Eh		11.2	47h	16.2	1Eh -10
_	9Ah		3.6	1977	Bh	7.00	.9		2Fh		11.4	48h	16.4	20h -10.5
	9Bh 9Ch		3.7		Ch Dh		7	<u> </u>	30h 31h	-	11.6 11.8	49h 4Ah	16.6 16.8	22h -11
- 30	9Dh		3.9		Eh	100	.2	\vdash	32h	+	12	4Bh	17	24h -11.5
9	9Eh	-	4		Fh		.3		33h	Ť	12.2	Other	NA	26h -12
	9Fh	_	4.1		Oh		.4		34h		12.4			28h -12.5
	A0h	-	4.2	_	1h		.5		35h	_	12.6			2Ah -13
	A1h A2h	_	4.3	_	2h 3h	_	.6 .7	\vdash	36h 37h	+	12.8			2Ch -13.5
	A3h	-	4.5	_	4h		.8	\vdash	38h	+	13.2			2Eh -14
- 22	A4h	_	4.6	_	5h		.9		39h	\top	13.4			30h -14.5
	A5h	_	4.7	-	6h		8		3Ah		13.6			32h -15
	A6h	_	4.8		7h		.1		3Bh		13.8			34h -15.5
	A7h A8h	_	4.9 5	_	8h 9h	100	.2							36h -16 38h -16.5
	A9h	_	5.1	_	Ah		.4							3Ah -17
P	AAh	1	5.2	C	Bh	8	.5							Other NA
	ABh	_	5.3	_	Ch		.6							
- 63	ACh ADh		5.4		Dh Eh		.7							
	AEh	_	5.6	_	ther		IA.							
		5 8	-				200							
														3
					-						1			
0	0	08	0	0	0	0	1	0	0	0		Code Set	ting	Program Initial Code Setting
											OTP P	rogram		
														The command required CLKEN=1.
														Refer to Register 0x22 for detail.
														BUSY pad will output high during
														operation.
	- 1													I
0	0	09	0	0	0	0	1	0	0	1			for Initial	Write Register for Initial Code Setting
0	1		A ₇	A ₆	A5	A ₄	A ₃	A ₂	A ₁	Ao	Code S	Setting		Selection
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo	1			A[7:0] ~ D[7:0]: Reserved
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co	1			Details refer to Application Notes of Initia
-00	- 2		3000000	50000	26200	K 100 P.C.	65581	1-300111	152947	15.00	1			Code Setting
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀				
- 1														
					120.70	07520	30	9/20	- 3	_			20 00 000000	
0	0	0A	0	0	0	0	1	0	1	0	Read I	Register	for Initial	Read Register for Initial Code Setting

	man	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	
0	0	0C	0	0	0	0	1	1	0	0	Booster Soft start	The second secon	with Phase 1, Phase 2 and Phase
0		UC	1	1 35 1	100			- 22	100	A ₀	Control		rent and duration setting.
0	1		1	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	B ₀	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A[7:0] -> Soft sta	art setting for Phase1
DEAD.			(2.0)		M. E. Cons	-	Hartesta.		100000		_	= 8Bh	[POR]
0	1		1	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀	-		art setting for Phase2 [POR]
0	1		0	0	D ₅	D ₄	Dз	D ₂	D ₁	D ₀		C[7:0] -> Soft st	art setting for Phase3
												= 96h D[7:0] -> Duratio	[POR]
													[POR]
												Bit Descrip	otion of each byte:
													5:0] / C[6:0]: Driving Strength
												Bit[6:4]	Selection
												000	1(Weakest)
												001	2
												010	3
												011	4
												100	5
												101	6
												110	7
												111	8(Strongest)
												Bit[3:0]	Min Off Time Setting of GDR [Time unit]
												0000	NA
												0011	INA
												0100	2.6
												0101	3.2
												0110	3.9
												0111	4.6
												1000	5.4
												1001	6.3
												1010	7.3
												1011	8.4
												1100	9.8
												1101	11.5
												1110	13.8
												1111	16.5
												D[5:4]: du D[3:2]: du	ration setting of phase uration setting of phase 3 uration setting of phase 2 uration setting of phase 1
												Bit[1:0]	Duration of Phase [Approximation]
												00	10ms
												01	20ms
												10	30ms
												11	40ms
0	0	10	0	0	0	1	0	0	0	0 D	eep Sleep mode	Deep Sleep n	node Control
0	1	10	0	0	0	0	ettes (A			4 ₀	oop oloop Houe		escription
U	- 12		9				٠	,	1	10			ormal Mode [POR]
													nter Deep Sleep Mode 1
												1.300	nter Deep Sleep Mode 2
													- 4 - 4
												enter Deep S keep output h Remark:	
												to send HWR	Sleep mode, User required ESET to the driver

0	0	11	0	0	0	1	0	0	0	1	Data Entry mode setting	Define data entry sequence
0	1		0	0	0	0	0	A ₂	A ₁	Ao	Data Entry mode setting	A[2:0] = 011 [POR] A [1:0] = ID[1:0] Address automatic increment / decrement setting The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. 00 –Y decrement, X decrement, 01 –Y decrement, X increment, 10 –Y increment, X decrement, 11 –Y increment, X increment [POR] A[2] = AM Set the direction in which the address counter is updated automatically after data are written to the RAM. AM= 0, the address counter is updated in the X direction. [POR] AM = 1, the address counter is updated in the Y direction.
0	0	12	0	0	0	1	0	0	1	0	SW RESET	It resets the commands and parameters to their S/W Reset default values except R10h-Deep Sleep Mode During operation, BUSY pad will output high. Note: RAM are unaffected by this command.
0	0	14	0	0	0	1	0	1	0	0	HV Ready Detection	HV ready detection A[7:0] = 00h [POR] The command required CLKEN=1 and ANALOGEN=1. Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	1		0	A ₆	A ₅	A4	0	A ₂	A ₁	Ao		A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will be completed when HV is ready. For 1 shot HV ready detection, A[7:0] can be set as 00h.

