

1.5A Dual High-Speed Power MOSFET Drivers

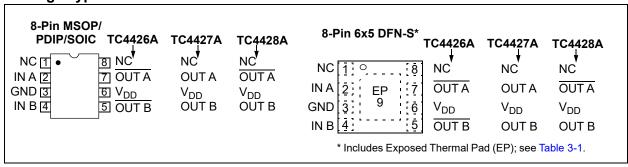
Features

- Passes AEC-Q100 Automotive Reliability Testing
- · High Peak Output Current: 1.5A
- Wide Input Supply Voltage Operating Range:
 - 4.5V to 18V
- High Capacitive Load Drive Capability: 1000 pF in 25 ns (typical)
- Short Delay Times: 30 ns (typical)
- · Matched Rise, Fall and Delay Times
- · Low Supply Current:
 - With Logic '1' Input 1 mA (typical)
 - With Logic '0' Input 100 μA (typical)
- Low Output Impedance: 7Ω (typical)
- Latch-Up Protected: Will Withstand 0.5A Reverse Current
- · Input Withstands Negative Inputs Up to 5V
- · Electrostatic Discharge (ESD) Protected: 2 kV
- Pin-compatible with TC426/TC427/TC428 and TC4426/TC4427/TC4428
- Space-saving 8-Pin MSOP and 8-Pin 6x5 DFN-S Packages

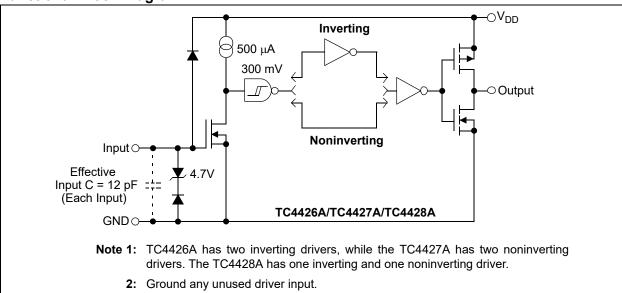
Applications

- · Switch Mode Power Supplies
- · Line Drivers
- · Pulse Transformer Drive

General Description


The TC4426A/TC4427A/TC4428A are improved versions of the earlier TC4426/TC4427/TC4428 family of MOSFET drivers. In addition to matched rise and fall times, the TC4426A/TC4427A/TC4428A devices have matched leading and falling edge propagation delay times.

These devices are highly latch-up resistant under any conditions within their power and voltage ratings. They are not subject to damage when up to 5V of noise spiking (of either polarity) occurs on the Ground pin. They can accept, without damage or logic upset, up to 500 mA of reverse current (of either polarity) being forced back into their outputs. All terminals are fully protected against Electrostatic Discharge (ESD) up to 2 kV.


The TC4426A/TC4427A/TC4428A MOSFET drivers can easily charge/discharge 1000 pF gate capacitances in under 30 ns. These devices provide low enough impedances in both the On and Off states to ensure the MOSFET's intended state will not be affected, even by large transients.

The TC4426A/TC4427A/TC4428A is AEC-Q100 qualified for automotive applications.

Package Types

Functional Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

Supply Voltage	+22V
Input Voltage, IN A or IN B	(V _{DD} + 0.3V) to (GND – 5V)
Package Power Dissipation (T _A ≤ +70°C)	
DFN-S	Note 2
MSOP	340 mW
PDIP	730 mW
SOIC	470 mW

