

# FORMIKE ELECTRONIC CO.,LTD

### PRODUCT SPECIFICATION

### TFT LCD MODULE

MODEL: KWH050ST18-F01 Version: 1.0

【 ◆ 】 Preliminary Specification

[ ] Finally Specification

| CUSTOMER'S APPROVAL |       |
|---------------------|-------|
| SIGNATURE:          | DATA: |
|                     |       |

| Designed by | R&D Checked by | Quality Department by | Approved by |
|-------------|----------------|-----------------------|-------------|
| DENG        |                |                       |             |

Prepared By:

#### FORMIKE ELECTRONIC CO.,LTD

Address :Room 14H, HanKing Building, 23# DengLiang Road, NanShan District, ShenZhen, 518054, China. TEL:(86) 755 88306921,88306931 FAX:(86) 755 88304615
Http://www.wandisplay.com

• This specification is subject to change without notice. Please contact FORMIKE or it's representative before designing your product based on this specification.

Issued Date:27-9-2013



# **Table Of Contents**

| List | Description                             | Page No.   |
|------|-----------------------------------------|------------|
| List | Description                             | i age ito. |
| 0    | Cover                                   | 1          |
| 0    | Table Of Contents                       | 2          |
| 1    | Revision Record                         | 3          |
| 2    | General Description                     | 4          |
| 3    | External Dimensions                     | 5          |
| 4    | Interface Description                   | 6          |
| 5    | Absolute Maximum Ratings                | 7          |
| 6    | Electrical Characteristics              | 8          |
| 7    | Timing Characteristics                  | 9          |
| 8    | Backlight Characteristics               | 10         |
| 9    | Optical Characteristics                 | 11         |
| 10   | Reliability Test Conditions And Methods | 13         |
| 11   | Inspection Standard                     | 14         |
| 12   | Handling Precautions                    | 15         |
| 13   | Precaution For Use                      | 16         |



# 1. Revision record

| VEV NO. | REV DATE  | CONTENTS  | Note |
|---------|-----------|-----------|------|
| V1.0    | 2013-9-27 | NEW ISSUE |      |
|         |           |           |      |
|         |           |           |      |
|         |           |           |      |
|         |           |           |      |
|         |           |           |      |
|         |           |           |      |
|         |           | - 9       | ,    |
|         |           | CO.       |      |
|         |           |           |      |
|         |           | 40        |      |
|         |           |           |      |
|         |           |           |      |
|         |           |           |      |
|         |           |           |      |
|         | A.        |           |      |
|         |           |           |      |
|         |           |           |      |
|         |           |           |      |
|         |           |           |      |
|         |           |           |      |
|         |           |           |      |
| -       |           |           |      |



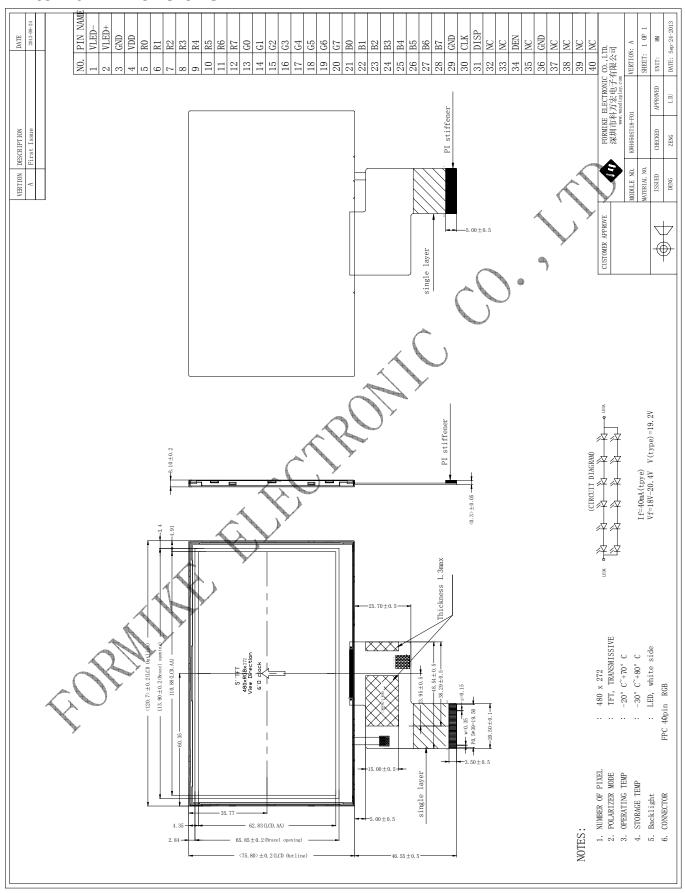
## 2. General Description

#### 2.1 Description

KWH050ST18-F01 is a Transmissive type color active matrix liquid crystal display (LCD), which uses amorphous thin film transistor (TFT) as switching devices. This product is composed of a TFT LCD panel, driver IC, FPC and backlight unit. The following table described the features of FORMIKE KWH050ST18-F01.