WINSTAR Display 16/33 2.13 inch Series

0	0	15	0	0	0	1	0	1	0	1	VCI Detection	VCI Detection
0	1		0	0	0	0	0	A ₂	A ₁	A ₀		A[2:0] = 100 [POR] , Detect level at 2.3V
												A[2:0] : VCI level Detect A[2:0] VCI level
												011 2.2V
												100 2.3V
												101 2.4V
												110 2.5V
												111 2.6V
												Other NA
												The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. After this command initiated, VCI
												detection starts. BUSY pad will output high during detection. The detection result can be read from th Status Bit Read (Command 0x2F).
0	0	18	0	0	0	1	1	0	0	0	Temperature Sensor	Temperature Sensor Selection
0	1	10	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Control	A[7:0] = 48h [POR], external temperatru
U	3		A	7.10	7.5	74	7.5	7.2	A	710		sensor
_										ļ		A[7:0] = 80h Internal temperature senso
0	0	1A	0	0	0	1	1	0	1	0	Temperature Sensor	Write to temperature register.
0	1	1/1	A ₁₁	A ₁₀	A ₉	A ₈	A ₇	A ₆	A ₅	A ₄	Control (Write to	A[11:0] = 7FFh [POR]
0	1		A11	A ₁₀		A ₀	0	0	0	0	temperature register)	
U	1		A 3	H2	A ₁	H ₀	U	U	U	U	40 100	
0	0	1B	0	0	0	1	1	0	1	1	Temperature Sensor	Read from temperature register.
1	1		A ₁₁	A ₁₀	A ₉	A ₈	A ₇	A ₆	A ₅	A ₄	Control (Read from	
1	1		A ₃	A ₂	A ₁	Ao	0	0	0	0	temperature register)	
0	0	10	S-280	92/64	2000		A	A	0	^	Tamparature C	Write Command to Fisher of Leave to
0	0	1C	0	0	0	1	1	1	0	0 A ₀	Temperature Sensor Control (Write Command	Write Command to External temperature sensor.
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	B ₀	to External temperature	A[7:0] = 00h [POR],
22.5										_	sensor)	B[7:0] = 00h [POR],
0	0	20	C ₇	C ₆	C ₅	C4	C ₃	C ₂	C ₁	C ₀	Master Activation	C[7:0] = 00h [POR], A[7:6] A[7:6] A[7:6] Select no of byte to be sent 00 Address + pointer 10 Address + pointer + 1st parameter 11 Address A[5:0] - Pointer Setting B[7:0] - 1st parameter C[7:0] - 2nd parameter C[7:0] - 2nd parameter The command required CLKEN=1. Refer to Register 0x22 for detail. After this command initiated, Write Command to external temperature sens starts. BUSY pad will output high during operation.
5		20	U	U	1	U	U	U	V	U	IVIASIEI ACIIVAIIOII	The Display Update Sequence Option is located at R22h. BUSY pad will output high during operation. User should not interrupt this operation to avoid corruption of panel images.

0	0	21	0 A ₇	0 A ₆	1 A ₅	0 A ₄	0 A ₃	0 A ₂	0 A ₁	1 A ₀	Display Update Control	RAM content A[7:0] = 00h	t option for Display [POR]	Update
0	1		B ₇	0	0	0	0	0	0	0		B[7:0] = 00h		
												A[7:4] Red R	AM option	
												0000	Normal	
												0100	Bypass RAM cor	
												1000	Inverse RAM cor	itent
												A[3:0] BW R		
												0000	Normal Bypass RAM cor	tont on
												1000	Inverse RAM cor	
												B[7] Source	Output Mode ble Source from S ble Source from S	0 to S17
0	0	22	0 A ₇	0 A ₆	1 A ₅	0 A ₄	0 A ₃	0 A ₂	1 A ₁	0 A ₀	Display Update Control 2	Display Upda Enable the s A[7:0]= FFh	ate Sequence Opti tage for Master Ac (POR)	on: tivation
													ting sequence	Paramet (in Hex
												Enable clock significant		80
												Disable Clock Si	ynai	UI
												Enable clock sig		CO
												→ Enable Analog Disable Analog	og	53600
												→ Disable clock	k signal	03
												→ Disable clock	ith DISPLAY Mode 1 k signal	91
												→ Load LUT w → Disable clock	th DISPLAY Mode 2	99
												→ Disable cloc	rature value ith DISPLAY Mode 1 k signal	B1
												→ Load temper → Load LUT wi → Disable clock	rature value ith DISPLAY Mode 2	В9
												Enable clock sig → Enable Anal → Display with → Disable Anal → Disable OSC	og DISPLAY Mode 1 log	C7
												Enable clock sig → Enable Anale Display with → Disable Anale → Disable OSC	og DISPLAY Mode 2 log	CF
												→ Disable Anal→ Disable OSC	og ature value th DISPLAY Mode 1 log	F7
												Enable clock sig → Enable Anald → Load temper → DISPLAY wi → Disable Anal → Disable OSC	og rature value th DISPLAY Mode 2 log	FF
0	0	24	0	0	1	0	0	1	0	0	Write RAM (Black White) / RAM 0x24	written into the	nmand, data entrie ne BW RAM until a written. Address p ordingly	nother
												For Black pix	Write RAM(BW) =	

WINSTAR Display 18/33 2.13 inch Series

	man D/C#		D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	26	0	0	1	0	0	1	1	0	Write RAM (RED) / RAM 0x26	After this command, data entries will be written into the RED RAM until another command is written. Address pointers will advance accordingly.
				2 3								For Red pixel: Content of Write RAM(RED) = 1 For non-Red pixel [Black or White]: Content of Write RAM(RED) = 0
0	0	27	0	0	1	0	0	1	1	1	Read RAM	After this command, data read on the MCU bus will fetch data from RAM. According to parameter of Register 41h t select reading RAM0x24/ RAM0x26, untianother command is written. Address pointers will advance accordingly.
												The 1st byte of data read is dummy data.
0	0	28	0	0	1	0	1	0	0	0	VCOM Sense	Enter VCOM sensing conditions and hold for duration defined in 29h before reading VCOM value. The sensed VCOM voltage is stored in register The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail.
												BUSY pad will output high during operation.
0	0	29	0	0	1	0	1	0	0	1	VCOM Sense Duration	Stabling time between entering VCOM
0	1		0	1	0	0	A ₃	A ₂	A ₁	Ao	V COM COME DANAMENT	sensing mode and reading acquired. A[3:0] = 9h, duration = 10s. VCOM sense duration = (A[3:0]+1) sec
0	0	2A	0	0	1	0	1	0	1	0	Program VCOM OTP	Program VCOM register into OTP
												The command required CLKEN=1. Refer to Register 0x22 for detail.
												BUSY pad will output high during operation.
0	0	2B	0	0	1	0	1	0	1	1	Write Register for VCOM	This command is used to reduce glitch
958	1	_	0	0	0	0	0	1	0	0	Control	when ACVCOM toggle. Two data bytes
0			-								1	D04h and D63h should be set for this