[†] Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS

Electrical Specifications: Unless otherwise noted, over operating temperature range with $4.5V \le V_{DD} \le 18V$.							
Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions	
Input							
Logic '1', High Input Voltage	V_{IH}	2.4	l	_	V		
Logic '0', Low Input Voltage	V_{IL}	_	ı	0.8	V		
Input Current	I_{IN}	-1.0	-	+1.0	μA	$0V \le V_{IN} \le V_{DD}$	
		-10	_	+10			
Output							
High Output Voltage	V_{OH}	V _{DD} – 0.025		—	V	DC Test	
Low Output Voltage	V_{OL}	_		0.025	V	DC Test	
Output Resistance	R_{O}		7	9	Ω	$I_{OUT} = 10 \text{ mA}, V_{DD} = 18\text{V}, T_{A} = +25^{\circ}\text{C}$	
		_	7	10		$0^{\circ}C \le T_A \le +70^{\circ}C$	
		_	8	11		-40 °C $\leq T_A \leq +85$ °C	
		_	8	12		-40 °C \leq T _A \leq $+125$ °C	
Peak Output Current	I_{PK}	_	1.5		Α	V _{DD} = 18V	
Latch-Up Protection Withstand Reverse Current	I_{REV}	_	> 0.5	_	Α	Duty cycle \leq 2%, t \leq 300 μ s V_{DD} = 18V	
Switching Time (Note 1)						VDD 184	
Rise Time	t _R	_	25	35	ns	T _A = +25°C	
		_	27	40		$0^{\circ}C \le T_A \le +70^{\circ}C$	
		_	29	40		-40 °C \leq T _A \leq +85°C	
		_	30	40		-40°C ≤ T _A ≤ +125°C, Figure 4-1	
Fall Time	t _F	_	25	35	ns	T _A = +25°C	
		_	27	40		$0^{\circ}C \le T_A \le +70^{\circ}C$	
		_	29	40		-40°C ≤ T _A ≤ +85°C	
		_	30	40		-40°C ≤ T _A ≤ +125°C, Figure 4-1	

Note 1: Switching times ensured by design.

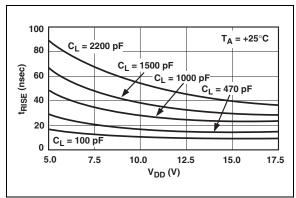
^{2:} Package power dissipation is dependent on the copper pad area on the PCB.

DC CHARACTERISTICS (CONTINUED)

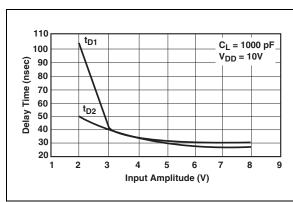
Electrical Specifications: U	Jnless oth	erwise noted,	over ope	erating te	emperat	ure range with 4.5V ≤ V _{DD} ≤ 18V.		
Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions		
Delay Time	t _{D1}	_	30	35	ns	T _A = +25°C		
		_	33	40		$0^{\circ}C \le T_A \le +70^{\circ}C$		
		_	35	45		-40 °C \leq T _A \leq +85°C		
		_	38	50		-40°C ≤ T _A ≤ +125°C, Figure 4-1		
Delay Time	t _{D2}	_	30	35	ns	T _A = +25°C		
		_	33	40		$0^{\circ}C \le T_A \le +70^{\circ}C$		
		_	35	45		-40 °C \leq T _A \leq +85°C		
		_	38	50		-40°C ≤ T _A ≤ +125°C, Figure 4-1		
Power Supply	Power Supply							
Power Supply Current	I _S		1.0	2.0	mA	V _{IN} = 3V (Both inputs)		
		_	0.1	0.2		V _{IN} = 0V (Both inputs), V _{DD} = 18V		

Note 1: Switching times ensured by design.

TEMPERATURE CHARACTERISTICS


Electrical Specifications: Unless otherwise noted, all parameters apply with $4.5V \le V_{DD} \le 18V$.								
Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions		
Temperature Ranges								
Specified Temperature Range (C)	T _A	0	_	+70	°C			
Specified Temperature Range (E)	T _A	-40	_	+85	°C			
Specified Temperature Range (V)	T _A	-40	_	+125	°C			
Maximum Junction Temperature	TJ	_	_	+150	°C			
Storage Temperature Range	T _A	-65	_	+150	°C			
Package Thermal Resistances								
Thermal Resistance, 8L-6x5 DFN-S	θ_{JA}	_	35.7	_	°C/W			
Thermal Resistance, 8L-MSOP	$\theta_{\sf JA}$	_	211	_	°C/W			
Thermal Resistance, 8L-PDIP	$\theta_{\sf JA}$	_	89.3	_	°C/W			
Thermal Resistance, 8L-SOIC	$\theta_{\sf JA}$		149.5	_	°C/W			

^{2:} Package power dissipation is dependent on the copper pad area on the PCB.


2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, over operating temperature range with $4.5V \le V_{DD} \le 18V$.

FIGURE 2-1: Rise Time vs. Supply Voltage.

FIGURE 2-2: Delay Time vs. Input Amplitude.

