

300mA Low Drop-out Linear Regulator with Shutdown

Features

- Low Dropout Voltage of 250mV at 300mA
- Guaranteed 300mA Output Current
- Very Low Quiescent Current of about 30µA
- Output Voltage Accuracy of ±2%
- Needs only 1µF Capacitor for Stability
- Thermal Shutdown Protection
- Current Limit Protection
- Active-low Shutdown Control
- Low-ESR Ceramic Capacitor for Output Stability
- Tiny SOT-23-5 and TSOT-23-5 packages
- RoHS-compliant and Halogen-free

Applications

- DSC
- Wireless Devices
- LCD Modules
- Battery Power Systems
- Card Readers
- PDA

Description

The APE8800A-3 series are low dropout, positive linear regulators with very low quiescent current, and can supply 300mA of output current with a low drop-out voltage of 250mV.

Connecting a 10nF bypass capacitor to the BP pin can help reduce the output noise level. The shutdown function allows an external signal to control the on/off state of the APE8800A-3. With a logic high at the SHDN pin, the device is in the on state.

The APE8800A-3 regulator is able to operate with output capacitors as small as $1\mu F$ for stability. As well as current limit protection, the APE8800A-3 also offers an on-chip thermal shutdown feature providing protection against overload or conditions where the junction temperature exceeds the specified thermal shutdown temperature.

The APE8800-3 is available with several fixed output voltages from 1.2V to 5V, and is packaged in low-profile space-saving RoHS-compliant and halogen-free 5-lead SOT-23-5 and TSOT-23-5 packages.

Typical Application Circuit

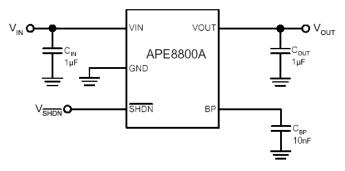


Figure 1. Typical Application Circuit of APE8800A-3

Note: To prevent oscillation, it is recommended to use X7R or X5R dielectric capacitors of at least $1\mu F$ if ceramic capacitors are used on the input or output.

Ordering Information

xx = 12:1.2V, 15:1.5V 18:1.8V, 25:2.5V, 28:2.8V

> 30:3.0V, 33:3.3V, 33:3.3V 36:3.6V, 45:4.5V, 50:5.0V

TR: Products are shipped on tape and reel: 3000pcs/reel for both TSOT-23-5 and SOT-23-5. The device is rated MSL3 for moisture sensitivity, and the the reel is packed in a moisture-barrier bag.

Example: APE8800A-25TY5-HF-3TR: APE8800A with 2.5V output in TSOT-23-5 on tape and reel.

Absolute Maximum Ratings (at TA=25°C)

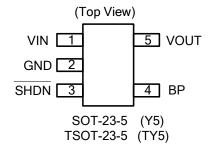
Input Voltage (VIN) Power Dissipation, SOT-23-5 ------TSOT-23-5 -----Lead Temperature (Soldering, 10 sec.) T_{LEAD} ----- 260°C Maximum Junction Temperature ----- 150°C Maximum Thermal Resistance, Junction-ambient:

SOT-23-5 ----- 250°C/W TSOT-23-5 ----- 250°C/W

Recommended Operating Conditions

Input Voltage (VIN) -----Operating Junction Temperature Range (T_J) ----- -40°C to +125°C

Electrical Specifications


(V_{IN}=V_{OUT}+1V or V_{IN}=2.8V whichever is greater, SHDN pin connected to VIN ,C_{IN}=1uF, C_{OUT}=1uF, T_A=25°C, unless otherwise specified)