WINSTAR Display 19/33 2.13 inch Series

		d Ta		De	DE	D4	Da	Da	D4	D0	C	Danish			
	-			D6	D5	D4	D3	D2	D1	D0	Command	Descript			
0	0	2C	0	0	1	0	1	1	0	0	Write VCOM register	Write VC	OM regist	er from M	ICU interfa
0	1		A ₇	A ₆	A5	A ₄	Аз	A_2	A ₁	A ₀		A[7:0] =	00h [POR]		
												A[7:0]	VCOM	A[7:0]	VCOM
												08h	-0.2	44h	-1.7
												0Ch	-0.3	48h	-1.8
															1.1.50
												10h	-0.4	4Ch	-1.9
												14h	-0.5	50h	-2
												18h	-0.6	54h	-2.1
												1Ch	-0.7	58h	-2.2
												20h	-0.8	5Ch	-2.3
												24h	-0.9	60h	-2.4
												28h	-1	64h	-2.5
												2Ch	-1.1	68h	-2.6
												30h	-1.2	6Ch	-2.7
												34h	-1.3	70h	-2.8
												38h	-1.4	74h	-2.9
												3Ch	-1.5	78h	-3
												40h	-1.6	Other	NA
0	0	2D	0	0	1	0	1	1	0	1	OTP Pogistor Pand for	Dood D	egister for	Dienlau	Ontion:
3.51	15//	20	75-54	77.555	1	878	1	1	0	1	OTP Register Read for Display Option	Read R	egister for	Display (շ բստո.
1	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Elepiaj Option	A[7:0]: \	VCOM OT	P Selecti	on
1	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	B ₀			and 0x37,		
1	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co			voc	AND THE PERSONS	
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀			VCOM Re		
1	1		E ₇	E ₆	E ₅	E ₄	Ез	E ₂	E ₁	Eo		(Comm	and 0x2C)	3	
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	Fo		C[7:0]~	G[7:0]: Dis	nlay Moo	ام
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go			and 0x37,		
1	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	H ₁	H₀		[5 bytes		2,10 2 10	, Dj. 5 . j
		1	-			-	_		-	_		. ,	4		
1	1	-	17	16	15	14	l ₃	12	I ₁	lo			K[7:0]: Wa		
1	1		J ₇	J ₆	J ₅	J ₄	Jз	J_2	J_1	Jo			and 0x37,	Byte G to	Byte J)
1	1		K ₇	K ₆	K ₅	K ₄	K ₃	K ₂	K ₁	K ₀		[4 bytes	5]		
•		0=	•	_		0	4	4	-	_	II. ID.D. I	D 140	-		I. OTD
0	0	2E	0	0	1	0	1	1	1	0	User ID Read				ed in OTP: Byte A and
	1		A ₇	A ₆	A5	A ₄	Аз	A ₂	A ₁	Ao			[10 bytes]	11D (N30,	byte A and
1			B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo		Dyte of	[10 bytes]		
1	1			_	C ₅	C ₄	C ₃	C ₂	C ₁	Co					
-	1		C ₇	C ₆		D. TOOLS S. S. S.	TWO 20	10000122	D ₁	Do		1			
1	1		_	_	Ds	D ₄	Da	Da				l l			
1 1 1	1		D ₇	D ₆	D ₅		D ₃	D ₂	0.000	100000					
1 1 1	1 1 1		D ₇	D ₆	E ₅	E ₄	Ез	E ₂	E ₁	E ₀					
1 1 1 1	1 1 1 1		D ₇ E ₇ F ₇	D ₆ E ₆ F ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀					
1 1 1 1 1	1 1 1 1 1		D ₇ E ₇ F ₇ G ₇	D ₆ E ₆ F ₆ G ₆	E ₅ F ₅ G ₅	E ₄ F ₄ G ₄	F ₃ G ₃	F ₂ G ₂	E ₁ F ₁ G ₁	E ₀ F ₀					
1 1 1 1	1 1 1 1		D ₇ E ₇ F ₇	D ₆ E ₆ F ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀					
1 1 1 1 1	1 1 1 1 1		D ₇ E ₇ F ₇ G ₇	D ₆ E ₆ F ₆ G ₆	E ₅ F ₅ G ₅	E ₄ F ₄ G ₄	F ₃ G ₃	F ₂ G ₂	E ₁ F ₁ G ₁	E ₀ F ₀					
1 1 1 1 1 1	1 1 1 1 1 1		D ₇ E ₇ F ₇ G ₇ H ₇	D ₆ E ₆ F ₆ G ₆ H ₆	E ₅ F ₅ G ₅ H ₅	E ₄ F ₄ G ₄ H ₄	E ₃ F ₃ G ₃ H ₃	F ₂ G ₂ H ₂	E ₁ F ₁ G ₁ H ₁	E ₀ F ₀ G ₀					
1 1 1 1 1 1 1	1 1 1 1 1 1 1	2F	D ₇ E ₇ F ₇ G ₇ H ₇ I ₇	D ₆ E ₆ F ₆ G ₆ H ₆	E ₅ F ₅ G ₅ H ₅ I ₅	E ₄ F ₄ G ₄ H ₄	E ₃ F ₃ G ₃ H ₃ I ₃	E ₂ F ₂ G ₂ H ₂ I ₂	E ₁ F ₁ G ₁ H ₁ I ₁	E ₀ F ₀ G ₀ H ₀	Status Bit Read	Read IC:	status Bit	IPOR 0x0	011
1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 0	2F	D ₇ E ₇ F ₇ G ₇ H ₇	D ₆ E ₆ F ₆ G ₆ H ₆ I ₆	E ₅ F ₅ G ₅ H ₅ I ₅ I ₅ I ₅ I ₁	E4 F4 G4 H4 I4 J4	E ₃ F ₃ G ₃ H ₃ I ₃ J ₃	F ₂ G ₂ H ₂	E ₁ F ₁ G ₁ H ₁ I ₁ J ₁	E ₀ F ₀ G ₀ H ₀ I ₀ J ₀	Status Bit Read	Read IC A[5]: HV	status Bit Ready De	POR 0x0	01] ag [POR=0]
1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	2F	D ₇ E ₇ F ₇ G ₇ H ₇ I ₇ O	D ₆ E ₆ F ₆ G ₆ H ₆ I ₆ J ₆	E ₅ F ₅ G ₅ H ₅ I ₅	E4 F4 G4 H4 I4	E ₃ F ₃ G ₃ H ₃ I ₃	E ₂ F ₂ G ₂ H ₂ I ₂ J ₂	E ₁ F ₁ G ₁ H ₁ I ₁	E ₀ F ₀ G ₀ H ₀ J ₀	Status Bit Read	A[5]: HV 0: Ready	Ready De	[POR 0x0 tection fla	01] ag [POR=0]
1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 0	2F	D ₇ E ₇ F ₇ G ₇ H ₇ I ₇ O	D ₆ E ₆ F ₆ G ₆ H ₆ I ₆ J ₆	E ₅ F ₅ G ₅ H ₅ I ₅ I ₅ I ₅ I ₁	E4 F4 G4 H4 I4 J4	E ₃ F ₃ G ₃ H ₃ I ₃ J ₃	E ₂ F ₂ G ₂ H ₂ I ₂ J ₂	E ₁ F ₁ G ₁ H ₁ I ₁ J ₁	E ₀ F ₀ G ₀ H ₀ I ₀ J ₀	Status Bit Read	A[5]: HV 0: Ready 1: Not Re	Ready De eady	tection fla	ag [POR=0]
1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 0	2F	D ₇ E ₇ F ₇ G ₇ H ₇ I ₇ O	D ₆ E ₆ F ₆ G ₆ H ₆ I ₆ J ₆	E ₅ F ₅ G ₅ H ₅ I ₅ I ₅ I ₅ I ₁	E4 F4 G4 H4 I4 J4	E ₃ F ₃ G ₃ H ₃ I ₃ J ₃	E ₂ F ₂ G ₂ H ₂ I ₂ J ₂	E ₁ F ₁ G ₁ H ₁ I ₁ J ₁	E ₀ F ₀ G ₀ H ₀ I ₀ J ₀	Status Bit Read	A[5]: HV 0: Ready 1: Not Re A[4]: VCI	Ready De eady Detection	tection fla	ag [POR=0]