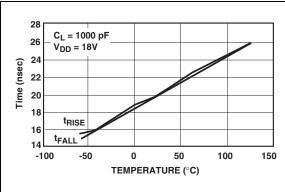


FIGURE 2-3: Rise and Fall Times vs. Temperature.

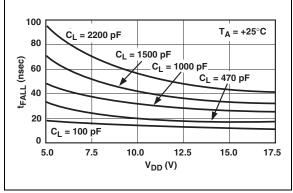
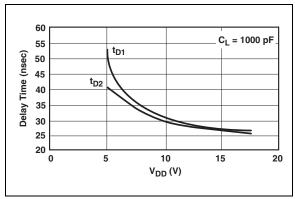



FIGURE 2-4: Fall Time vs. Supply Voltage.

FIGURE 2-5: Propagation Delay Time vs. Supply Voltage.

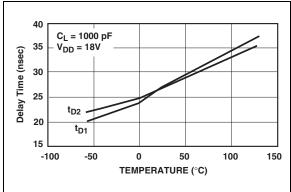


FIGURE 2-6: Propagation Delay Time vs. Temperature.

Note: Unless otherwise indicated, over operating temperature range with $4.5V \le V_{DD} \le 18V$.

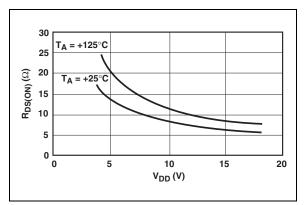


FIGURE 2-7: Resistance.

High-State Output

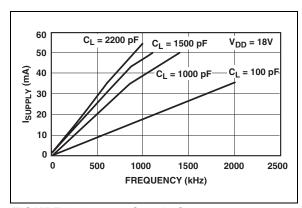


FIGURE 2-8: Frequency.

Supply Current vs.

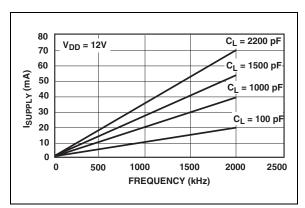
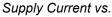
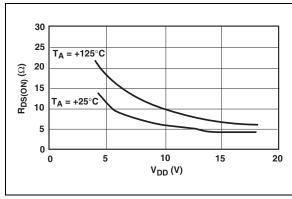
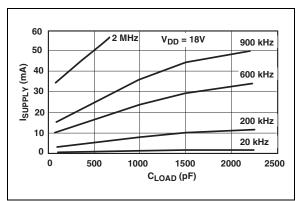
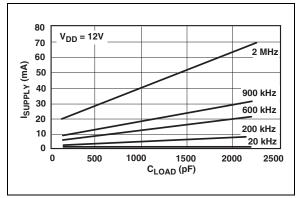



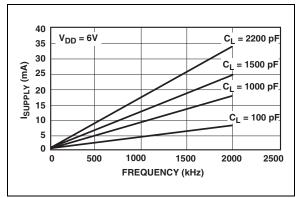
FIGURE 2-9: Frequency.

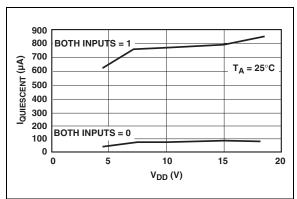




FIGURE 2-10: Resistance.

Low-State Output

FIGURE 2-11: Capacitive Load.


Supply Current vs.


FIGURE 2-12: Capacitive Load.

Supply Current vs.

Note: Unless otherwise indicated, over operating temperature range with $4.5V \le V_{DD} \le 18V$.

FIGURE 2-13: Supply Current vs. Frequency.

FIGURE 2-14: Quiescent Supply Current vs. Voltage.

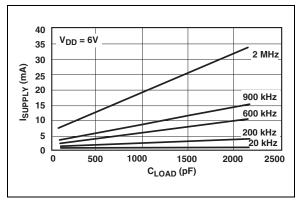
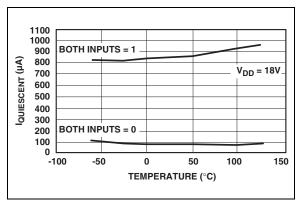



FIGURE 2-15: Supply Current vs. Capacitive Load.

FIGURE 2-16: Quiescent Supply Current vs. Temperature.

