

#### SPECIFICATION FOR APPROVAL

Part No.: SLM-5630Nx40-x01-LL

#### Features

- 1. High Luminous Output
- 2. RoHs Compliant and Pb Free
- 3. Silicone Encapsulation
- 4. ESD≤2KV(HBM)
- 5. Energy Star / ANSI compliant binning structure

### Application

- 1. Down light
- 2. PAR light
- 3. Spot light
- 4. General lighting
- 5. Architectural lighting

#### Product Selection Guide

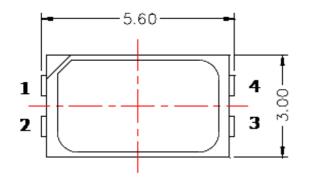


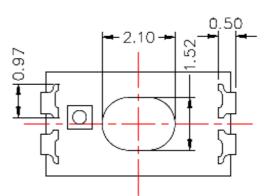
| Color                     | color Part No.      |     | Lumen Performance |
|---------------------------|---------------------|-----|-------------------|
| Cool White (ANSI 5500)    | SLM-5630NW40-A01-LL | ≥70 | 55                |
| Neutral White (ANSI 4000) | SLM-5630NS40-A01-LL | ≥70 | 55                |
| Warm White (ANSI 3000)    | SLM-5630NY40-A01-LL | ≥70 | 50                |

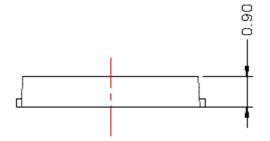
| Color         | or Part No.           |     | Lumen Performance |  |
|---------------|-----------------------|-----|-------------------|--|
| Cool White    | SLM-5630NW40-D01-LL   | ≥80 | 55                |  |
| (ANSI 5500)   |                       |     |                   |  |
| Neutral White | SLM-5630NS40-D01-LL   | ≥80 | 55                |  |
| (ANSI 4000)   | SLW-3030NS40-D01-LL   | ≦00 | ) ))              |  |
| Warm White    | CLAA 5620NIVAO DO1 LL | >00 | 50                |  |
| (ANSI 3000)   | SLM-5630NY40-D01-LL   | ≥80 | 50                |  |

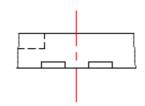
**Note:** 

Color Rendering index measurement tolerance: ±5%

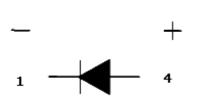

| LISTER:曾聖文 04-18-11 | EDITOR:周素華 04-18-11 | DATE: 04-18-11 | REV : A |
|---------------------|---------------------|----------------|---------|
|---------------------|---------------------|----------------|---------|

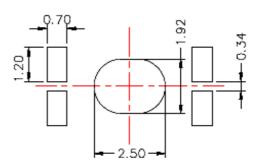




SPECIFICATION FOR APPROVAL


Part No.: SLM-5630Nx40-x01-LL










### Solder pad





#### Note:

- 1. Solder pads are labeled + and to denote positive and negative respectively
- 2. Drawings are not to scale
- 3. All dimensions are all in millimeter
- 4. All dimensions without tolerance are for reference only
- 5. Specifications are subject to change without notice



#### SPECIFICATION FOR APPROVAL

Part No.: SLM-5630Nx40-x01-LL

### Absolute Maximum Ratings (Ta=25°C)

| Parameter              | Symbol | Rating                        | Unit |  |
|------------------------|--------|-------------------------------|------|--|
| Power Dissipation      | PD     | 576                           | mW   |  |
| Forward Current (DC)   | IF     | 160                           | mA   |  |
| Peak Forward Current * | IFP    | 200                           | mA   |  |
| Reverse Voltage        | VR     | 5                             | V    |  |
| Operating Temperature  | Topr   | -40~+85°C                     |      |  |
| Storage Temperature    | Tstg   | -40~+100°C                    |      |  |
| Caldarina Tamanamatana | T-14   | Reflow Soldering:260 °C/10sec |      |  |
| Soldering Temperature  | Tsld   | Hand Soldering:350°C/3sec     |      |  |