1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 0	2F	D ₇ E ₇ F ₇ G ₇ H ₇ I ₇ O	D ₆ E ₆ F ₆ G ₆ H ₆ I ₆ J ₆	E ₅ F ₅ G ₅ H ₅ I ₅ I ₅ I ₅ I ₁	E4 F4 G4 H4 I4 J4	E ₃ F ₃ G ₃ H ₃ I ₃ J ₃	E ₂ F ₂ G ₂ H ₂ I ₂ J ₂	E ₁ F ₁ G ₁ H ₁ I ₁ J ₁	E ₀ F ₀ G ₀ H ₀ I ₀ J ₀	Status Bit Read	A[5]: HV 0: Ready 1: Not Re A[4]: VCI 0: Norma	Ready De eady Detection	tection fla	ag [POR=0] R=0]
1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 0	2F	D ₇ E ₇ F ₇ G ₇ H ₇ I ₇ O	D ₆ E ₆ F ₆ G ₆ H ₆ I ₆ J ₆	E ₅ F ₅ G ₅ H ₅ I ₅ I ₅ I ₅ I ₁	E4 F4 G4 H4 I4 J4	E ₃ F ₃ G ₃ H ₃ I ₃ J ₃	E ₂ F ₂ G ₂ H ₂ I ₂ J ₂	E ₁ F ₁ G ₁ H ₁ I ₁ J ₁	E ₀ F ₀ G ₀ H ₀ I ₀ J ₀	Status Bit Read	A[5]: HV 0: Ready 1: Not Re A[4]: VCI 0: Norma 1: VCI lo	Ready De eady Detection al wer than th	tection fla	ag [POR=0] R=0]
1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 0	2F	D ₇ E ₇ F ₇ G ₇ H ₇ I ₇ O	D ₆ E ₆ F ₆ G ₆ H ₆ I ₆ J ₆	E ₅ F ₅ G ₅ H ₅ I ₅ I ₅ I ₅ I ₁	E4 F4 G4 H4 I4 J4	E ₃ F ₃ G ₃ H ₃ I ₃ J ₃	E ₂ F ₂ G ₂ H ₂ I ₂ J ₂	E ₁ F ₁ G ₁ H ₁ I ₁ J ₁	E ₀ F ₀ G ₀ H ₀ I ₀ J ₀	Status Bit Read	A[5]: HV 0: Ready 1: Not Re A[4]: VCI 0: Norma 1: VCI lov A[3]: [PO	Ready De eady Detection al wer than the PR=0]	tection fla	ag [POR=0] R=0]
1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 0	2F	D ₇ E ₇ F ₇ G ₇ H ₇ I ₇ O	D ₆ E ₆ F ₆ G ₆ H ₆ I ₆ J ₆	E ₅ F ₅ G ₅ H ₅ I ₅ I ₅ I ₅ I ₁	E4 F4 G4 H4 I4 J4	E ₃ F ₃ G ₃ H ₃ I ₃ J ₃	E ₂ F ₂ G ₂ H ₂ I ₂ J ₂	E ₁ F ₁ G ₁ H ₁ I ₁ J ₁	E ₀ F ₀ G ₀ H ₀ I ₀ J ₀	Status Bit Read	A[5]: HV 0: Ready 1: Not Re A[4]: VCI 0: Norma 1: VCI lo A[3]: [PO A[2]: Bus	Ready De eady Detection al wer than the PR=0] by flag [PO	tection fla	ag [POR=0] R=0]
1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 0	2F	D ₇ E ₇ F ₇ G ₇ H ₇ I ₇ O	D ₆ E ₆ F ₆ G ₆ H ₆ I ₆ J ₆	E ₅ F ₅ G ₅ H ₅ I ₅ I ₅ I ₅ I ₁	E4 F4 G4 H4 I4 J4	E ₃ F ₃ G ₃ H ₃ I ₃ J ₃	E ₂ F ₂ G ₂ H ₂ I ₂ J ₂	E ₁ F ₁ G ₁ H ₁ I ₁ J ₁	E ₀ F ₀ G ₀ H ₀ I ₀ J ₀	Status Bit Read	A[5]: HV 0: Ready 1: Not Re A[4]: VCI 0: Norma 1: VCI Io A[3]: [PO A[2]: Bus 0: Norma	Ready De deady Detection al wer than the Read [PO al less than the Read] The read are than the Read [PO al less than the R	tection fla	ag [POR=0] R=0]
1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 0	2F	D ₇ E ₇ F ₇ G ₇ H ₇ I ₇ O	D ₆ E ₆ F ₆ G ₆ H ₆ I ₆ J ₆	E ₅ F ₅ G ₅ H ₅ I ₅ I ₅ I ₅ I ₁	E4 F4 G4 H4 I4 J4	E ₃ F ₃ G ₃ H ₃ I ₃ J ₃	E ₂ F ₂ G ₂ H ₂ I ₂ J ₂	E ₁ F ₁ G ₁ H ₁ I ₁ J ₁	E ₀ F ₀ G ₀ H ₀ I ₀ J ₀	Status Bit Read	A[5]: HV 0: Ready 1: Not Re A[4]: VCI 0: Norma 1: VCI lo A[3]: [PO A[2]: Bus 0: Norma 1: BUSY	Ready De deady Detection al wer than the Read [PO al less than the Read] The read are than the Read [PO al less than the R	tection fla flag [PO ne Detect R=0]	ag [POR=0] R=0]
1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 0	2F	D ₇ E ₇ F ₇ G ₇ H ₇ I ₇ O	D ₆ E ₆ F ₆ G ₆ H ₆ I ₆ J ₆	E ₅ F ₅ G ₅ H ₅ I ₅ I ₅ I ₅ I ₁	E4 F4 G4 H4 I4 J4	E ₃ F ₃ G ₃ H ₃ I ₃ J ₃	E ₂ F ₂ G ₂ H ₂ I ₂ J ₂	E ₁ F ₁ G ₁ H ₁ I ₁ J ₁	E ₀ F ₀ G ₀ H ₀ I ₀ J ₀	Status Bit Read	A[5]: HV 0: Ready 1: Not Re A[4]: VCI 0: Norma 1: VCI lor A[3]: [PO A[2]: Bus 0: Norma 1: BUSY A[1:0]: C	Ready De eady Detection al wer than the PR=0] by flag [PO	tection fla flag [PO ne Detect R=0]	ag [POR=0] R=0]
1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 0	2F	D ₇ E ₇ F ₇ G ₇ H ₇ I ₇ O	D ₆ E ₆ F ₆ G ₆ H ₆ I ₆ J ₆	E ₅ F ₅ G ₅ H ₅ I ₅ I ₅ I ₅ I ₁	E4 F4 G4 H4 I4 J4	E ₃ F ₃ G ₃ H ₃ I ₃ J ₃	E ₂ F ₂ G ₂ H ₂ I ₂ J ₂	E ₁ F ₁ G ₁ H ₁ I ₁ J ₁	E ₀ F ₀ G ₀ H ₀ I ₀ J ₀	Status Bit Read	A[5]: HV 0: Ready 1: Not Re A[4]: VCI 0: Norma 1: VCI Ioo A[3]: [PO A[2]: Bus 0: Norma 1: BUSY A[1:0]: C	Ready De eady Detection al wer than the PR=0] by flag [PO al hip ID [PO	flag [PO flag [PO ne Detect R=0] R=01]	ag [POR=0] R=0] level
1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 0	2F	D ₇ E ₇ F ₇ G ₇ H ₇ I ₇ O	D ₆ E ₆ F ₆ G ₆ H ₆ I ₆ J ₆	E ₅ F ₅ G ₅ H ₅ I ₅ I ₅ I ₅ I ₁	E4 F4 G4 H4 I4 J4	E ₃ F ₃ G ₃ H ₃ I ₃ J ₃	E ₂ F ₂ G ₂ H ₂ I ₂ J ₂	E ₁ F ₁ G ₁ H ₁ I ₁ J ₁	E ₀ F ₀ G ₀ H ₀ I ₀ J ₀	Status Bit Read	A[5]: HV 0: Ready 1: Not Re A[4]: VCI 0: Norma 1: VCI lo A[3]: [PO A[2]: Bus 0: Norma 1: BUSY A[1:0]: C Remark: A[5] and	Ready De Peady Detection al Wer than the PR=0] by flag [PO al hip ID [PO A[4] status	flag [POIne Detect R=0] R=01]	ag [POR=0] R=0] Ievel
1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 0	2F	D ₇ E ₇ F ₇ G ₇ H ₇ I ₇ O	D ₆ E ₆ F ₆ G ₆ H ₆ I ₆ J ₆	E ₅ F ₅ G ₅ H ₅ I ₅ I ₅ I ₅ I ₁	E4 F4 G4 H4 I4 J4	E ₃ F ₃ G ₃ H ₃ I ₃ J ₃	E ₂ F ₂ G ₂ H ₂ I ₂ J ₂	E ₁ F ₁ G ₁ H ₁ I ₁ J ₁	E ₀ F ₀ G ₀ H ₀ I ₀ J ₀	Status Bit Read	A[5]: HV 0: Ready 1: Not Re A[4]: VCI 0: Norma 1: VCI lo A[3]: [PO A[2]: Bus 0: Norma 1: BUSY A[1:0]: C Remark: A[5] and RESET,	Ready De eady Detection al wer than the PR=0] by flag [PO al hip ID [PO	flag [POI ne Detect R=0] R=01]	ag [POR=0] R=0] I level valid after