3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE (Note 1)

PDIP, MSOP, SOIC	6x5 DFN-S	Symbol	Description
1	1	NC	No connection
2	2	IN A	Input A
3	3	GND	Ground
4	4	IN B	Input B
5	5	OUT B	Output B
6	6	V_{DD}	Supply input
7	7	OUT A	Output A
8	8	NC	No connection
_	9	EP	Exposed Metal Pad

Note 1: Duplicate pins must be connected for proper operation.

3.1 Inputs A and B (IN A, IN B)

MOSFET driver inputs A and B are high-impedance, TTL/CMOS compatible inputs. These inputs also have 300 mV of hysteresis between the high and low thresholds that prevents output glitching, even when the rise and fall time of the input signal is very slow.

3.2 Ground (GND)

The Ground pin is the return path for both the bias current and the high-peak current that discharges the external load capacitance. The Ground pin should be tied into a ground plane or have a very short trace to the bias supply source return.

3.3 Output A and B (OUT A, OUT B)

MOSFET driver outputs A and B are low-impedance, CMOS push-pull style outputs. The pull-down and pull-up devices are of equal strength, making the rise and fall times equivalent.

3.4 Supply Input (V_{DD})

The V_{DD} input is the bias supply for the MOSFET driver and is rated for 4.5V to 18V, with respect to the ground pin. The V_{DD} input should be bypassed with local ceramic capacitors. The value of these capacitors should be chosen based on the capacitive load that is being driven.

3.5 Exposed Metal Pad (EP)

The exposed metal pad of the 6x5 DFN-S package is not internally connected to any potential. Therefore, this pad can be connected to a ground plane or other copper plane on a printed circuit board, to aid in heat removal from the package.

4.0 APPLICATIONS INFORMATION

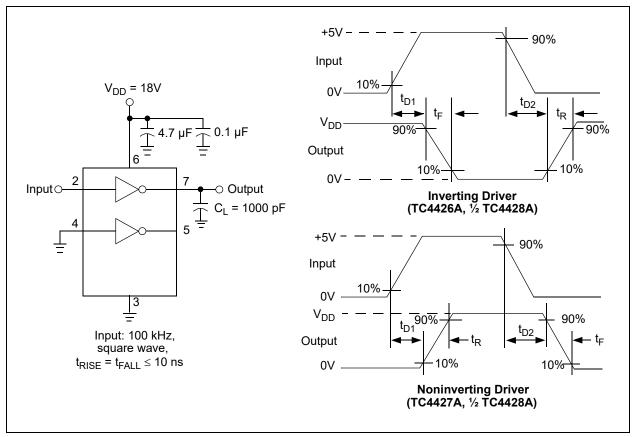
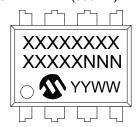


FIGURE 4-1: Switching Time Test Circuit.

5.0 PACKAGING INFORMATION

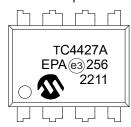
5.1 Package Marking Information


8-Lead DFN-S (6x5x0.9 mm)


8-Lead MSOP (3x3 mm)

8-Lead PDIP (300 mil)

8-Lead SOIC (3.90 mm)


Example

Example

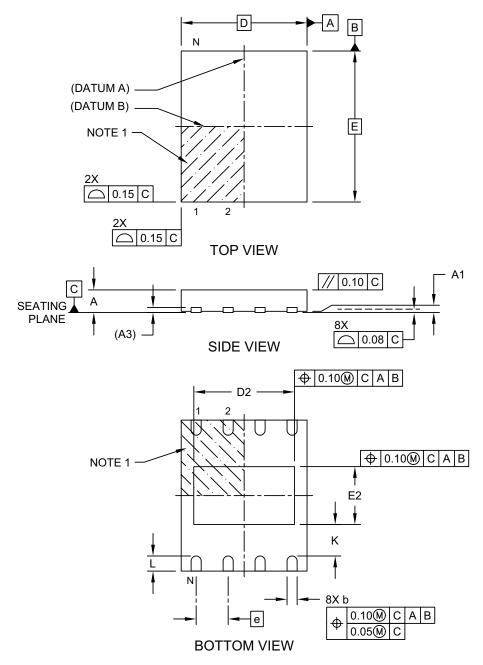
Example

Example

Legend: XX...X Customer-specific information

Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')