#### 2.2 Application

Mobile phone, Multimedia products and other electronic Products Etc.


#### 2.3 Features:

| -eatures:        |                                 |       |
|------------------|---------------------------------|-------|
| Features         | Description                     | UNITS |
| LCD type         | 5"TFT                           |       |
| Dot arrangement  | 480 (RGB) ×272                  | dots  |
| Driver IC        | LI6482                          |       |
| Color Depth      | 16.7M                           |       |
| Interface        | 24-Bit RGB Interface            |       |
| View Direction   | 6 O'clock                       |       |
| Module size      | 120.7(W) ×75.8 (H)×3.10(T)      | mm    |
| Active area      | 110.88(W) ×62.832(H)            | mm    |
| Dot pitch        | 0.231 (W) ×0.231 (H)            | mm    |
| Back Light       | 12 White LED In serial/parallel |       |
| With/Without TSP | Without TSP                     |       |
| Weight(g)        | TBD                             |       |

www.wandisplay.com 4/16 Ver.1.0



### 3. External Dimensions





# 4. Interface Description

FPC Connector is used for the module electronics interface. The recommended model is FH19SC-40S-0.5SH manufactured by HIROSE.

|         |        | .5SH manufactured by HIROSE.     | Damark |
|---------|--------|----------------------------------|--------|
| Pin No. | Symbol | Functional                       | Remark |
| 1       | VLED-  | Power for LED backlight cathode. |        |
| 2       | VLED+  | Power for LED backlight anode.   |        |
| 3       | GND    | Power ground.                    |        |
| 4       | VDD    | Power voltage.                   |        |
| 5       | R0     | Red data(LSB).                   |        |
| 6       | R1     | Red data.                        |        |
| 7       | R2     | Red data.                        | A P    |
| 8       | R3     | Red data.                        | >      |
| 9       | R4     | Red data.                        |        |
| 10      | R5     | Red data.                        |        |
| 11      | R6     | Red data.                        |        |
| 12      | R7     | Red data(MSB).                   |        |
| 13      | G0     | Green data(LSB).                 |        |
| 14      | G1     | Green data.                      |        |
| 15      | G2     | Green data.                      |        |
| 16      | G3     | Green data.                      |        |
| 17      | G4     | Green data.                      |        |
| 18      | G5     | Green data.                      |        |
| 19      | G6     | Green data.                      |        |
| 20      | G7     | Green data(MSB).                 |        |
| 21      | B0     | Blue data(LSB).                  |        |
| 22      | B1     | Blue data.                       |        |
| 23      | B2     | Blue data                        |        |
| 24      | B3     | Blue data.                       |        |
| 25      | B4 🔏   | Blue data.                       |        |
| 26      | B5_1   | Blue data.                       |        |
| 27      | B6     | Blue data.                       |        |
| 28      | B7     | Blue data(MSB).                  |        |
| 29      | GND    | Power Ground.                    |        |
| 30 (    | CLK    | Pixel clock.                     |        |
| 31      | DISP   | Display on/off.                  |        |
| 32      | NC     | No Connector.                    |        |
| 33      | NC     | No Connector.                    |        |
| 34      | DE     | Data Enable.                     |        |
| 35      | NC     | No Connector.                    |        |
| 36      | GND    | Power Ground.                    |        |
| 37      | NC     | No Connector.                    |        |
| 38      | NC     | No Connector.                    |        |
| 39      | NC     | No Connector.                    |        |
| 40      | NC     | No Connector.                    |        |
|         |        |                                  |        |



### 5. Absolute Maximum Ratings

Logic supply voltage, VDDIO -0.5V to 5V

Analog supply voltage, VINT1 -0.3V to 7.0V

VGL -16V to 0.3V

VGH~VGL -0.3V to 35V

Operating Ambient Temperature, TA -20°C to 85°C

Storage Temperature, TSTR -55°C to 125°C

The device stressed above those lists under "Absolute Maximum Ratings" operation may cause a permanent damage. The functional operation of the device at these or any other condition above those indicated in the operational sections of this specification is not implied and exposed to absolute maximum rating conditions for extended periods may affect device reliability.