Parameter	SYM	TEST CONDITION		MIN	TYP	MAX	UNITS
Output Voltage Accuracy	ΔV_{OUT}	I _O =1mA		-2	-	2	%
Current Limit	I _{LIMIT}	$R_{Load}=1\Omega$		300	-	-	mA
Quiescent Current	Ι _Q	I _O = 0mA		•	30	55	μΑ
Standby Current	I _{STBY}	VIN=2.8 ~ 5V, Output Off		•	-	1.5	μA
	V_{DROP}		$1.2V < V_{OUT} < 2.0V$	•	1100	•	mV
Dropout Voltage (Note 1)		I _O =300mA	$2.0V < V_{OUT} < 2.8V$	•	350	•	
			$2.8V < V_{OUT} < 4.5V$	-	250	-	
Line Regulation	ΔV_{LINE}	I _O =1mA, V _{IN}	I _O =1mA, V _{IN} =V _{OUT} +1V or 5V		1	5	mV
Load Regulation (Note 2)	ΔV_{LOAD}	I _O =0mA to 300mA		•	6	20	mV
Ripple Rejection	PSRR	V _{IN} =V _{OUT} +1\	V		60	_	dB
Rippie Rejection	TOKK	$C_{OUT}=1\mu F$, $f_{RIPPLE}=120Hz$		_	00	_	ub
Output Noise	Δn	C _{BP} =10nF, f=1KHz, V _{IN} =5V		•	0.4	•	μV/√Hz
Temperature Coefficient	TC	$I_{OUT} = 1 \text{mA}, V_{IN} = 5 \text{V}$		•	50	•	ppm/ °C
Thermal Shutdown Temperature	TSD			1	160	-	°C
Thermal Shutdown Hysteresis	ΔTSD			ı	25	•	°C
Shutdown Pin Current	I _{SHDN}			•	-	0.1	μA
Noise Bypass Terminal Voltage	V_{REF}			1	1.2	1	V
Shutdown Pin Voltage (ON)	V _{SHDN} (ON)			1.4	-	-	V
Shutdown Pin Voltage (OFF)	V _{SHDN} (OFF)			-	-	0.4	V
Shutdown Exit Delay Time	ΔΤ	C _{BP} =10nF, 0	C _{OUT} =1uF, I _O =30mA	-	300	-	μs

THIS PRODUCT IS SENSITIVE TO ELECTROSTATIC DISCHARGE, PLEASE HANDLE WITH CAUTION.

USE OF THIS PRODUCT AS A CRITICAL COMPONENT IN LIFE SUPPORT OR OTHER SIMILAR SYSTEMS IS NOT AUTHORIZED. APEC DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. APEC RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN.

Pin Configuration

Pin Descriptions

IN SYMBO	PIN DESCRIPTION	
VIN	Power is supplied to the device through this pin, which requires an input filter capacitor. In general, an input	
VIIV	capacitor in the range of 1µF to 10µF is sufficient.	
	The output supplies power to the load. An output capacitor is required to prevent oscillations on the output voltage.	
VOUT	The APE8800A is stable with an output capacitor of 1µF or greater. A larger output capacitor will be required for	
V 001	applications with larger load transients, and could also reduce output noise, improve stability, and PSRR.	
GND	Common ground pin	
BP	Bypass for Noise from the internal reference, connect to ground through a 1nF bypass capacitor	
SHDN	Chip Enable (Active High)	

Block Diagram

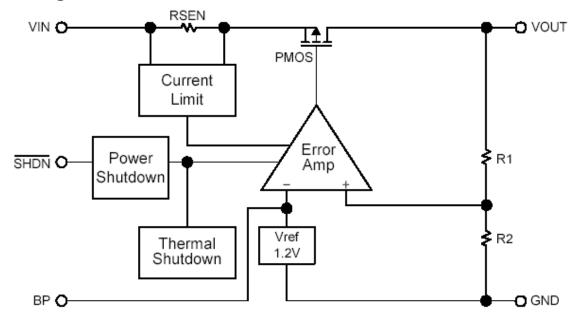


Figure 2. Block diagram of APE8800A-3

Application Description

The APE8800A-3 series are low dropout linear regulators that can provide 300mA output current with a drop-out voltage of about 250mV. Also, current limit and on-chip thermal shutdown features provide protection against any combination of overload or junction temperature that exceeds the shutdown temperature.

1. Output and Input Capacitor

The APE8800A-3 regulator is designed to be stable with a wide range of output capacitors. The ESR of the output capacitor affects stability. Larger values of the output capacitor decrease the peak deviations and provide improved transient response for larger current changes.