WINSTAR Display 20/33 2.13 inch Series

0	0	30	0	0	1	1	0	0	0	0	Program WS OTP	Program OTP of Waveform Setting The contents should be written into F before sending this command. The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	31	0	0	1	1	0	0	0	1	Load WS OTP	Load OTP of Waveform Setting
												The command required CLKEN=1. Refer to Register 0x22 for detail.
												BUSY pad will output high during operation.
0	0	20		0		1		0	1		M/site I I IT register	White LLIT register from MCLL interfe
0	1	32	0 A ₇	A ₆	1 A ₅	1 A ₄	0 A ₃	0 A ₂	1 A ₁	0 A ₀	Write LUT register	Write LUT register from MCU interfa [153 bytes], which contains the conto
0	1	2	B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo	-	VS[nX-LUTm], TP[nX], RP[n], SR[nX
0	1		•	i	•		:	•	1	:		FR[n] and XON[nXY] Refer to Session 6.7 WAVEFORM
0	1					7		ē	18	-0		SETTING
						110						
0	0	34	0	0	1	1	0	1	0	0	CRC calculation	CRC calculation command For details, please refer to SSD1680 application note.
						C.						BUSY pad will output high during operation.
0	0	35	0	0	1	1	0	1	0	1	CRC Status Read	CRC Status Read
1	1		A ₁₅	A ₁₄	A ₁₃	A ₁₂	A ₁₁	A ₁₀	A9	A ₈		A[15:0] is the CRC read out value
1	1		A ₇	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	A ₀		
0	0	36	0	0	1	1	0	1	1	0	Program OTP selection	Program OTP Selection according to OTP Selection Control [R37h and R37h]. The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	37	0	0	1	1	0	1	1	1	Write Pegister for Display	Write Register for Display Option
0	1	31	A ₇	0	0	0	0	0	0	0	Option	A[7] Spare VCOM OTP selection
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo		0: Default [POR] 1: Spare
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co		
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		B[7:0] Display Mode for WS[7:0] C[7:0] Display Mode for WS[15:8]
0	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	F ₀	-	D[7:0] Display Mode for WS[23:16]
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀	-	E[7:0] Display Mode for WS[31:24] F[3:0 Display Mode for WS[35:32]
0	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	Ho	-	0: Display Mode 1
0	1		17	16	15	14	l ₃	12	I ₁	Io		1: Display Mode 2
0	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	Jo		F[6]: PingPong for Display Mode 0: RAM Ping-Pong disable [POR] 1: RAM Ping-Pong enable G[7:0]~J[7:0] module ID /waveform
												version. Remarks: 1) A[7:0]~J[7:0] can be stored in OTI 2) RAM Ping-Pong function is not su for Display Mode 1

