

UMW SN74LVC2G04

1.Description

The UMW SN74LVC2G04 is a high performance dual inverter operating from a 1.65V to 5.5V supply. This device is fabricated with advanced CMOS technology to achieve ultrahigh speed with high output drive.

2.Features

- Designed for 1.65V to 5.5V V_{cc} Operation
- Overvoltage Tolerant Inputs
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current Substantially
- Reduces System Power Requirements
- These Devices are Pb-Free and are RoHS Compliant

3.Pinning information

SOT23-6/SC70-6

Figure1. Top View

www.umw-ic.com

4.Pin Function

(SC70 -5/ SOT23-5 /DFN6)

Pin	Function
1	INA1
2	GND
3	INA2
4	Y2
5	VCC
6	Υ ₁

5.Block Diagram

Figure2. Logic Symbol

Function Table

A Input	Output
L	н
Н	L

6.Absolute Maximum Ratings

Paran	Symbol	Value	Units	
DC Supply Voltage	V _{cc}	-0.5 to 7	V	
DC Input Voltage	Vi	-0.5≤V₁≤+7	V	
DC Output Voltage Output in Higher	Vo	–0.5 to V _{cc} + 0.5	V	
DC Input Diode Current V _I <gnd< td=""><td></td><td>I_{IK}</td><td>-50</td><td>mA</td></gnd<>		I _{IK}	-50	mA
DC Output Diode Current Vo <gnd, td="" v<=""><td>/_o>V_{cc}</td><td>Ι_{οκ}</td><td>±50</td><td>mA</td></gnd,>	/ _o >V _{cc}	Ι _{οκ}	±50	mA
DC Output Sink Current		Ιo	±50	mA
DC Supply Current per Supply Pin		I _{cc}	±100	mA
DC Ground Current per Supply Pin		I _{GND}	±100	mA
Storage Temperature Range	T _{STG}	-65 to 150	°C	
Lead Temperature, 1 mm from Case	for 10 Seconds	TL	260	°C
Junction Temperature Under Bias		TJ	150	°C
	SC70-6		333	°C/W
Thermal Resistance	SOT23-6	θ _{JA}	225	°C/W
	DFN6		423	°C/W
Power Dissipation in Still Air at 85°C		PD	200	mW
Moisture Sensitivity		MSL	Level 1	
	Body Model (Note 2)		2000	V
ESD Classification Human	Machine Model (Note3)	ESD	200	V
	Charged Device Model (Note 4)		N/A	V
Latchup Performance Above V_{cc} and	Below GND at 125°C (Note 5)	I _{Latchup}	±100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded,

device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. IO absolute maximum rating must be observed.
- 2. Tested to EIA/JESD22—A114—A, rated to EIA/JESD22—A114—B.
- 3. Tested to EIA/JESD22—A115—A, rated to EIA/JESD22—A115—A.
- 4. Tested to JESD22-C101-A.
- 5. Tested to EIA/JESD78.

7. Recommended Operating Conditions

Parame	Symbol	Min	Max	Unit	
DC Supply Voltage Operating		1.65	5.5	V	
Date Retention		V _{cc}	1.5	5.5	V
DC Input Voltage	V _{IN}	0	5.5	V	
DC Output Voltage (High or Low State)	V _{OUT}	0	5.5	V	
Operating Temperature Range		T _A	-40	85	°C
	V_{cc} =2.5V ± 0.2V		0	20	ns/V
Input Rise and Fall Time	V_{cc} =3V ± 0.3V	t _r , t _f	0	10	ns/V
	V_{cc} =5V ± 0.5V		0	5	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied.

8.DC Electrical Characteristics

Demonster	Qanditian	Ourse had		Т	_=25°	С	-55°C≤1	Г _≜ ≤125°C	
Parameter	Condition Symbol		V _{cc} (V)	Min	Тур	Max	Min	Max	Units
High-Level		V _{IH}	1.65 to1.95	0.75V _{cc}			0.75V _{cc}		
Input Voltage		VIH	2.3 to 5.5	0.7V _{cc}			0.7V _{cc}		V
Low-Level		VIL	1.65 to1.95			0.25V _{cc}		0.25Vcc	
Input Voltage		VIL	2.3 to 5.5			0.3V _{cc}		0.3V _{cc}	
	I _{он} =-100µА		1.65 to 5.5	V _{cc} -0.1	V _{cc}		V _{cc} -0.1		
	I _{он} =–3mA		1.65	1.29	1.52		1.29		
High Lovel Output	I _{он} =-8mA		2.3	1.9	2.1		1.9		
High-Level Output	I _{OH} =-12mA	V _{он}	2.7	2.2	2.4		2.2		
Voltage $V_{IN}=V_{IL}$	I _{oH} =−16mA		3	2.4	2.7		2.4		
	I _{oH} =−24mA		3	2.3	2.5		2.3		
	I _{OH} =−32mA		4.5	3.8	4		3.8		
	I _{он} =100µА		1.65 to 5.5		0.0	0.1		0.1	_
	I _{o∟} =3mA		1.65		0.08	0.24		0.24	
	I _{oL} =8mA		2.3		0.2	0.3		0.3	
Low-Level Output	I _{OL} =12mA	V _{OL}	2.7		0.22	0.4		0.4	V
Voltage V _{IN} =V _{IH}	I _{OL} =16mA		3		0.28	0.4		0.4	
	I _{oL} =24mA		3		0.38	0.55		0.55	
	I _{oL} =32mA		4.5		0.42	0.55		0.55	
Input Leakage Current	V_{IN} =5.5V or GND	I _{IN}	0 to 5.5		±0.1			±1	
Power Off	V_{IN} =5.5V or		0			1		10	
Leakage Current	V _{OUT} =5.5V	I _{OFF}	U			1			μA
Quiescent Supply	V_{IN} =5.5V or		5 5					10	
Current	GND	I _{cc}	5.5					10	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

