**CML Microcircuits** 

COMMUNICATION SEMICONDUCTORS

# **Product Preview**

PP994/4 May 2012

## **CMX994** Direct Conversion Receiver IC



## DCRx has the Edge!

A direct conversion receiver (DCRx) can also be referred to as a zero-IF receiver; the terms homodyne and synchrodyne are also sometimes applied but these are really separate concepts from the DCRx of today.

Until recently most radio systems used the superheterodyne (superhet) receiver, which uses one or more mix-down stages to fixed intermediate frequencies (IFs). Each non-zero IF stage requires fixed-frequency filters to reject the image and select the wanted signal. The filters are bulky and not suited to IC integration. Their fixed Bandwidth (BW) also limits receiver flexibility.

A DCRx mixes the wanted RF signal down to zero Hertz in a single stage using a local oscillator (LO) tuned to the wanted RF channel frequency. Selectivity filtering and gain can now take place at baseband with practical, low power, analogue and digital circuits. DCRx eliminates the need for an image reject filter.

DCRx enables on-chip integration, allowing a very small RF receiver to be realised with minimal external components. Improvements in semiconductor technologies have seen DCRx increasingly displace superhet as the technology choice for radio receivers in many applications.

The small size and flexibility of direct conversion make it a key element for the next generation of multichannel, multi-mode, software defined radios (SDR) for wireless data and digital two-way radio Applications.



## **CMX994 Brief Description**

The CMX994 is a direct conversion receiver IC. It includes a broadband LNA with gain control followed by a high dynamic range I/Q demodulator. The receiver baseband section includes amplifiers and precise baseband filter stages. LO generation is provided by an integer-N PLL and a VCO negative resistance amplifier; an external LO may also be used. LO dividers are provided for flexible multi-band operation.

The device operates from a single 3.3V supply over a temperature range of  $-40^{\circ}$ C to  $+85^{\circ}$ C and is available in a small 40-pin VQFN (Q4) package.

### **Features**

- Rx Direct Conversion Receiver
- Direct conversion eliminates image responses
- LNA with gain control
- 100MHz to 940MHz I/Q demodulator
- Extended operation down to 50MHz
- Precise filtering with bandwidth setting and 1:2:4 bandwidth modes
- Local Oscillator
- LO synthesiser
- VCO negative resistance amplifier
- LO divide by 2, 4 or 6 modes
- Tx LO Output
- 3.0 3.6V Low-power operation
- Small size 40-pin VQFN package

## **Applications**

- Analogue/digital multi-mode radio
- Software Defined Radio (SDR)
- Data telemetry modems
- Satellite communications
- Constant envelope and linear modulation
- Narrowband: e.g. 25kHz, 12.5kHz, 6.25kHz
- Wideband

## **Key Benefits**

- Highest integration for an RF Rx function
- Minimum of external components
- DCRx eliminates image responses
- Can be used in zero and low IF systems
- On-chip LNA with digital gain control
- Precise filtering for digital compensation
- On-chip filtering eases converter dynamic range requirement
- Overall lowest cost solution
- Smallest PCB area requirement
- Ideally suited to multi-band, multichannel bandwidth, SDR applications
- On-chip PLL
- On-chip VCO for up to 500MHz operation
- Single-ended RF connections (no baluns)
- Compatible with CMX998 FBL transmitter



#### System Diagram



## **General Description**

The CMX994 is a receiver IC featuring I/Q demodulators intended for use as a direct conversion receiver. The device has flexible LO inputs, integer-N PLL and an on-chip negative resistance amplifier which, with the addition of suitable external components, provides a VCO.

The receiver is fully integrated with a Low Noise Amplifier (LNA) preceding the down-converter section. The LNA may be configured with one of two possible output impedance settings ( $100\Omega$  or  $50\Omega$ ). With the  $50\Omega$  mode selected, gain of approximately 3dB higher will be achieved but the circuit will consume an additional 2mA of current. It should be noted that, as the output impedance is not the same for each setting, the required matching components between the LNA and mixer will be different for each case.

The high-linearity down-converting mixers are immediately followed by a baseband filter stage. The bandwidth of this section is set by external capacitors. This first stage of filtering is designed to remove off-channel blocking signals prior to baseband amplification. Following these filters, gain is applied via a variable gain amplifier. Further filtering is then applied and again the bandwidth of the filters is determined by external capacitors. A reference resistor must also be fitted; this is used to calibrate the internal filter circuits to ensure the cut-off point of the filters is accurately controlled. This system allows effective correction for the analogue response to be applied in signal processing following the CMX994. The output of the CMX994 is differential I/Q signals; these may be applied to analogue-to-digital converters such as those in the CMX981, CMX910, CMX7163 or the CMX7164 ICs.