WINSTAR Display 21/33 2.13 inch Series

0 0	1 1	38	0 A ₇ B ₇	0 A ₆ B ₆	1 A ₅ B ₅	1 A ₄ B ₄	1 A ₃ B ₃	0 A ₂ B ₂	0 A ₁ B ₁	O A ₀ B ₀	Write Register for User ID	Write Register for User ID A[7:0]]~J[7:0]: UserID [10 bytes] Remarks: A[7:0]~J[7:0] can be stored in
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀	-	ОТР
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		
0	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	F ₀	-	
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go		
0	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	Ho		
0	1		17	16	15	14	Із	12	l ₁	lo		
0	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	Jo		
•		-										
0	1	39	0	0	0	0	0	0	0 A ₁	1 A ₀	OTP program mode	OTP program mode A[1:0] = 00: Normal Mode [POR] A[1:0] = 11: Internal generated OTP
												programming voltage Remark: User is required to EXACTLY
												follow the reference code sequences
0	0	3C	0	0	1	1	1	1	0	0	Border Waveform Control	Select border waveform for VBD
0	1		A ₇	A ₆	A_5	A ₄	0	A ₂	A ₁	A ₀		A[7:0] = C0h [POR], set VBD as HIZ. A [7:6] :Select VBD option
												A[7:6] Select VBD as
												00 GS Transition, Defined in A[2] and
												A[1:0] 01 Fix Level,
												Defined in A[5:4]
												10 VCOM 11[POR] HiZ
												THE THE
												A [5:4] Fix Level Setting for VBD
												A[5:4] VBD level
												00 VSS 01 VSH1
												10 VSH1 VSL
												11 VSH2
												A[2] GS Transition control
												A[2] GS Transition control 0 Follow LUT
												(Output VCOM @ RED)
												1 Follow LUT
												A [1:0] GS Transition setting for VBD
												A[1:0] S Transition Setting for VBD A[1:0] VBD Transition
												00 LUTO
												01 LUT1
												10 LUT2 11 LUT3
9												II LUI3
0	0	3F	0	0	1	1	1	1	1	1	End Option (EOPT)	Option for LUT end
0	1		A ₇	A ₆	A ₅	A4	Аз	A ₂	A ₁	A ₀	- SV ₂₁ - SS ₂₂ - VSS	A[7:0]= 02h [POR] 22h Normal.
												07h Source output level keep
												previous output before power of
0	0	41	0	1	0	0	0	0	0	1	Read RAM Option	Read RAM Option
0	1	-71	0	0	0	0	0	0	0	A ₀	TOUGHT WIN OPHOIT	A[0]= 0 [POR]
•			J		3	9	J	3	5	7.10		0 : Read RAM corresponding to RAM0: 1 : Read RAM corresponding to RAM0:
0	0	44	0	1	0	0	0	1	0	0	Set RAM X - address	Specify the start/end positions of the
0	1	11.7	0	0	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Start / End position	window address in the X direction by a
0	1		0	0	B ₅	B ₄	B ₃	B ₂	B ₁	Bo		address unit for RAM
9	'			J	20	4	<i>D</i> ₃	52	וט	00		A[5:0]: XSA[5:0], XStart, POR = 00h B[5:0]: XEA[5:0], XEnd, POR = 15h

WINSTAR Display 22/33 2.13 inch Series

0	0	45	0	1	0	0	0	1	0	1	Set Ram Y- address	Specify the start/end positions of the		s of the	
0	1	-0.0.1	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Start / End position	window ad	ddress in t	the Y dire	ction by ar
0	1		0	0	0	0	0	0	0	A ₈		address u	nit for RA	M	
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo		A[8:0]: YS	A[8:01 YS	Start POF	8 = 000h
0	1		0	0	0	0	0	0	0	Bs	1	B[8:0]: YE	A[8:0], YE	End, POF	R = 127h
0	0	46	0	1	0	0	0	1	1	0	Auto Write RED RAM for	Auto Write	REDRA	M for Rec	ııılar Patte
0	1		A ₇	A ₆	A ₅	A ₄	0	A ₂	A ₁	A ₀	Regular Pattern	A[7:0] = 0		an for five	Januar atte
												A[7]: The A[6:4]: Ste Step of alt to Gate	ep Height,	POR= 00	
												A[6:4]	Height	A[6:4]	Height
												000	8	100	128
												001	16	101	256
												010	32	110	296
												011	64	111	NA
												A[2:0]: Ste Step of alt to Source A[2:0] 000			
												001	16	101	176
												010	32	110	NA
												011	64	111	NA
												BUSY pac operation.		ut high du	ring
													1st step va		
												A[6:4]: Step of alt to Gate A[6:4] 000 001	ep Height, er RAM in Height 8 16	POR= 00 Y-directi A[6:4] 100 101	on accordi Height 128 256
												A[6:4]: Ste Step of alt to Gate A[6:4]	ep Height, er RAM in Height 8	POR= 00 Y-directi A[6:4]	on accordi Height
												A[6:4]: Ste Step of alt to Gate A[6:4] 000 001 010 011 A[2:0]: Ste Step of alt to Source A[2:0] 000 001 010 011 During open	ep Height, ler RAM ir Height 8 16 32 64 ep Width, ler RAM ir Width 8 16 32 64	POR= 000 1 Y-directi A[6:4] 100 101 110 111 POR= 000 X-directi A[2:0] 100 101 110 111	On according Height 128 256 296 NA
0	0	4E	0	1	0	0	1	1	1	0	Set RAM X address	A[6:4]: Step of alt to Gate A[6:4]	ep Height, er RAM ir Height 8 16 32 64 ep Width, er RAM ir Width 8 16 32 64 eration, Bi	POR= 000 A Y-directi A[6:4] 100 101 110 111 POR= 000 A X-directi A[2:0] 100 101 111 USY pad	On accordi Height 128 256 296 NA On accordi Width 128 176 NA NA will output
0 0	0 1	4E	0 0	1 0	0 A ₅	0 A4	1 A ₃	1 A ₂	1 A ₁	0 A ₀	Set RAM X address	A[6:4]: Step of alt to Gate A[6:4]	ep Height, ler RAM ir Height 8 16 32 64 ep Width, ler RAM ir Width 8 16 32 64 eration, Bi al settings the addre	POR= 000 A Y-directi A[6:4] 100 101 110 111 POR= 000 A X-directi A[2:0] 100 101 111 USY pad	On according the second
10		4E	-	500			-		62			A[6:4]: Step of alt to Gate A[6:4] 000 001 010 011 A[2:0]: Ste of alt to Source A[2:0] 000 001 010 011 During ophigh.	ep Height, ler RAM ir Height 8 16 32 64 ep Width, ler RAM ir Width 8 16 32 64 eration, Bi al settings the addre	POR= 000 A Y-directi A[6:4] 100 101 110 111 POR= 000 A X-directi A[2:0] 100 101 111 USY pad	On according the second
0		4E	-	500			-		62		Set RAM Y address	A[6:4]: Ste Step of alt to Gate A[6:4] 000 001 010 011 A[2:0]: Ste Step of alt to Source A[2:0] 000 001 010 011 During ophigh. Make initia address ir A[5:0]: 00	ep Height, er RAM ir Height 8 16 32 64 ep Width, er RAM ir Width 8 16 32 64 eration, Black al settings in the address in the A	POR= 000 101 100 101 110 111 POR= 000 101 110 111 USY pad 1 for the R	On according the second of the
0	1		0	0	A 5	A ₄	A ₃	A ₂	A ₁	A ₀	counter	A[6:4]: Step of alt to Gate A[6:4] 000 001 010 011 A[2:0]: Step of alt to Source A[2:0] 000 001 010 011 During ophigh. Make initia address ir A[5:0]: 000	ep Height, er RAM ir Height 8 16 32 64 ep Width, er RAM ir Width 8 16 32 64 eration, Brain al settings in the address the address in the addr	POR= 000 A Y-directi A[6:4] 100 101 110 111 POR= 000 X-directi A[2:0] 100 101 110 111 USY pad for the R ess count	On according the second of the
10	0		0	0	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Set RAM Y address	A[6:4]: Ste Step of alt to Gate A[6:4] 000 001 010 011 A[2:0]: Ste Step of alt to Source A[2:0] 000 001 010 011 During ophigh. Make initia address ir A[5:0]: 00	ep Height, er RAM ir Height 8 16 32 64 ep Width, er RAM ir Width 8 16 32 64 eration, Brain al settings in the address the address in the addr	POR= 000 A Y-directi A[6:4] 100 101 110 111 POR= 000 X-directi A[2:0] 100 101 110 111 USY pad for the R ess count	On according to the second sec