#### Recommended Operating Range

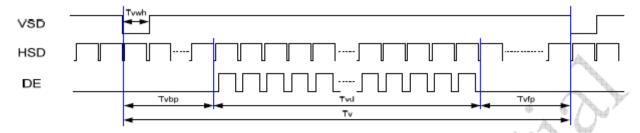
(GND = AGND = PGND = 0V and TA = -20°C to 85°C)

| Parameters                       | Symbol        | Min. | Тур. | Max.  | Unit | Conditions |
|----------------------------------|---------------|------|------|-------|------|------------|
| Digital Supply Voltage           | VDD           | 3.0  | 3.3  | 3.6   | >    |            |
| Charge Pump Supply Voltage       | PVDD          | 3.0  | 3.3  | 3.6   | ٧    |            |
| Digital Interface Supple Voltage | VDDIO         | 1.8  | -    | VDD   | ٧    |            |
| Digital Input Voltage            | Din           | 0    | 1    | VDDIO | >    |            |
| OTP Supply Voltage               | VPP_OTP       | 7.0  | 7.5  | 8.0-  | V    |            |
| VCOM AC Voltage                  | VCOMH - VCOML | 2.92 | -    | 6.2   | V    |            |





# 6. Electrical Characteristics


(VDDIO=1.8V to VDD, VDD=3.0V to 3.6V, GND=AGND=PGND=0V, and TA= -20°C to 85°C)

| Parameters                        | Symbol | Min.      | Тур. | Max.      | Unit | Conditions                                                             |
|-----------------------------------|--------|-----------|------|-----------|------|------------------------------------------------------------------------|
| Digital Block Circuit             | ,      |           | - 71 |           |      |                                                                        |
| Low Level Input Voltage           | Vil    | GND       | -    | 0.3xVDDIO | V    | Digital input pins                                                     |
| High Level Input Voltage          | Vih    | 0.7xVDDIO | -    | VDDIO     |      | Digital input pins                                                     |
| Input Leakage Current             | li     | -         | -    | ±1        |      | Digital input pins                                                     |
| Pull-high/low Impedance           | Rin    | -         | 200k | -         | ohm  | Digital control input pins  © VDDIO=3.3V                               |
| High Level Output Voltage         | Voh    | VDDIO-0.4 | -    | -         | ٧    | Digital input pins<br>@ loh=400µA                                      |
| Low Level Output Voltage          | Vol    | GND       | -    | GND+0.4   | У    | Digital output pins<br>@ IoI=-400µA                                    |
| Digital Stand-by Current          | ldst   | 1         | TBD  | TBD       | μΑ   | Outputs @ High-Z & all<br>pins are set default                         |
| Digital Operating Current         | lcc    | -         | TBD  | 5         | mA   | DCLK=9MHz &<br>Fld=17.28kHz<br>In 24-bit RGB mode &<br>without loading |
| Analog Block Circuit              |        |           | -    |           |      |                                                                        |
| GAMMA reference voltage           | VGAMH  | -         | 5    | / -       | V    |                                                                        |
| Step-up Circuit 1 Output Voltage  | VINT1  | 5.4       | Al-  | -         | V    |                                                                        |
| VCOMH Output Level                | VCOMH  | 2.46      |      | 5         |      | By VCOMH[6:0] setting                                                  |
| VCOML Output Level                | VCOML  | -3.0      | 0'   | -0.46     | V    | By VCOML[6:0] setting;<br>VCOML>VINT3                                  |
| Voltage Deviation of Outputs      | Vvd    | -         | ±20  | ±35       | mV   | Vo=0.1V ~ 0.5V &<br>VDDA-0.5 ~ VDDA-0.1                                |
|                                   | A      | -4111     | ±15  | ±20       |      | Vo=0.5V ~ VDDA-0.5V                                                    |
| Dynamic Range of Ouput            | Vdr    | 0.1       | -    | VDDA-0.1  | V    | S1 to S720                                                             |
| Low-level Output Current of VCOM  | IOLC   | recent -  | TBD  | -         | mΑ   | VCOMH=4V, VCOML=-1V<br>VCOM output=-1V vs.<br>-0.1V                    |
| High-level Output Current of VCOM | IOHC   | -         | TBD  | -         | mΑ   | VCOMH=4V, VCOML=-1V<br>VCOM output=4V vs. 3.1V                         |
| Source Low-level Output Current   | IOLS   | TBD       | 1    | 1         | μΑ   | S1 to S720;<br>VO=0.1V vs. 1V                                          |
| Source High-level Output Current  | IOHS   | TBD       | -    | 1         | μΑ   | S1 to S720;<br>VO=4.9V vs. 4.0V                                        |
| Gate Low-level Output Current     | IOLG   | TBD       | -    | -         | μΑ   | G1 to G544;<br>VO=VGL vs. VGL+0.5V                                     |
| Gate High-level Output Current    | IOHG   | TBD       | 1    | ,         | μΑ   | G1 to G544;<br>VO=VGH vs. VGH-0.5V                                     |
| Analog Stand-by Current           | last   | -         | -    | 100       | μΑ   | STB= "L,"<br>All functions are shutdown                                |
| Analog Operating Current          | IDD    | -         | TBD  | -         | mΑ   | DCLK=9MHz,<br>Fld=17.28kHz<br>(@ 24bit RGB mode), No<br>load           |