<sup>\*</sup> Pulse width  $\leq$  0.1msec. duty  $\leq$  1/10

### Luminous Flux Characteristics (Tj=25°C)

| Color         | Part No.            | Luminous Flux (lm) |      |     | Condition |
|---------------|---------------------|--------------------|------|-----|-----------|
| Color         |                     | Min                | Туре | Max | Condition |
| Cool White    | SLM-5630NW40-A01-LL | 45                 | 55   | 1   | IF=150mA  |
| Neutral White | SLM-5630NS40-A01-LL | 45                 | 55   | /   | IF=150mA  |
| Warm White    | SLM-5630NY40-A01-LL | 40                 | 50   | 1   | IF=150mA  |

| Color         | Part No.            | Luminous Flux (lm) |      |     | Condition |
|---------------|---------------------|--------------------|------|-----|-----------|
| Color         |                     | Min                | Type | Max | Condition |
| Cool White    | SLM-5630NW40-D01-LL | 40                 | 50   | /   | IF=150mA  |
| Neutral White | SLM-5630NS40-D01-LL | 40                 | 50   | 1   | IF=150mA  |
| Warm White    | SLM-5630NY40-D01-LL | 35                 | 45   | 1   | IF=150mA  |

#### Note:

- 1. Maintains a tolerance of  $\pm 7\%$  on luminous flux measurements.
- 2. Parts are tested in pulsed conditions, Pulse width is 10 ms at rated test current.



#### SPECIFICATION FOR APPROVAL

Part No.: SLM-5630Nx40-x01-LL

### Optical Characteristics (Tj=25°C)

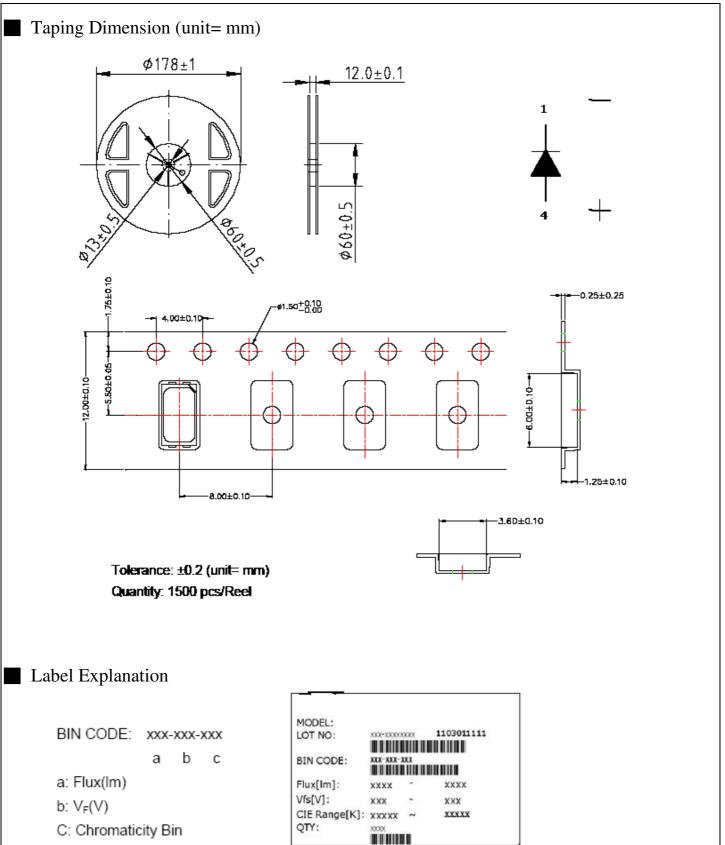
| Color         | Part No.            | Color Temperature |      |     | Typical View Angle |
|---------------|---------------------|-------------------|------|-----|--------------------|
| Color         |                     | Min               | Туре | Max | (Degrees) 2 θ ½    |
| Cool White    | SLM-5630NW40-x01-LL | 1                 | 5500 | /   | 120                |
| Neutral White | SLM-5630NS40-x01-LL | 1                 | 4000 | 1   | 120                |
| Warm White    | SLM-5630NY40-x01-LL | 1                 | 3000 | 1   | 120                |

#### Note:

- 1. Refer to Flux Characteristic Table for test current data.
- 2. Parts are tested in pulsed conditions, Pulse width is 10 ms at rated test current.
- 3. Viewing angle  $2\theta$  ½ is the off axis angle from emitter the centerline where the radiometric intensity is ½ of the peak value.

