
TA100 8-Pin SOIC Socket Board User Guide

Introduction

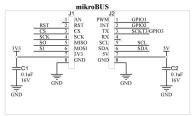
The TA100 8-Pin SOIC mikroBUS[™]-compatible socket board was developed for use with any of Microchip's microcontroller boards that support a MikroElektronika mikroBUS interface. The board's dimensions match the medium-sized add-on board as defined in the mikroBUS specification. Through use of an adapter board, the socket board can also be used with Microchip microcontroller development boards that support an Xplained Pro Interface.

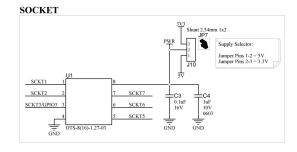
The TA100 secure elements are one-time-programmable devices. Having a socket board allows for a customer to reuse the board with multiple TA100 sample devices for a given application or for multiple different applications. The 8-Pin SOIC socket board is capable of being used with both the I²C and SPI interface versions of the TA100 device.

Figure 1. TA100 8-Pin SOIC Socket Board

Table of Contents

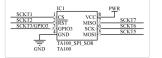
Intro	oductio	on	1
1.	Hard	ware Description	3
	1.1.	Schematic and Key Features	3
	1.2.	Board Configuration	
	1.3.	Supply Current Measurement	4
	1.4.	Hardware Documentation	4
2.	Connecting the Board		
	2.1.	Xplained Pro Connections	6
	2.2.	Microchip Explorer 16/32 Connections	8
	2.3.	Automotive Networking Development Board Connections	8
3.	Software Tools		
	3.1.	myMicrochip	11
4.	Revis	sion History	13
The	Micro	ochip Website	14
Pro	duct C	Change Notification Service	14
Cus	tomer	Support	14
Mic	rochip	Devices Code Protection Feature	14
Leg	al Not	ice	15
Tra	demar	ks	15
Qua	ality Ma	anagement System	16
Woi	ldwide	e Sales and Service	17

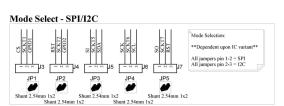

1. Hardware Description


1.1 Schematic and Key Features


- One 8-Pin SOIC Socket (U1)
- One mikroBUS Connector (J1, J2)
- Five Selection Jumpers for selecting either an I²C or SPI Interface (J3 to J7)
- On-Board 4.7 kΩ l²C Resistors (R2, R3)
- · On-Board LED Power Indicator (LD1)
- Power Jumper for selecting 3.3V or 5V power (J3)
- · Optional GPIO Header (J9) Not Populated

Figure 1-1. TA100 8-Pin SOIC Socket Board Schematic


mikroBUS INTERFACE CONNECTORS



Footprint for Optional IC (Do Not Populate)

PWR PWR PWR R5 R2 R5 4.7k 60603 5% 5% 5%

GPIO - ALT. CONNECTION


1.2 Board Configuration

TA100 8-Pin SOIC Socket Board Jumper Configurations

- SPI Connections: J3, J4, J5, J6 and J7 in position closest to socket (white band labeled with SPI)⁽¹⁾
- I²C Connections: J3, J4, J5, J6 and J7 in position furthest from socket (white band labeled with I²C)⁽¹⁾
- 3.3V Power: J10 with shunt across 3V3 and PWR positions⁽²⁾
- 5.0V Power: J10 with shunt across 5V and PWR positions⁽²⁾

Notes:

- 1. Jumpers J3, J4, J5, J6 and J7 must all be set with position pins 1 and 2 shorted (SPI) or all set with position pins 2 and 3 shorted (I²C) for proper operation in a given interface mode.
- 2. The I/O levels of the GPIO, SPI and I²C signals will track with the supply voltage.

1.3 Supply Current Measurement

The current consumption of the TA100 device can be measured by using the AC164167 8-Pin SOIC socket board. The only devices on the board that will consume power are the TA100 socketed device, the Power LED and the I^2 C pull-up resistors. Follow these steps to measure the current:

- 1. Modify the board to remove the resistor, R1, which is in series with the LED. This will remove the current through the LED from the total measured current.⁽¹⁾
- 2. Install the TA100 device into the socket.
- 3. Install the socket board into the host system with the appropriate power settings.
- 4. Select either 3.3V or 5V power for the measurement. (2)
- 5. Connect the high side of the ammeter to the 3.3V or 5V supply.
- 6. Connect the low side of the ammeter to the common PWR signal of the header.
- 7. Current measurements can now be taken by running various TA100 commands and measuring the current. (3)

Notes:

- 1. For lower accuracy current measurements, this resistor may be kept in the circuit. It is recommended that a separate measurement of the current through just the LED path be made prior to measuring the TA100 device currents. This value can, then, be subtracted from the total current measured.
- 2. The host board provides power to the mikroBUS extension board, so whichever supply is selected must match the capabilities and setting used on the host board.
- When measuring the current of I²C devices, the measurement will include the I²C pull-up currents used to pull
 up the bus. For SPI signals, the pull-ups are internal to the device and will also factor into the total current
 consumed.