The various capacitor types (aluminum, ceramic, tantalum) have different characteristics such as temperature and voltage coefficients. All ceramic capacitors are manufactured with a variety of dielectrics, each with different behavior across temperature and applications. Common dielectrics used are X5R, X7R and Y5V. It is recommended to use 1uF to 10uF X5R or X7R dielectric ceramic capacitors with $30\text{m}\Omega$ to $50\text{m}\Omega$ ESR range between device outputs to ground for transient stability. The APE8800A-3 is designed to be stable with low ESR ceramic capacitors, and higher values of capacitors and ESR can improve output stability.

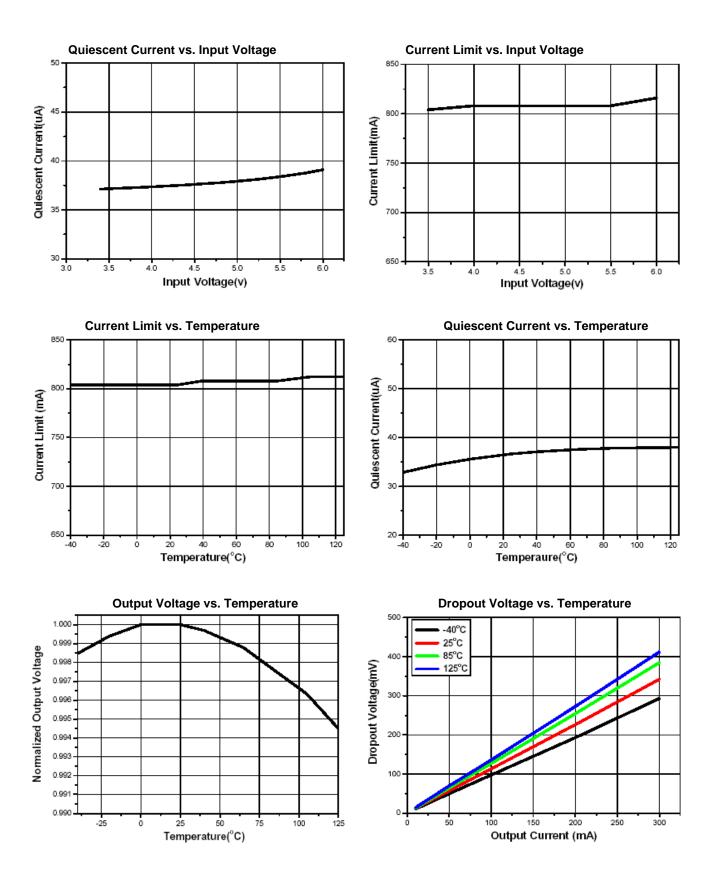
So the ESR of the output capacitor is very important because it generates a zero to provide phase lead for loop stability.

There are no requirements for the ESR on the input capacitor, but its voltage and temperature coefficient have to be considered for the device application environment.

2.Protection Features

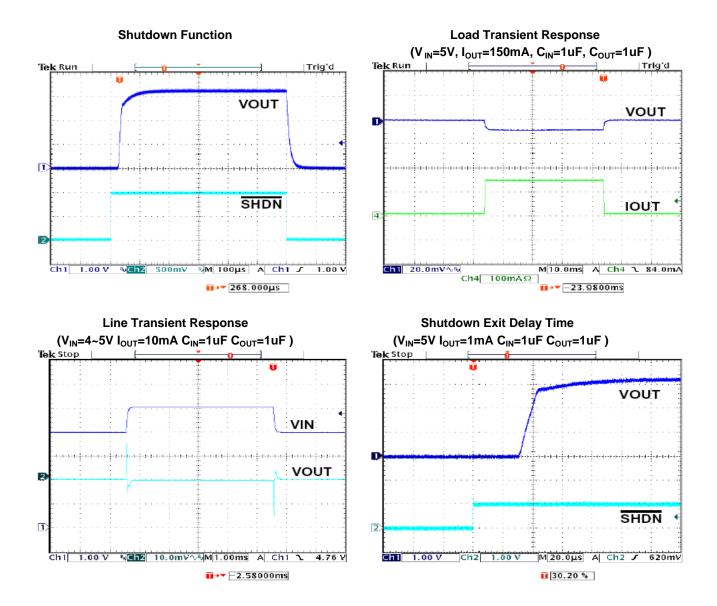
In order to prevent overloading or a thermal condition from damaging the APE8800A-3, the device has internal thermal and current-limiting functions designed to protect the device. It will rapidly shut off the internal P-channel MOSFET pass element during overloading or an over-temperature condition.