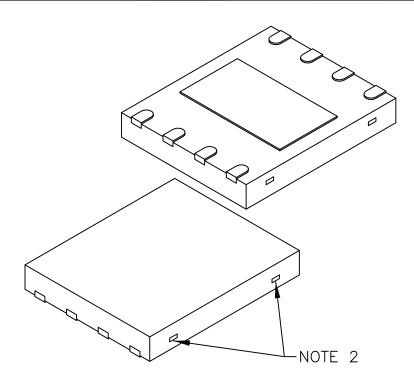
NNN Alphanumeric traceability code


e3 Pb-free JEDEC® designator for Matte Tin (Sn)

This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

8-Lead Plastic Dual Flat, No Lead Package (MF) - 6x5 mm Body [DFN-S] Saw Singulated


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-122 Rev D Sheet 1 of 2

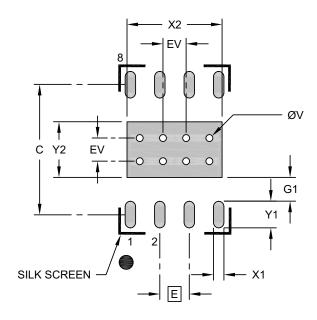
8-Lead Plastic Dual Flat, No Lead Package (MF) - 6x5 mm Body [DFN-S] Saw Singulated

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	Dimension Limits		NOM	MAX
Number of Terminals	N		8	
Pitch	е		1.27 BSC	
Overall Height	Α	0.80	0.85	1.00
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3	0.20 REF		
Overall Length	D	5.00 BSC		
Exposed Pad Length	D2	3.90	4.00	4.10
Overall Width	Е		6.00 BSC	
Exposed Pad Width	E2	2.20	2.30	2.40
Terminal Width	b	0.30	0.40	0.50
Terminal Length	Ĺ	0.50	0.60	0.75
Terminal-to-Exposed-Pad	K	0.20	-	-

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package may have one ore more exposed tie bars at ends.
- 3. Package is saw singulated
- 4. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-122 Rev D Sheet 2 of 2

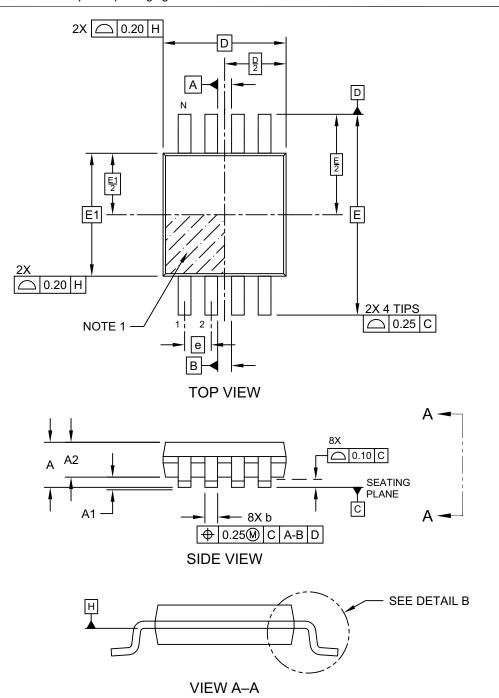
8-Lead Plastic Dual Flat, No Lead Package (MF) - 6x5 mm Body [DFN-S] Saw Singulated

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	Е		1.27 BSC	
Optional Center Pad Length	X2			4.10
Optional Center Pad Width	Y2			2.40
Contact Pad Spacing	С		5.60	
Contact Pad Width (X20)	X1			0.45
Contact Pad Length (X20)	Y1			1.15
Contact Pad to Center Pad (X20)	G1	0.20		
Thermal Via Diameter	V		0.30	
Thermal Via Pitch	EV		1.00	

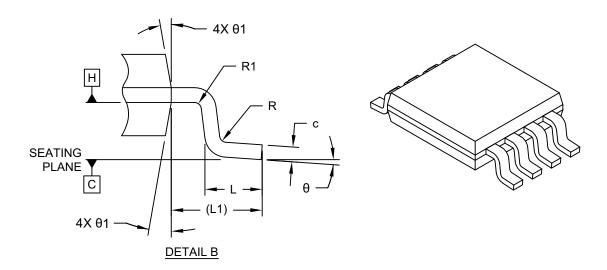
Notes:


- Dimensioning and tolerancing per ASME Y14.5M
- BSC: Basic Dimension. Theoretically exact value shown without tolerances.