1.4 Hardware Documentation

Additional documentation for the kit can be found on the Microchip website for the AC164167.

This includes:

- Board Design Documentation including Schematics and 3D Views
- · Gerber Files
- TA100 8-Pin SOIC Socket Board User Guide (AC164167)

For other kits referenced in this document, check the website information associated with those kits. This includes:

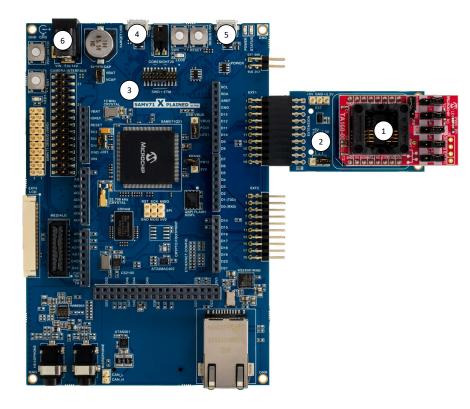
- ATSAMV71-XULT SAMV71 Xplained Ultra Evaluation Kit
- ATMBUSADAPTER-XPRO XPRO to mikroBUS Adapter
- Explorer 16/32 Development Kit (DM240001-2)
- dsPIC33CK 16-Bit PIC® Microcontroller

Related Hardware Kits

Microchip also offers related socket kits for the other packages that the TA100 device is provided in. These include:

- The AC164166 14-Pin SOIC Socket Kit for the TA100 This developer's kit supports a 14-pin SOIC TA100 device with both an SPI and I²C Interface
- The EV39Y17A 24-Pad VQFN Socket Kit for the TA100 This developer's kit supports a 24-Pad VQFN TA100 device with both an SPI and I²C Interface

2. Connecting the Board


The form factor of the AC164167 development board was chosen because Microchip has heavily adopted the use of the mikroBUS connector on host boards. Many of Microchip's development platforms will support one or more mikroBUS interfaces. These include:

- Microchip Explorer 16/32 Development Board
- MPLAB[®] Xpress Evaluation Board
- · Automotive Networking Development Board
- PIC[®] Curiosity Boards
- · PIC Curiosity Nano Boards
- AVR[®] Curiosity Nano Boards
- SAM Xplained-Pro microcontroller development boards when used with an ATMBusAdapter

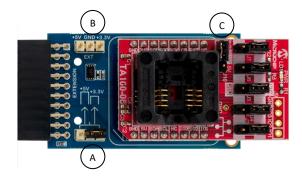
2.1 Xplained Pro Connections

By using an adapter board, the AC164167 development board can still be used with Microchip development boards that only support the Xplained Pro interface. Figure 2-1 shows the full assembly of the AC164167 TA100 8-Pin SOIC Socket Board, the ATMBUSADAPTER-XPRO and an ATSAMV71-XULT Development Board.

Figure 2-1. Connections to an Xplained Pro Development Platform

- 1. AC164167 8-Pin Socket Board
- 2. ATMBUSADAPTER-XPRO
- 3. ATSAMV71-XULT Development Board
- 4. TARGET USB Port
- 5. DEBUG USB Port
- 6. External Power Jack Input

Powering the SAMV71-XULT Board


Multiple options exist for powering the SAMV71-XULT Development Board. Depending on the total current requirements, different options are allowed. See the SAMV71-XULT User Guide for more information.

- · External Power Jack Input
 - 2.1 mm barrel connector
 - 5-14V input supply Maximum current of 2.0A
 - 12V 18W Power Adapter Option: Triad Magnetics WSU120-1500
- · Embedded Debugger USB Connection; max. of 500 mA
- · Target USB Connection; max. of 500 mA
- External Power Header
 - 2-pin 100 mil Header
 - Direct 5V Supply
 - Max. 2A of current

ATMBUSAdapter Power Settings

The ATMBUSAdapter allows power to be connected to the MikroBus Host adapter either directly through the XPRO interface or by providing external power through the EXT header. It is important that all jumpers are connected correctly before connecting to the SAMV71-XULT or other boards with an XPRO interface to prevent possible damage to the system.