#### Electrical Characteristics

| Color         | Part No.            | Forward Voltage VF(V) |      |     | Condition |
|---------------|---------------------|-----------------------|------|-----|-----------|
| Color         |                     | Min                   | Type | Max | Condition |
| Cool White    | SLM-5630NW40-x01-LL | 2.9                   | 3.3  | 3.6 | IF=150mA  |
| Neutral White | SLM-5630NS40-x01-LL | 2.9                   | 3.3  | 3.6 | IF=150mA  |
| Warm White    | SLM-5630NY40-x01-LL | 2.9                   | 3.3  | 3.6 | IF=150mA  |


#### Note:

- 1. Maintains a tester tolerance of  $\pm$  0.05 V on forward voltage measurements.
- 2. Parts are tested in pulsed conditions, Pulse width is 10 ms at rated test current.

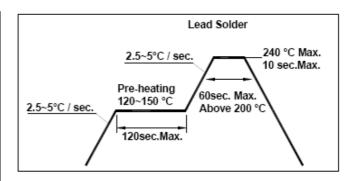


SPECIFICATION FOR APPROVAL

Part No.: SLM-5630Nx40-x01-LL






#### SPECIFICATION FOR APPROVAL

Part No.: SLM-5630Nx40-x01-LL

### Soldering


#### (1) Lead Solder

| Lead Solder              |               |  |  |  |
|--------------------------|---------------|--|--|--|
| Pre-heat                 | 120~150°C     |  |  |  |
| Pre-heat time            | 120 sec. Max. |  |  |  |
| Peak-Temperature         | 240°C Max.    |  |  |  |
| Soldering time Condition | 10 sec. Max.  |  |  |  |



#### (2) Lead-Free Solder

| Lead Free Solder         |               |  |  |  |
|--------------------------|---------------|--|--|--|
| Pre-heat                 | 150~200°C     |  |  |  |
| Pre-heat time            | 120 sec. Max. |  |  |  |
| Peak-Temperature         | 260°C Max.    |  |  |  |
| Soldering time Condition | 10 sec. Max.  |  |  |  |



(3) Hand Soldering conditions

Do not exceed 4 seconds at maximum 315°C under soldering iron.

(4) The encapsulated material of the LEDs is silicone.

Precautions should be taken to avoid the strong pressure on the encapsulated part.

So when using the chip mounter, the picking up nozzle that does not affect the silicone resign should be used.

Note: In case that the soldered products are reused in soldering process, we don't guarantee the products.



#### SPECIFICATION FOR APPROVAL

Part No.: SLM-5630Nx40-x01-LL

### Reliability Test Items and Conditions

The reliability of products shall be satisfied with items listed below.

| NO | No.                                                  | Test Condition                        | Test Condition      |            | Criteria                                     |
|----|------------------------------------------------------|---------------------------------------|---------------------|------------|----------------------------------------------|
| NO | ltem                                                 | Temp./Humidity                        | I <sub>F</sub> (mA) | Times      | I <sub>F</sub> @ 150mA                       |
| 1  | High Temperature Storage                             | Ta = 100°C                            | 1                   | 1000 hrs   |                                              |
| 2  | Low Temperature Storage                              | Ta = 40°C                             | -                   | 1000 hrs   |                                              |
| 3  | Temperature Humidity Storage                         | Ta = 85°C/<br>85%RH                   |                     | 1000 hrs   |                                              |
| 4  | Steady State Operating Life of Low<br>Temperature    | Ta = 40°C                             | 150                 | 1000 hrs   |                                              |
| 5  | Steady State Operating Life                          | Ta = 25°C/<br>Room Humidity           | 150                 | 1000 hrs   | I <sub>V</sub> > 70%<br>V <sub>F</sub> <20%  |
| 6  | Steady State Operating Life of High<br>Temperature   | Ta = 85°C                             | 150                 | 1000 hrs   |                                              |
| 7  | Steady State Operating Life of High<br>Humidity Heat | Ta = 60°C/<br>60%RH                   | 150                 | 1000 hrs   |                                              |
| 8  | Thermal Shock                                        | -40°C,20min. ~ 100°C,20min.<br>10 sec |                     | 300 cycles |                                              |
| 9  | Thermal Cycle                                        | -40°C,15min. ~ 100°C,15min.<br>5 min. |                     | 300 cycles |                                              |
| 10 | Reflow Soldering                                     | T <sub>sld</sub> = 260°C,10SEC        | C.(Max.)            | 1 times    | I <sub>V</sub> < ±5%<br>V <sub>F</sub> < ±5% |

.