 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during
- For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2122 Rev D

8-Lead Plastic Micro Small Outline Package (UA) - 3x3 mm Body [MSOP]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-111-UA Rev D Sheet 1 of 2

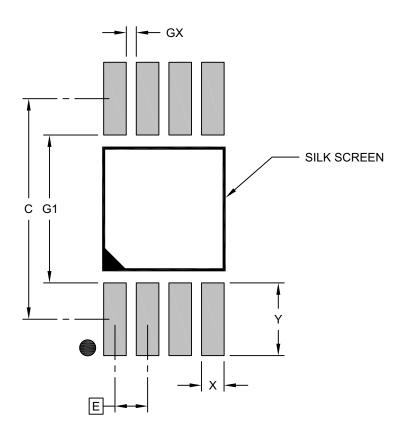
8-Lead Plastic Micro Small Outline Package (UA) - 3x3 mm Body [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimensi	on Limits	MIN	NOM	MAX
Number of Terminals	N		8	
Pitch	е		0.65 BSC	
Overall Height	Α	-	_	1.10
Standoff	A1	0.00	_	0.15
Molded Package Thickness	A2	0.75	0.85	0.95
Overall Length	D		3.00 BSC	
Overall Width	E	4.90 BSC		
Molded Package Width	E1	3.00 BSC		
Terminal Width	b	0.22	_	0.40
Terminal Thickness	С	0.08	_	0.23
Terminal Length	L	0.40	0.60	0.80
Footprint	L1		0.95 REF	
Lead Bend Radius	R	0.07	_	_
Lead Bend Radius	R1	0.07	_	_
Foot Angle	θ	0°	_	8°
Mold Draft Angle	θ1	5°	_	15°

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M $\,$


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-111-UA Rev D Sheet 2 of 2

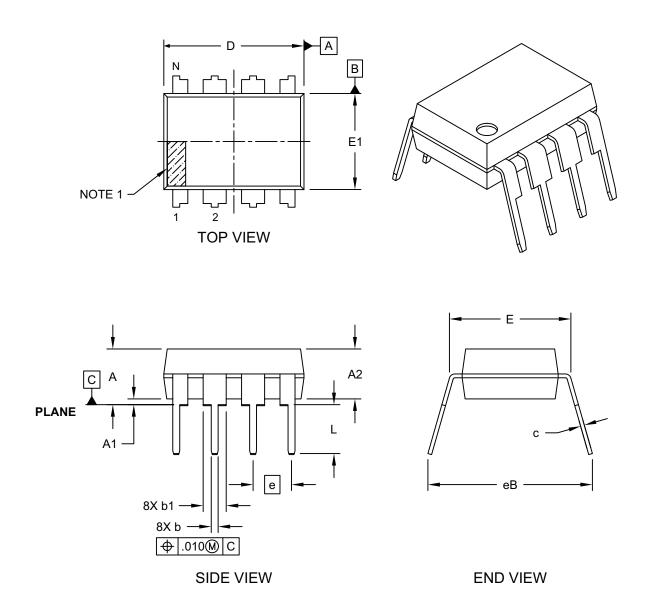
8-Lead Plastic Micro Small Outline Package (UA) - 3x3 mm Body [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	N	IILLIMETER	S	
Dimension	Dimension Limits		NOM	MAX
Contact Pitch	E		0.65 BSC	
Contact Pad Spacing	С		4.40	
Contact Pad Width (X8)	Х			0.45
Contact Pad Length (X8)	Υ			1.45
Contact Pad to Contact Pad (X4)	G1	2.95		
Contact Pad to Contact Pad (X6)	GX	0.20		

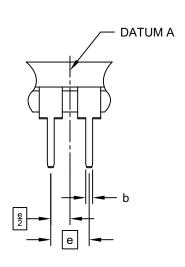
Notes:

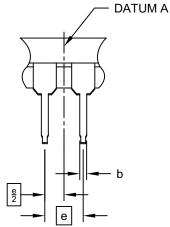

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2111-UA Rev D

8-Lead Plastic Dual In-Line (PA) - 300 mil Body [PDIP]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