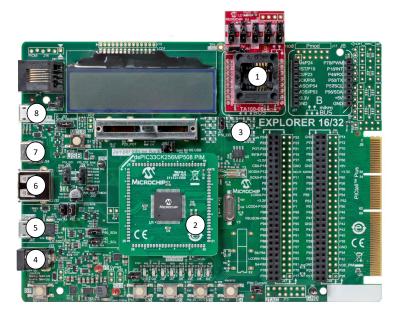
Figure 2-2. ATMBUSAdapter Plus AC164167

1. Option 1: Direct Power from the XPRO Extension

- Determine if the XPRO Board outputs a 3.3V or 5.0V supply voltage.
- Connect the J10 shunt "C" of the AC164167 to the appropriate 3.3V or 5.0V supply.
- Connect the ATMBUSAdapter power shunt "A" to the same voltage as the XPRO supply.

2. Option 2: External Power Connected to the ATMBUSAdapter.

- Remove the Power Shunt "A" from the ATMBUSAdapter. This disconnects power from the XPRO Header.
- Connect either 3.3V or 5.0V external power to the Ext Header "B" on the ATMBUSAdapter
- Make sure the J10 shunt on the AC164167 is placed across the correct connections for the External Power Supply chosen.


Additional Resources

- SAMV71 Kit Information
- SAMV71 Xplained Ultra User Guide
- SAMV71 Microcontroller
- Additional Tools available via myMicrochip

2.2 Microchip Explorer 16/32 Connections

The AC164167 extension board can be connected to any microcontroller board that contains a mikroBUS Host Header. The 8-Pin SOIC socket board can either be configured for the I²C or SPI interface as shown in 1.2 Board Configuration. The diagram below shows a configuration using the Microchip Explorer 16/32 Development Board and the dsPIC33CK 16-bit microcontroller. Note that the Explorer 16/32 board allows for a variety of 100-pin Microchip microcontrollers to be used.

Figure 2-3. Connections to a Microchip Explorer 16/32 Development Board

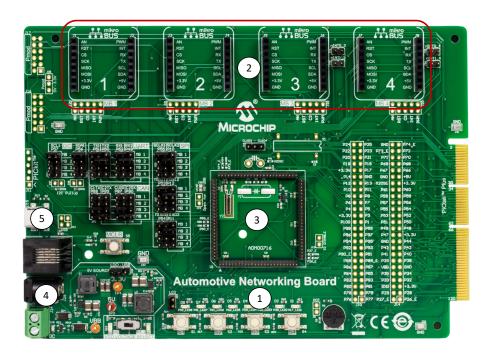
- AC164167 14-Pin Socket Board
- dsPIC33CK 16-Bit Microcontroller
- Microchip Explorer 16/32-Bit development Board
- 4. External Power Connection
- 5. Micro-USB Connection
- 6. Type-A USB Connection
- 7. USB Type-C[™] Connection
- 8. PICkit[™] On-Board debugger micro-USB Connection

Powering the Board

Multiple options exist for powering the Explorer 16/32 Development board. Depending on the total current requirements, different options are allowed.

- External Power Supply Connection
 - 8-15V Power Supply maximum current 1.3A
 - Universal 9V Supply Adapter: AC002014
- · USB Connections allow up to 400 mA

Additional Resources


- Microchip Explorer 16/32 Kit Information
- Microchip Explore16/32 User Guide
- dsPIC33CK
- Additional software tools available via myMICROCHIP

2.3 Automotive Networking Development Board Connections

The AC164167 extension board can be connected to any microcontroller board that contains a mikroBUS Host Header. The 8-Pin SOIC socket board can either be configured for the I²C or SPI interface as shown in 1.2 Board Configuration. The diagram below shows the Automotive Networking Development Board. This board is a low-cost modular development system for Microchip's 8-bit, 16-bit and 32-bit microcontrollers targeting CAN and LIN network-related applications.

Due to the modular nature of the Automotive Networking Development Board, only a generic photo of the board is shown below. There are multiple LIN and CAN Controllers that can be connected through the mikroBUS connectors along with the AC164167 socket security board. Each of these devices can be connected via any of the mikroBUS headers. A 100-pin plug-in microcontroller module (PIM) is also required for complete system operation. Microchip has a variety of PIM modules that can be used with this development board. Examples of mikroBUS click boards and PIM modules are shown in the Additional Resources section.