8. Optical Specifications

Measurements are made with that the illumination is under an angle of 45 degree, the detection is perpendicular unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур.	Max	Units	Notes
R	White Reflectivity	White	30	35	ı	%	8-1
CR	Contrast Ratio	Indoor	8:1		•		8-2
T update	Image update time	at 25 °C		22	-	sec	
Life		Topr		1000000times or 5years			

Notes: 8-1. Luminance meter: Eye-One Pro Spectrophotometer.

8-2. CR=Surface Reflectance with all white pixel/Surface Reflectance with all black pixels.

9. Handling, Safety and Environment Requirements

Warning

The display glass may break when it is dropped or bumped on a hard surface. Handle with care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

Caution

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components. Disassembling the display module.

Disassembling the display module can cause permanent damage and invalidates the warranty agreements.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

Data sheet status						
Product specification	This data sheet contains final product specifications.					
Limiting values						

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

WINSTAR Display 24/33 2.13 inch Series

10.Reliability test

NO	Test items	Test condition
1	Low-Temperature Storage	T = -25°C, 240 h Test in white pattern
2	High-Temperature Storage	T=60°C, RH=35%, 240h Test in white pattern
3	High-Temperature Operation	T=40°C, RH=35%, 240h
4	Low-Temperature Operation	0° C, 240h
5	High-Temperature, High-Humidity Operation	T=40°C, RH=80%, 240h
6	High Temperature, High Humidity Storage	T=50°C, RH=90%, 240h Test in white pattern
7	Temperature Cycle	1 cycle:[-25° C 30min]→[+60° C 30 min]: 50 cycles Test in white pattern
8	UV exposure Resistance	765W/m² for 168hrs,40 °C Test in white pattern
9	ESD Gun	Air+/-15KV;Contact+/-8KV (Test finished product shell, not display only) Air+/-8KV;Contact+/-6KV (Naked EPD display, no including IC and FPC area) Air+/-4KV;Contact+/-2KV (Naked EPD display, including IC and FPC area)

Note: Put in normal temperature for 1hour after test finished, display performance is ok.

11. Typical Application Circuit with SPI Interface

Part Name	Value	Requirements/Reference Part
C0-C1	1uF	X5R/X7R; Voltage Rating : 6V or 25V
C2-C7	1uF	0402/0603/0805; X5R/X7R; Voltage Rating : 25V
C8	0. <mark>4</mark> 7uF, 1uF	0603/0805; X7R; Voltage Rating : 25V Note: Effective capacitance > 0.25uF @ 18V DC bias
R1	2.2 ohm	0402, 0603, 0805; 1% variation, ≥ 0.05W
D1-D3	Diode	MBR0530 1) Reverse DC voltage ≥ 30V 2) lo ≥ 500mA 3) Forward voltage ≤ 430mV
Q1	NMOS	Si1304BDL/NX3008NBK 1) Drain-Source breakdown voltage ≥ 30V 2) Vgs(th) = 0.9V (Typ), 1.3V (Max) 3) Rds on ≤ 2.1Ω @ Vgs = 2.5V
L1	47uH	CDRH2D18 / LDNP-470NC lo= 500mA (Max)
U1	0.5mm ZIF socket	24pins, 0.5mm pitch

WINSTAR Display 26/33 2.13 inch Series

12. Typical Operating Sequence

12.1 Normal Operation Flow

1. Power On

- Supply VCI
- Wait 10ms

2. Set Initial Configuration

- Define SPI interface to communicate with MCU
- HW Reset
- SW Reset by Command 0x12
- Wait 10ms

3. Send Initialization Code

- Set gate driver output by Command 0x01
- Set display RAM size by Command 0x11, 0x44, 0x45
- Set panel border by Command 0x3C

4. Load Waveform LUT

- Sense temperature by int/ext TS by Command 0x18
- Load waveform LUT from OTP by Command 0x22, 0x20 or by MCU
- Wait BUSY Low

5. Write Image and Drive Display Panel

- Write image data in RAM by Command 0x4E, 0x4F, 0x24, 0x26
- Set softstart setting by Command 0x0C
- Drive display panel by Command 0x22, 0x20
- Wait BUSY Low

6. Power Off

- Deep sleep by Command 0x10
- Power OFF

WINSTAR Display 27/33 2.13 inch Series

12.2 Normal Operation Reference Program Code

ACTION	VALUE/DATA	COMMENT
	POWER ON	1
delay	10ms	
PIN CONFIG		
RESE#	low	Hardware reset
delay	200us	
RESE#	high	
delay	200us	
Read busy pin		Wait for busy low
Command 0x12		Software reset
Read busy pin		Wait for busy low
Command 0x01	Data 0xF9 0x00 0x00	Set display size and driver output control
Command 0x11	Data 0x01	Ram data entry mode
Command 0x44	Data 0x01 0x10	Set Ram X address
Command 0x45	Data 0xF9 0x00 0x00 0x00	Set Ram Y address
Command 0x3C	Data 0xC0	Set border
	SET VOLTAGE AND	
Command 0x2C	Data 0x70	Set VCOM value
Command 0x03	Data 0x17	Gate voltage setting
Command 0x04	Data 0x41 0x00 0x32	Source voltage setting
Command 0x32	Write 224bytes LUT	Load LUT
	LOAD IMAGE AND	UPDATE
Command 0x4E	Data 0x01	Set Ram X address counter
Command 0x4F	Data 0xF9 0x00	Set Ram Y address counter
Command 0x24	4000bytes	Load image (128/8*250)(BW)
Command 0x22	Data 0XC7	Image update
Command 0x4E	Data 0x01	Set Ram X address counter
Command 0x4F	Data 0xF9 0x00	Set Ram Y address counter
Command 0x26	4000bytes	Load image (128/8*250)(R)
Command 0x22	Data 0XC7	Image update
Command 0x20		
Read busy pin		
Command 0x10	Data 0X01	Enter deep sleep mode
· · · · · · · · · · · · · · · · · · ·	POWER OF	F