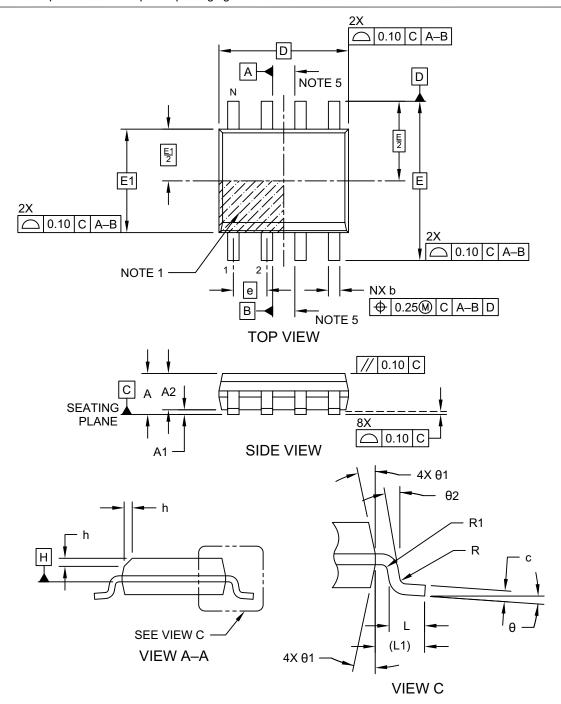

Microchip Technology Drawing No. C04-018-PA Rev F Sheet 1 of 2

8-Lead Plastic Dual In-Line (PA) - 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

ALTERNATE LEAD DESIGN (NOTE 5)

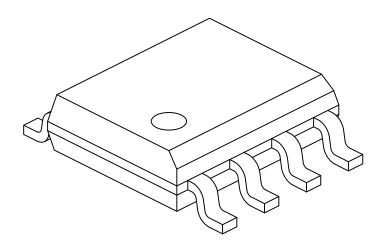
	Units			
Dimension Limits		MIN	NOM	MAX
Number of Pins	N		8	•
Pitch	е		.100 BSC	
Top to Seating Plane	Α	-	-	.210
Molded Package Thickness	A2	.115	.130	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	Е	.290	.310	.325
Molded Package Width	E1	.240	.250	.280
Overall Length	D	.348	.365	.400
Tip to Seating Plane	L	.115	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.060	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	-	-	.430


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 5. Lead design above seating plane may vary, based on assembly vendor.

Microchip Technology Drawing No. C04-018-PA Rev F Sheet 2 of 2

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm (.150 ln.) Body [SOIC]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing No. C04-057-SN Rev J Sheet 1 of 2

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm (.150 ln.) Body [SOIC]

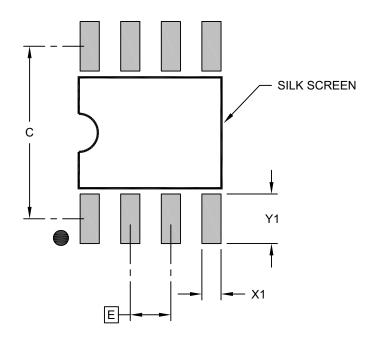
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX
Number of Pins	N		8	
Pitch	е		1.27 BSC	
Overall Height	Α	Ī	1	1.75
Molded Package Thickness	A2	1.25	-	-
Standoff §	A1	0.10	1	0.25
Overall Width	Е	6.00 BSC		
Molded Package Width	E1	3.90 BSC		
Overall Length	D	4.90 BSC		
Chamfer (Optional)	h	0.25	-	0.50
Foot Length	L	0.40	1	1.27
Footprint	L1		1.04 REF	
Lead Thickness	С	0.17	-	0.25
Lead Width	b	0.31	-	0.51
Lead Bend Radius	R	0.07	-	_
Lead Bend Radius	R1	0.07	-	-
Foot Angle	θ	0°	-	8°
Mold Draft Angle	θ1	5°	-	15°
Lead Angle	θ2	0°	_	8°

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.