The receiver I/Q chain includes the facility to correct for inherent dc offsets in the hardware. This process is intended to optimise the dynamic range of the system and must be controlled by the microprocessor or DSP that processes the I/Q signals from the CMX994. DC offsets are a well known issue with direct conversion receivers. In dynamic signal environments dc offset removal algorithms will be required to track and remove dc offsets generated by off-channel signals.

The receiver sections have a low-power mode which reduces the current drawn by the device. This mode may be used where degraded intermodulation performance can be accepted.

The Local Oscillator section features an integer-N Phase Locked Loop (PLL). This may be used with the on-chip VCO or with an external VCO. The on-chip VCO consists of a negative resistance amplifier and buffers, which allows an external inductor together with external varactor diodes to determine the operating frequency and tuning range. The use of external components allows optimum phase noise to be achieved. The Rx LO signal may be divided by 2, 4 or 6. There is also a Tx LO output provided and the Tx LO signal may be divided by 1, 2, 4 or 6. Alternatively the on-chip PLL and VCO can be disabled and an external LO source supplied.

All the features of the CMX994 may be controlled by the C-BUS control interface.



#### **Pin-out**

| Pin No               | Pin Name | Туре | Pin Function                                                            |
|----------------------|----------|------|-------------------------------------------------------------------------|
| 1                    | IFLT2N   | IP   | I channel 2 <sup>nd</sup> filter capacitor negative                     |
| 2                    | IFLT1P   | IP   | I channel 1 <sup>st</sup> filter capacitor positive                     |
| 3                    | IFLT1N   | IP   | I channel 1 <sup>st</sup> filter capacitor negative                     |
| 4                    | VCCRXIF  | PWR  | Supply for baseband circuits                                            |
| 5                    | VCCLNA   | PWR  | Supply for LNA                                                          |
| 6                    | LNAIN    | IP   | LNA input                                                               |
| 7                    | LNAOUT   | OP   | LNA output                                                              |
| 8                    | VCCRF    | PWR  | Supply for RF circuits                                                  |
| 9                    | MIXIN    | IP   | Rx mixer input                                                          |
| 10                   | TXLO     | OP   | LO output for Tx                                                        |
| 11                   | VCCLO    | PWR  | Supply for LO sections                                                  |
| 12                   | LOP      | IP   | PLL LO positive input                                                   |
| 13                   | LON      | IP   | PLL LO negative input                                                   |
| 14                   | VCOP1    | IP   | PLL VCO positive input 1                                                |
| 15                   | VCOP2    | IP   | PLL VCO positive- input 2                                               |
| 16                   | VCON1    | IP   | PLL VCO1 negative input 1                                               |
| 17                   | VCON2    | IP   | PLL VCO1 negative input 2                                               |
| 18                   | VCCSYNTH | PWR  | Supply to Integer N PLL                                                 |
| 19                   | FREF     | IP   | Reference frequency input                                               |
| 20                   | DO       | OP   | PLL Charge Pump output                                                  |
| 21                   | DGND     | PWR  | Digital ground                                                          |
| 22                   | TXEN     | IP   | Tx Enable                                                               |
| 23                   | RXEN     | IP   | Rx Enable                                                               |
| 24                   | CSN      | IP   | C-BUS Chip Select                                                       |
| 25                   | RDATA    | TSOP | C-BUS Data output                                                       |
| 26                   | SCLK     | IP   | C-BUS Clock input                                                       |
| 27                   | CDATA    | IP   | C-BUS Data input                                                        |
| 28                   | RESETN   | IP   | C-BUS/Device Reset (Reset when pin Low)                                 |
| 29                   | DVDD     | PWR  | Supply to digital circuits                                              |
| 30                   | VDDIO    | PWR  | Supply to C-BUS circuits                                                |
| 31                   | RREF     | IP   | Reference resistor for I/Q Filters                                      |
| 32                   | QFLT1N   | IP   | Q channel 1 <sup>st</sup> filter capacitor negative                     |
| 33                   | QFLT1P   | IP   | Q channel 1 <sup>st</sup> filter capacitor positive                     |
| 34                   | QFLT2N   | IP   | Q channel 2 <sup>nd</sup> filter capacitor negative                     |
| 35                   | QFLT2P   | IP   | Q channel 2 <sup>nd</sup> filter capacitor positive                     |
| 36                   | RXQP     | OP   | RXQ positive output                                                     |
| 37                   | RXQN     | OP   | RXQ negative output                                                     |
| 38                   | RXIP     | OP   | RXI positive output                                                     |
| 39                   | RXIN     | OP   | RXI negative output                                                     |
| 40                   | IFLT2P   | IP   | I channel 2 <sup>nd</sup> filter capacitor positive                     |
| Exposed<br>Metal Pad | AGND     | PWR  | The exposed metal pad must be electrically connected to analogue ground |