WINSTAR Display 28/33 2.13 inch Series

- 13. Inspection method and condition
- 13. 1 Inspection condition

13. 2 Zone definition

A Zone: Active area

B Zone: Border zone

C Zone: From B zone edge to panel edge

13. 3 General inspection standards for products

13.3.1 Appearance inspection standard

Inspe	200-000 4 May 10-0-0-0-0-0-000 5 Sept 200-0-000 5 Sept 5		gure	$\begin{array}{c c} \text{A zone inspection standard} & \begin{array}{c} B/C \\ \text{zone} \end{array}$		Inspection method	MAJ/ MIN
Spot defects	Spot defects such as dot, foreign matter, air bubble, and dent etc.	Diameter D=(L+W)/2 (L-length, W-width) Measuring method shown in the figure below D=(L+W)/2	The distance between the two spots should not be less than 10mm	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Foreign matter D≤1mm Pass	Check by eyes Film gauge	MIN

Insp	ection item	F	igure	A zone inspection standard	B/C zone	Inspection method	MA J/ MI N
Line defects	Line defects such as scratch, hair etc.	L-Length, W-Width, (W/L)<1/4 Judged by line, (W/L)≥1/4 Judged by dot	The distance between the two lines should not be less than 5mm	7.5"-13.3"Module (Not include 7.5"): L>10mm,N=0 W>0.8mm, N=0 5mm≤L≤10mm, 0.5mm≤W≤0.8mm N≤2 L≤5mm, W≤0.5mm Ignore 4.2"-7.5"Module (Not include 4.2"): L>8mm,N=0 W>0.2mm, N=0 2mm≤L≤8mm, 0.1mm≤W≤0.2mm N≤4 L≤2mm, W≤0.1mm Ignore Module below 4.2": L>5mm,N=0 W>0.2mm, N=0 2mm≤L≤5mm, 0.1mm≤W≤0.2mm N≤4 L≤2mm, W≤0.1mm Ignore	Ignore	Check by eyes Film gauge	MIN

Inspect	Inspection item Figure		Inspection standard	Inspection method	MA J/ MIN
Panel chipping and crack defects	TFT panel chipping	X the length, Y the width, Z the chipping height, T the thickness of the panel	Chipping at the edge: Module over 7.5" (Include 7.5"): $X \leq 6mm, Y \leq 1mm Z \leq T N=3 \text{Allowed}$ Module below 7.5"(Not include 7.5"): $X \leq 3mm, Y \leq 1mm Z \leq T N=3 \text{Allowed}$ Chipping on the corner: $IC \text{ side}X \leq 2mm Y \leq 2mm, Non-IC \text{ side}X \leq 1mm Y \leq 1mm \text{Allowed}$ Note: Chipping should not damage the edge wiring. If it does not affect the display, allowed	Check by eyes. Film gauge	MIN
	Crack	玻璃裂纹	Crack at any zone of glass, Not allowed	Check by eyes. Film gauge	MIN
	Burr edge		No exceed the positive and negative deviation of the outline dimensions $X+Y\leq 0.2mm$ Allowed	Calliper	MIN
	Curl of panel	H Curl height	Curl height H≤Total panel length 1% Allowed	Check by eyes	MIN

WINSTAR Display 30/33 2.13 inch Series

Inspec	tion item	Figure	Inspection standard	Inspecti on	MAJ /
PS defect	Water proof film		Waterproof film damage, wrinkled, open edge, not allowed Exceeding the edge of module(according to the lamination drawing) Not allowed Edge warped exceeds height of technical file, not allowed	Check by eyes	MIN
RTV defect	Adhesive effect		Adhesive height exceeds the display surface, not allowed 1 .Overflow, exceeds the panel side edge, affecting the size, not allowed 2 .No adhesive at panel edge≤1mm, mo exposure of wiring, allowed 3. No adhesive at edge and corner1*1mm, no exposure of wiring, allowed Protection adhesive, coverage width within W≤1.5mm, no break of adhesive, allowed	Check by cycs	MIN
	Adhesive re-fill		Dispensing is uniform, without obvious concave and breaking, bubbling and swell, not higher than the upper surface of the PS, and the diameter of the adhesive re-filling is not more than 8mm, allowed	Check by eyes	MIN
EC defect	Adhesive bubble	防水胶涂布区 封边胶边缘 PS边缘 Border外缘(FPL边缘)	 Effective edge sealing area of hot melt products ≥1/2 edge sealing area; Bubble a+b≥1/2 effective width, N≤3, spacing≥5mm, allowed No exposure of wiring, allowed 	Check by eyes	MIN

Inspection item		Figure	Inspection standard	Inspection method	MAJ/ MIN
EC defect	Adhesive effect	5	1 .Overflow, exceeds the panel side edge, affecting the size, not allowed 2.No adhesive at panel edge≤1mm, mo exposure of wiring, allowed 3.No adhesive at edge and corner 1*1mm, no exposure of wiring, allowed 4. Adhesive height exceeds the display surface, not allowed	Visual, caliper	MIN
Silver dot adhesive defect	Silver dot adhesive		1. Single silver dot dispensing amount ≥1mm, allowed 2. One of the double silver dot dispensing amount is ≥1mm and the other has adhesive (no reference to 1mm) Allowed	Visual	MIN
			Silver dot dispensing residue on the panel ≤0.2mm, allowed	Film gauge	MIN
FPC defect	FPC wiring		FPC, TCP damage / gold finger peroxidation, adhesive residue, not allowed	Visual	MIJ
	FPC golden finger		The height of burr edge of TCP punching surface ≥ 0.4mm, not allowed	Caliper	MIN
	FPC damage/cr ease		Damage and breaking, not allowed Crease does not affect the electrical performance display, allowed	Check by eyes	MIN

WINSTAR Display 31/33 2.13 inch Series

Inspection item		Figure	Inspection standard	Inspection method	MAJ/ MIN
Protective film defect	Protective film	Scratch and crease on the surface but no affect to protection function, allowed		Check by eyes	MIN
		Adhesive at edge L≤5mm, W≤0.5mm, N=2, no entering into viewing area		Check by eyes	MIN
Stain defect	Stain	If stain can be normally wiped clean by > 99% alcohol, allowed		Visual	MIN
Pull tab defect	Pull tab	The position and direction meet the document requirements, and ensure that the protective film can be pulled off.		Check by eyes/ Manual pulling	MIN
Shading tape defect	Shading tape	Tilt≤10°, flat without warping, completely covering the IC.		Check by eyes/ Film gauge	MIN
Stiffener	Stiffener	Flat without warping, Exceeding the left and right edges of the FPC is not allowed. Left and right can be less than 0.5mm from FPC edge		Check by eyes	MIN
Label	Label/ Spraying code	The content meets the requirements of the work sheet. The attaching position meets the requirements of the technical documents.		Check by eyes	MIN

WINSTAR Display 32/33 2.13 inch Series

14.Packaging
TBD