Sampling for each test item: 22(pcs.)



#### SPECIFICATION FOR APPROVAL

Part No.: SLM-5630Nx40-x01-LL

Pre

Precaution for use

1. Storage

In order to avoid the absorption of moisture, it is recommended to store in a dry box (or a desicator) with a desiccant. Otherwise, to store them in the following environment is recommended.

Temperature: 5℃~30℃ Humidity: maximum 70%RH

2. Attention after open.

LED is correspond to SMD, when LED be soldered dip, interfacial separation may affect the light transmission efficiency, causing the light intensity to drop. Attention in followed; Keeping of a fraction

Temperature: :5°C~40°C Humidity: less than 10%

- 3. In the case of more than 1 week passed after opening or change color of indicator on desiccant, components shall be dried 10-12hr. at  $60\pm5$ °C.
- 4. Any mechanical force or any excess vibration shall not be accepted to apply during cooling process to normal temperature after soldering.
- 5. Quick cooling shall be avoided.
- 6. Components shall not be mounted on warped direction of PCB.
- 7. Anti radioactive ray design is not considered for the products.
- 8. This device should not be used in any type of fluid such as water, oil, organic solvent etc. When washing is required, IPA should be used.
- 9. When the LEDs are illuminating, operating current should be decided after considering the ambient maximum temperature.
- 10. The LEDs must be soldered within seven days after opening the moisture-proof packing.
- 11. Repack unused products with anti-moisture packing, fold to close any opening and then store in a dry place.
- 12. The appearance and specifications of the product may be modified for improvement without notice.
- 13. Please do not mold this product into another resin(epoxy, urethane, etc)and do not handle this product with acid or sulfur material in sealed space.



#### SPECIFICATION FOR APPROVAL

Part No.: SLM-5630Nx40-x01-LL

### Handling of Silicone Resin LEDs

- 1. During processing, mechanical stress on the surface should be minimized as much as possible. Sharp objects of all types should not be used to pierce the sealing compound.
- 2. In general, LEDs should only be handled from the side. By the way, this also applies to LEDs without a silicone sealant, since the surface can also become scratched.
- 3. When populating boards in SMT production, there are basically no restrictions regarding the form of the pick and place nozzle, except that mechanical pressure on the surface of the resin must be prevented. This is assured by choosing a pick and place nozzle which is larger than the LED's reflector area.
- 4. Silicone differs from materials conventionally used for the manufacturing of LEDs. These conditions must be considered during the handling of such devices.

Compared to standard encapsulants, silicone is generally softer, and the surface is more likely to attract dust.

As mentioned previously, the increased sensitivity to dust requires special care during processing. In cases where a minimal level of dirt and dust particles cannot be guaranteed, a suitable cleaning solution must be applied to the surface after the soldering of components.

- 5. Suggests using isopropyl alcohol for cleaning. In case other solvents are used, it must be assured that these solvents do not dissolve the package or resin. Ultrasonic cleaning is not recommended. Ultrasonic cleaning may cause damage to the LED.
- 6. Please do not mold this product into another resin(epoxy, urethane, etc) and do not handle this product with acid or sulfur material in sealed space.

### Static Electricity

- 1. Static electricity or surge voltage damages the LEDs.
- It is recommended that a wrist band or an anti-electrostatic glove be used when handing the LEDs.
- 2. All devices, equipment and machinery must be properly grounded. It is recommended that precautions be taken against surge voltage to the equipment that mounts the LEDs.
- 3. When inspecting the final products in which LEDs were assembled, it is recommended to check whether the assembled LEDs are damaged by static electricity or not. It is easy to find static-damaged LEDs by a VF test at a lower current (below 6mA is recommended).
- 4. Damaged LEDs will show some unusual characteristics such as the forward voltage becomes lower.

Criteria: (VF>2.0V at IF=3mA)