Figure 2-4. Connections to the Automotive Networking Development Board

- Automotive
 Networking
 Development
 Board
- mikroBUS[™]
 Host headers
- Microcontroller PIM Socket
- 4. External Power Connection
- 5. Micro-USB Power/Signal Connection

Powering the Board

Multiple options exist for powering the Automotive Networking Development Board.

- External Power Supply Connection (7-30V)
 - 9V external power supply adapter: (AC002014) 1.3A current
 - 5 mm output jack with center-positive connection
 - Place jumper across pins 2-3 of header J28 to enable
- USB Connections
 - Micro-USB connection
 - Place jumper across pins 1-2 of header J28 to enable

Additional Resources

The following list provides examples of different resources available and is not exhaustive. To identify additional PIM or mikroBUS modules that may work with the Automotive Networking Development Board, go to www.microchip.com.

- Automotive Networking Development Board Kit Information
- · Automotive Networking Development Board User's Guide
- · MCP2003B click for LIN systems
- MCP25625 click with Microchip CAN controller
- · ATA6563 click with Microchip CAN controller
- PIC18F66K80 100-pin PIM
- Additional software tools available via myMicrochip

3. Software Tools

The TA100 is supported by a suite of software tools. These tools are only available under NDA. Contact Microchip to obtain an NDA and request access to the tools. Once an NDA is signed, these tools are made available in the My Secure Software section of the customer's myMicrochip account. Enhancements, upgrades and additional tools are automatically made available to any customer that is enabled for the TA100 support.

Table 3-1. TA100 Software Tools

Item #	Tool Name	Description		
1	TA100 Configurator GUI and TA100 Library	The TA100 Configurator GUI provides the ability to configure and pseudo-provision TA100 devices, and to illustrate how the TA100 can be used for various applications such as Secure Boot, Device Authentication and CAN-MAC. These applications perform many cryptographic operations using the TA100 library.		
2	CryptoAuthLib	A flexible library implemented with a Hardware Abstraction Layer (HAL) that allows the TA100 to be readily ported to other microcontrollers. The library provides commands support for the TA100 and other Microchip CryptoAuthentication devices significantly speeding up application development.		
3	AUTOSAR [™] 4.3.1 CRYPTO driver ⁽¹⁾	CRYPTO driver specifications provide an abstraction layer to integrate an external cryptographic device, such as the TA100, into the AUTOSAR™ stack. This allows for code to be portable between various applications that use different microcontrollers.		

Important:

1. For projects that use the AUTOSAR Driver, the AUTOSAR™ Reference Stack is also needed. AUTOSAR™ is an open and standardized automotive software architecture. The TA100 is integrated into 3rd party AUTOSAR™ software stacks to aid customers in the implementation of automotive applications. Contact Microchip for a list of 3rd Party AUTOSAR™ stack vendors that support the TA100.

Use Case Examples

Use Case examples use the TA100 Configurator GUI to demonstrate various sample applications that can be implemented using the TA100 and SAM V71 microcontroller. These sample applications come with the necessary microcontroller firmware, detailed application user guide and other documentation describing the use case in more detail. Table 3-2 provides some of the use case examples that are available from the myMicrochip website. Upgrades to these use case examples and additional use case examples will be provided over time via the same path.

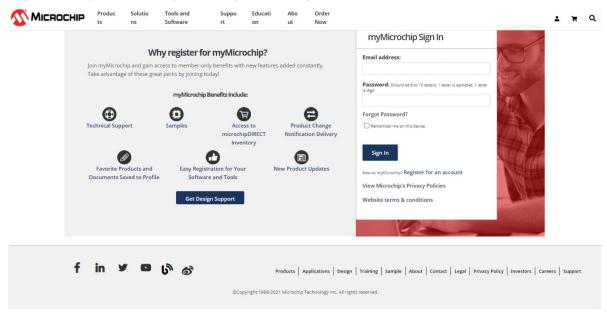
Table 3-2. Use Case Examples

Item #	Use Case Examples ⁽¹⁾	Description		
1	Device Authentication	Provides device authentication by verifying the chain of trust using Signer and Device Certificates and a Random Challenge. Upon successful authentication, a known string is encrypted and written to a data element or read and decrypted from a data element inside the TA100.		
2	Full Stored Secure Boot with Pre-Boot	Secure Boot use case that, upon initial boot, calculates the digest of the firmware code and, then, stores it for faster subsequent secure boots.		
3	CAN Bootloader	Secure Boot use case that allows for a secure firmware upgrade via the CAN Bus using the SAMV71 microcontroller, K2L MOCCA-FD tool and PC-based GUI.		