9.AC Electrical Characteristics

Paramatar	Condition	Symbol		Т	_=25°	С	-55°C≤1	「₄≤125°C	Units
Parameter	Condition	Symbol	V _{cc} (V)	Min	Тур	Max	Min	Max	Units
			1.65	2	10.1	12.9	2	13.9	
	$R_L=1M\Omega$, $C_L=15pF$		1.8	2	9.1	11.6	2	12.4	
Propagation Delay		t _{plh} , t _{phl}	2.5	0.2	6	7.7	0.8	8.2	
			3.3	0.8	5	6.5	0.5	7	ns
(Figure 3 and 4)	R _L =500Ω, C _L =15pF		3.3	1.2	5.6	7.1	1.5	7.6	
	$R_L=1M\Omega, C_L=15pF$		5.0	0.5	4.4	5.6	0.5	6.1	
	R_L =500 Ω , C_L =50pF	<u> </u>	5.0	0.8	4.8	6.1	0.8	6.6	

10.Capacitance Characteristics

Parameter	Symbol	Condition	Тур	Units
Input Capacitance C _{IN}		V_{cc} =5.5V, V_i = 0V or V_{cc}	>2.5	pF
Device Dissignation Connectioners (6)	0	10MHz,V _{cc} =3.3V, V _i =0V or V _{cc}	4	pF
Power Dissipation Capacitance ⁽⁶⁾	C _{PD}	10MHz,V _{cc} =5.5V, V _i =0V or V _{cc}	4	pF

Notes 6:

 C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)}=C_{PD}*V_{CC}*fin+I_{CC}*C_{PD}$ is used to determine the no–load dynamic power consumption; $P_D=C_{PD}*V_{CC}*fin+I_{CC}*V_{CC}*Fig$.

Figure 3. Switch Waveform

Figure4. Test Circuit

11.1 SC70-6 Package Outline Dimensions

DIMENSIONS (mm are the original dimensions)

Symbol	Α	A1	A2	b	С	D	E	E1	е	e1	L	L1
Min	0.90	0.00	0.90	0.15	0.08	2.05	2.15	1.15	0.65	1.2	0.26	0.525
Max	1.10	0.10	1.00	0.35	0.15	2.25	2.45	1.35	TYP.	1.4	0.46	REF.

Symbol	θ
Min	0°
Мах	8°

8 of 11

11.2 SOT23-6 Package Outline Dimensions

DIMENSIONS (mm are the original dimensions)

Symbol	A	A1	A2	b	с	D	E1	E	е	e1	L	θ
Min	1.050	0.000	1.050	0.300	0.100	2.820	1.500	2.650	0.950	1.800	0.300	0°
Мах	1.250	0.100	1.150	0.500	0.200	3.020	1.700	2.950	BSC	2.000	0.600	8°

12.Ordering information

yww: Batch Code

Order Code	Marking	Package	Base QTY	Delivery Mode
UMW SN74LVC2G04DBVR	C045	SOT23-6	3000	Tape and reel
UMW SN74LVC2G04DCKR	CCF	SC70-6	3000	Tape and reel

13.Disclaimer

UMW reserves the right to make changes to all products, specifications. Customers should obtain the latest version of product documentation and verify the completeness and currency of the information before placing an order.

When applying our products, please do not exceed the maximum rated values, as this may affect the reliability of the entire system. Under certain conditions, any semiconductor product may experience faults or failures. Buyers are responsible for adhering to safety standards and implementing safety measures during system design, prototyping, and manufacturing when using our products to prevent potential failure risks that could lead to personal injury or property damage.

Unless explicitly stated in writing, UMW products are not intended for use in medical, life-saving, or life-sustaining applications, nor for any other applications where product failure could result in personal injury or death. If customers use or sell the product for such applications without explicit authorization, they assume all associated risks.

When reselling, applying, or exporting, please comply with export control laws and regulations of China, the United States, the United Kingdom, the European Union, and other relevant countries, regions, and international organizations.

This document and any actions by UMW do not grant any intellectual property rights, whether express or implied, by estoppel or otherwise. The product names and marks mentioned herein may be trademarks of their respective owners.