## **Evaluation Support**

The CMX994 can be evaluated with the EV9942; CMX994 evaluation kit. Interfacing to a PC can be achieved with our PE0002 universal interface board, with GUI and scripts available to assist product evaluation. Alternatively any microcontroller evaluation/emulator kit can be used to drive the CMX994's serial bus.



## **Electrical Specification Summary**

| Operating Limits               | Min | Max | Unit |
|--------------------------------|-----|-----|------|
| $AV_{DD}$ and $DV_{DD}$        | 3.0 | 3.6 | V    |
| IO Supply (VDD <sub>IO</sub> ) | 1.6 | 3.6 | v    |
| Operating Temperature          | -40 | +85 | °C   |

| DC Parameter - Supply Current  | Min | Тур | Max | Unit |
|--------------------------------|-----|-----|-----|------|
| Total Current Consumption      |     |     |     |      |
| Powersave Mode                 |     | 25  |     | μΑ   |
| V <sub>BIAS</sub> Only         |     | 1.7 |     | mA   |
| Operating Currents             |     |     |     |      |
| Rx Only                        |     | 66  |     | mA   |
| Rx Only, Low Power Mode        |     | 56  |     | mA   |
| Tx Only                        |     | 22  |     | mA   |
| Stage Currents                 |     |     |     |      |
| LNA Only                       |     | 9   |     | mA   |
| LNA in 50 $\Omega$ Output Mode |     | 11  |     | mA   |
| I/Q Demodulator                |     | 41  |     | mA   |
| Baseband I/Q                   |     | 13  |     | mA   |
| VCO and Buffer                 |     | 10  |     | mA   |
| LO Input                       |     | 5   |     | mA   |
| PLL                            |     | 5.5 |     | mA   |
| Current from VDDIO             |     |     | 600 | μΑ   |

## **Package Options**



## **Typical Performance**

CMX994 testing on EV9942 evaluation kit (4-FSK modulation, 25kHz channels, 3kHz deviation, 19200bps, 448MHz)

- Intermodulation (EN 300 113 Method) = 65dB
- Sensitivity (1% BER) = -116dBm
- Blocking (EN 300 113 Method) = 90dB
- Adjacent Channel Rejection (EN 300 113, LO = EV9942 VCO/PLL) = 66 dB
- Adjacent Channel Rejection (EN 300 113, LO = Signal generator) = 73dB

| Input Level (dBm) | BER      |
|-------------------|----------|
| -114              | 2.29E-06 |
| -116              | 3.89E-05 |
| -118              | 5.68E-04 |
| -120              | 3.94E-03 |
| -121              | 8.77E-03 |
| -122              | 1.55E-02 |

**Q4 Mechanical Outline:** 

Order as part no. CMX994Q4

Comprehensive technical datasheet and support material is available from the CML website.

Click here to link to the CML website or search for: CMX994

|                     | CML Microcircuits<br>(UK) Ltd<br>COMMUNICATION SEMICONDUCTORS | CML Microcircuits<br>(USA) Inc.<br>COMMUNICATION SEMICONDUCTORS | CML Microcircuits<br>(Singapore)Pte Ltd<br>COMMUNICATION SEMICONDUCTORS |
|---------------------|---------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------|
| Phone:              | +44 (0) 1621 875500                                           | +1 336 744 5050<br>800 638 5577                                 | +65 62 888129                                                           |
| Fax:                | +44 (0) 1621 875600                                           | +1 336 638 5577                                                 | +65 62 888230                                                           |
| Email Sales:        | Sales@cmlmicro.com                                            | us.sales@cmlmicro.com                                           | sg.sales@cmlmicro.com                                                   |
| Email Tech Support: | techsupport@cmlmicro.com                                      | us.techsupport@cmlmicro.com                                     | sg.techsupport@cmlmicro.com                                             |
|                     | www.cmlmicro.com                                              | Search for: cn                                                  | nlmicro                                                                 |