3. Thermal Consideration

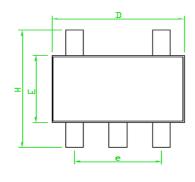

The power handling capability of the device is limited by the maximum operation junction temperature (125°C). The power dissipated by the device can be estimated as PD=IOUT*(Vin-Vout) This power dissipation must be lower than the maximum power dissipation listed in the "Absolute Maximum Ratings" section.

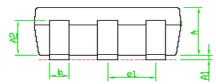
4. Shutdown Operation

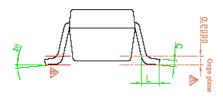
The APE8800A is shutdown by pulling the SHDN input low, and turned on by driving SHDN high. If this function is not used, the SHDN input should be tied to VIN to keep the regulator on at all times (the SHDN pin must not be left floating).



Typical Performance Characteristics

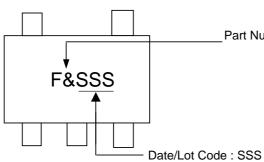





Typical Performance Characteristics

Package Dimensions: SOT-23-5

SYMBOLS	Millimeters			
	MIN	NOM	MAX	
A	1.00	1.10	1.30	
A1	0.00		0.10	
A2	0.70	0.80	0.90	
b	0.35	0.40	0.50	
C	0.10	0.15	0.25	
D	2.70	2.90	3.10	
E	1.50	1.60	1.80	
e		1.90(TYP)		
Н	2.60	2.80	3.00	
L	0.37			
θ1	1°	5°	9°	
e2		0.95(TYP)		

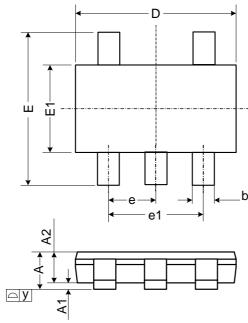

Note 1: Dimensions do not include mold flash protrusions or gate burrs.

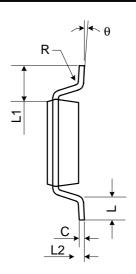
Note 2: Tolerance ± 0.1000 mm (4mil) unless otherwise specified.

Note 3: Coplanarity 0.1000 mm

Note 4: Dimension L is measured in guage plane.

Marking Information

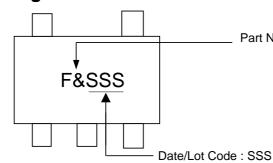



Part Number: APE8800A-xxY5-HF-3 = F& (see table below)

Output Voltage	Identification Code	Output Voltage	Identification Code	
1.2V	Fa	3.1V	Fx	
1.5V	Fc	3.3V	Fh	
1.8V	Fb	3.6V	Fw	
2.5V	Fd	4.5V	FM	
2.8V	Fe	5.0V	Fv	
3.0V	Ff			

For details on how to interpret this date/lot code, please contact APEC

Package Dimensions: TSOT-23-5



1. All dimensions are in millimeters.

Symbol	Min.	Nom.	Max.	
Α	=	-	1.1	
A1	0.00	-	0.10	
A2	0.70	0.90	1.00	
b	0.30	0.40	0.50	
С	0.08	0.14	0.20	
D	2.80	2.90	3.00	
E	2.60	2.80	3.00	
E1	1.50	1.60	1.70	
е	0.95 BSC.			
e1	1.90 BSC.			
L	0.30	0.45	0.60	
L1	0.60 REF.			
L2	0.25 BSC.			
у	=	-	0.10	
R	0.10	-	-	
θ	00	-	80	

Marking Information

Part Number : APE8800A-xxTY5-HF-3 = F& (see table below)

L	Output Voltage	Identification Code	Output Voltage	Identification Code
I	1.2V	Fa	3.1V	Fx
I	1.5V	Fc	3.3V	Fh
I	1.8V	Fb	3.6V	Fw
	2.5V	Fd	4.5V	FM
I	2.8V	Fe	5.0V	Fv
	3.0V	Ff		

For details on how to interpret this date/lot code, please contact APEC