С	continued			
Item #	Use Case Examples ⁽¹⁾	Description		
4	CAN-MAC Authentication	This use case demonstrates a mechanism to add an AES C-MAC to authenticate CAN-FD messages. This mechanism can be used to ensure data integrity and authenticity of the transmit node. TA-configurator GUI will import a CAN-database file to populate the CAN-MAC tab of the GUI. The user can use the TA-configurator GUI to select which messages need authentication, assign C-MAC keys and to configure message payload structure.		

Note:

1. The listed use case examples are based on the TA100Lib and TA Configurator GUI.


3.1 myMicrochip

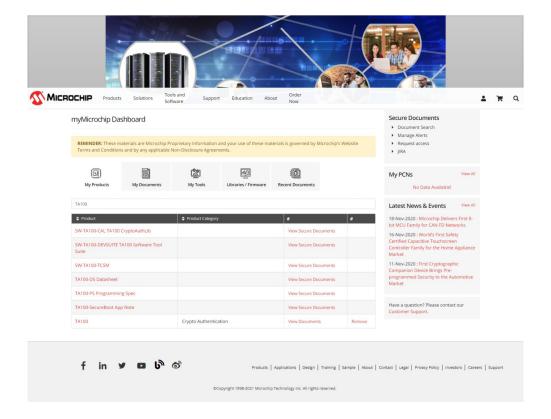
Microchip provides the ability to customize your user experience and keep you up to date on key topics that are of the most relevance and importance to you by registering for a myMicrochip account. To have access to many of the TA100 software tools, you must have an account. These tools are accessed by enabling Secure Document Access. Having access will automatically give you access to tool updates and new tools as they are added.

Accessing myMicrochip

1. Go to the myMicrochip website: www.microchip.com/mymicrochip.

Figure 3-1. myMicrochip Login and Registration Page

- 2. If you do not have an account, click the "Register for an account" link, fill out the information, then save your profile.
- 3. Once you are fully registered, you can log in through the access page in step 1.
- 4. After you log in, go to My Preferences and enable Secure Documents Access. You can also set other preferences at this time.



- 5. After you set your preferences, go to the bottom of the page and make sure you click Save Preferences.
- 6. To gain access to these files, you will need an NDA. If you do not yet have an NDA, work with your Microchip sales representative to obtain an NDA.
- 7. Once you have the NDA, follow the directions on the website or send an email with the signed version of the NDA along with a request to access the software packages to securefiles@microchip.com. This document will be forwarded to the appropriate administrators of the group. Once your name is added, you will receive an email notifying you of the availability of the software.

Personal myMicrochip Page

Once you log in to your myMicrochip account, your dashboard page will display similar to Figure 3-2. Under the **Products** tab is a listing of all your secure documents, software, etc. Clicking on the various links and setting up your preferences provides you with customized access to everything within Microchip that is relevant to you.

Figure 3-2. myMicrochip Dashboard

Revision History 4.

Revision	Date	Description
В	08/2021	Update to myMicrochip Section for Secure Data Access
Α	05/2020	Initial release of this document

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's
 guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- · Distributor or Representative
- · Local Sales Office
- · Embedded Solutions Engineer (ESE)
- Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner and under normal
 conditions.
- There are dishonest and possibly illegal methods being used in attempts to breach the code protection features
 of the Microchip devices. We believe that these methods require using the Microchip products in a manner
 outside the operating specifications contained in Microchip's Data Sheets. Attempts to breach these code
 protection features, most likely, cannot be accomplished without violating Microchip's intellectual property rights.
- Microchip is willing to work with any customer who is concerned about the integrity of its code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code
 protection does not mean that we are guaranteeing the product is "unbreakable." Code protection is constantly
 evolving. We at Microchip are committed to continuously improving the code protection features of our products.
 Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act.
 If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue
 for relief under that Act.