5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-057-SN Rev J Sheet 2 of 2

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm (.150 ln.) Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	N	/ILLIMETER:	S	
Dimension Limits		MIN	NOM	MAX
Contact Pitch	Е	1.27 BSC		
Contact Pad Spacing	С		5.40	
Contact Pad Width (X8)	X1			0.60
Contact Pad Length (X8)	Y1			1.55

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2057-SN Rev J

NOTES:	
--------	--

APPENDIX A: REVISION HISTORY

Revision K (November 2022)

- Added information about the Automotive Qualification status of the device in section Section "Features".
- Updated package drawings in Section 5.0 "Packaging Information".
- Updated Section "Product Identification System", with Automotive Qualified devices.
- · Minor text and format changes throughout.

Revision J (July 2014)

The following is the list of modifications:

1. Updated Figure 4-1.

Revision H (September 2013)

The following is the list of modifications:

- Changed ESD protection value to 2 kV on the Features page.
- Updated the package specification drawings in Section 5.0 "Packaging Information", to show all views available.
- 3. Minor typographical corrections.

NOTES:	TC4420A/TC4427A/TC4420A					
	NOTES:					

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

lo order or obto	in mornation, e.g., on pricing or delivery, refer to	The factory of the fisted said	23 Office.
PART NO.	X XX $XXX^{(1)}$ $-XXX$	Examples:	
		a) TC4426ACOA:	1.5A Dual Inverting MOSFET Driver, 0°C to +70°C, 8-Lead SOIC package
F	Range Option	b) TC4426AEOA:	1.5A Dual Inverting MOSFET Driver, -40°C to +85°C, 8-Lead SOIC package
TC4427A: 1.5A Dual MO	TC4426A: 1.5A Dual MOSFET Driver, Inverting	c) TC4426AEMF:	1.5A Dual Inverting MOSFET Driver, -40°C to +85°C, 8-Lead DFN-S package
	TC4427A: 1.5A Dual MOSFET Driver, Noninverting TC4428A: 1.5A Dual MOSFET Driver, Complementary	d) TC4426AVOA713-VAO	: 1.5A Dual Inverting MOSFET Driver, -40°C to +125°C, 8-Lead SOIC package, Tape and Reel, Automotive Qualified
Temperature Range:	C = 0°C to +70°C (PDIP & SOIC Only) E = -40°C to +85°C V = -40°C to +125°C	a) TC4427ACPA:	1.5A Dual Noninverting MOSFET Driver, 0°C to +70°C, 8-Lead PDIP package 8-Lead PDIP package
		b) TC4427AEPA:	1.5A Dual Noninverting MOSFET Driver, -40°C to +85°C, 8-Lead PDIP package
OA = Plastic SOIC, (150 PA = Plastic DIP (300 mi	OA = Plastic SOIC, (150 mil Body), 8-Lead	c) TC4427AVMF713:	1.5A Dual Noninverting MOSFET Driver, -40°C to +125°C, 8-Lead DFN-S package, Tape and Reel
Tape and Reel	713 = Tape and Reel	d) TC4427AVOA-VAO:	1.5A Dual Noninverting MOSFET Driver, -40°C to +125°C, 8-Lead SOIC package, Automotive Qualified
Option:		a) TC4428AEUA:	1.5A Dual Complementary MOSFET Driver, -40°C to +85°C, 8-Lead MSOP package
Qualification:	Blank= Standard Part VAO = Automotive AEC-Q100 Qualified	b) TC4428ACOA713:	1.5A Dual Complementary MOSFET Driver, 0°C to +70°C, 8-Lead SOIC package, Tape and Reel
		c) TC4428AVMF:	1.5A Dual Complementary MOSFET Driver, -40°C to +125°C, 8-Lead DFN-S package
		d) TC4428AVOA713-VAO:	1.5A Dual Complementary MOSFET Driver, -40°C to +125°C, 8-Lead SOIC package, Tape and Reel, Automotive Qualified
		number descr purposes and with your Mic	el identifier only appears in the catalog part ription. This identifier is used for ordering is not printed on the device package. Check rochip Sales Office for package availability and Reel option.

NOTES:

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable" Code protection is constantly evolving. Microchip is committed to
 continuously improving the code protection features of our products.

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at https://www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, Bes Time, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, KoD, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach. Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2002-2022, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

ISBN: 978-1-6683-1411-1

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/

support Web Address:

www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423

Fax: 972-818-2924 **Detroit** Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA

Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka

Tel: 81-6-6152-7160

Japan - Tokyo

Tel: 81-3-6880- 3770 Korea - Daegu

Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4485-5910 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-72400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40 Sweden - Stockholm

Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820