Legal Notice

Information contained in this publication is provided for the sole purpose of designing with and using Microchip products. Information regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, Augmented Switching, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2020-2021, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-8646-6

Quality Management System

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
Corporate Office	Australia - Sydney	India - Bangalore	Austria - Wels
2355 West Chandler Blvd.	Tel: 61-2-9868-6733	Tel: 91-80-3090-4444	Tel: 43-7242-2244-39
Chandler, AZ 85224-6199	China - Beijing	India - New Delhi	Fax: 43-7242-2244-393
Tel: 480-792-7200	Tel: 86-10-8569-7000	Tel: 91-11-4160-8631	Denmark - Copenhagen
Fax: 480-792-7277	China - Chengdu	India - Pune	Tel: 45-4485-5910
Technical Support:	Tel: 86-28-8665-5511	Tel: 91-20-4121-0141	Fax: 45-4485-2829
www.microchip.com/support	China - Chongqing	Japan - Osaka	Finland - Espoo
Web Address:	Tel: 86-23-8980-9588	Tel: 81-6-6152-7160	Tel: 358-9-4520-820
www.microchip.com	China - Dongguan	Japan - Tokyo	France - Paris
Atlanta	Tel: 86-769-8702-9880	Tel: 81-3-6880- 3770	Tel: 33-1-69-53-63-20
Duluth, GA	China - Guangzhou	Korea - Daegu	Fax: 33-1-69-30-90-79
Tel: 678-957-9614	Tel: 86-20-8755-8029	Tel: 82-53-744-4301	Germany - Garching
Fax: 678-957-1455	China - Hangzhou	Korea - Seoul	Tel: 49-8931-9700
Austin, TX	Tel: 86-571-8792-8115	Tel: 82-2-554-7200	Germany - Haan
Tel: 512-257-3370	China - Hong Kong SAR	Malaysia - Kuala Lumpur	Tel: 49-2129-3766400
Boston	Tel: 852-2943-5100	Tel: 60-3-7651-7906	Germany - Heilbronn
Westborough, MA	China - Nanjing	Malaysia - Penang	Tel: 49-7131-72400
Tel: 774-760-0087	Tel: 86-25-8473-2460	Tel: 60-4-227-8870	Germany - Karlsruhe
Fax: 774-760-0088	China - Qingdao	Philippines - Manila	Tel: 49-721-625370
Chicago	Tel: 86-532-8502-7355	Tel: 63-2-634-9065	Germany - Munich
Itasca, IL	China - Shanghai	Singapore	Tel: 49-89-627-144-0
Tel: 630-285-0071	Tel: 86-21-3326-8000	Tel: 65-6334-8870	Fax: 49-89-627-144-44
Fax: 630-285-0075	China - Shenyang	Taiwan - Hsin Chu	Germany - Rosenheim
Dallas	Tel: 86-24-2334-2829	Tel: 886-3-577-8366	Tel: 49-8031-354-560
Addison, TX	China - Shenzhen	Taiwan - Kaohsiung	Israel - Ra'anana
Tel: 972-818-7423	Tel: 86-755-8864-2200	Tel: 886-7-213-7830	Tel: 972-9-744-7705
Fax: 972-818-2924	China - Suzhou	Taiwan - Taipei	Italy - Milan
Detroit	Tel: 86-186-6233-1526	Tel: 886-2-2508-8600	Tel: 39-0331-742611
Novi, MI	China - Wuhan	Thailand - Bangkok	Fax: 39-0331-466781
Tel: 248-848-4000	Tel: 86-27-5980-5300	Tel: 66-2-694-1351	Italy - Padova
Houston, TX	China - Xian	Vietnam - Ho Chi Minh	Tel: 39-049-7625286
Tel: 281-894-5983	Tel: 86-29-8833-7252	Tel: 84-28-5448-2100	Netherlands - Drunen
Indianapolis	China - Xiamen		Tel: 31-416-690399
Noblesville, IN	Tel: 86-592-2388138		Fax: 31-416-690340
Tel: 317-773-8323	China - Zhuhai		Norway - Trondheim
Fax: 317-773-5453	Tel: 86-756-3210040		Tel: 47-72884388
Tel: 317-536-2380			Poland - Warsaw
Los Angeles			Tel: 48-22-3325737
Mission Viejo, CA			Romania - Bucharest
Tel: 949-462-9523			Tel: 40-21-407-87-50
Fax: 949-462-9608			Spain - Madrid
Tel: 951-273-7800			Tel: 34-91-708-08-90
Raleigh, NC			Fax: 34-91-708-08-91
Tel: 919-844-7510			Sweden - Gothenberg
New York, NY			Tel: 46-31-704-60-40
Tel: 631-435-6000			Sweden - Stockholm
San Jose, CA			Tel: 46-8-5090-4654
Tel: 408-735-9110			UK - Wokingham
Tel: 408-436-4270			Tel: 44-118-921-5800
Canada - Toronto			Fax: 44-118-921-5820
Tel: 905-695-1980			
Fax: 905-695-2078			
000 000 2010			