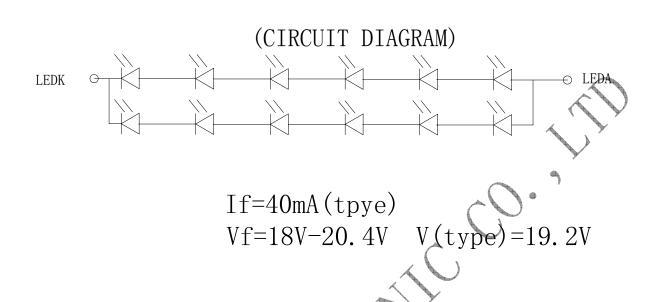



# 7. Timing Characteristics.

## Vertical Input Timing



### Serial 8bit RGB Mode Data Format




#### Serial RGB input timign table

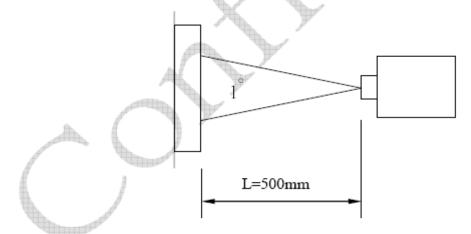
| Parameter        | Cumbal |      | Unit |      |      |
|------------------|--------|------|------|------|------|
| Parameter        | Symbol | Min. | Тур. | Max. | Unit |
| DCLK frequency   | fclk   | -    | 27   | 1    | MHz  |
| VSD period time  | Τv     | 277  | 288  | 400  | Н    |
| VSD display area | Tvd    |      | Н    |      |      |
| VSD back porch   | Tvb    | 3    | 8    | 31   | Н    |
| VSD front porch  | Tvfp   | 2    | 8    | 97   | Н    |
| HSD period time  | Th     | -    | 1728 | 1    | DCLK |
| HSD display area | Thd    |      | DCLK |      |      |
| HSD back porch   | Thbp   | -    | 120  | -    | DCLK |
| HSD front porch  | Thfp   | -    | 168  | -    | DCLK |



## 8. Backlight Characteristics.

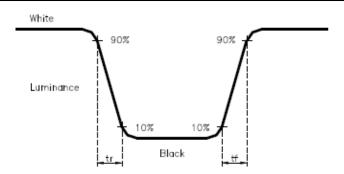


|                                |                |       |             | 4 ~  |                   |                   |      |  |
|--------------------------------|----------------|-------|-------------|------|-------------------|-------------------|------|--|
| Item                           | Symbol         | MIN   | 1, Ab       | MAX  | UNIT              | Test<br>Condition | Note |  |
| Supply Voltage                 | Vf             | 18 🧥  | 19.2        | 20.4 | V                 | If=40 mA          | -    |  |
| Supply Current                 | lf             |       | ) <b>40</b> | •    | mA                | -                 | -    |  |
| Reverse Voltage                | Vr             |       | -           | 5    | V                 | 10uA              |      |  |
| Power dissipation              | Pd 🦯           | A - 1 | 768         | -    | mW                | -                 |      |  |
| Luminous Intensity for L<br>CM |                | 7     | 350         | -    | Cd/m <sup>2</sup> | If=40 mA          |      |  |
| Uniformity for LCM             | <u>_</u> -     | 80    | -           | -    | %                 | If=40 mA          |      |  |
| Life Time                      | <b>\( - \)</b> | 50000 | -           | •    | Hr                | If=40 mA          | -    |  |
| Backlight Color                | 7              | White |             |      |                   |                   |      |  |

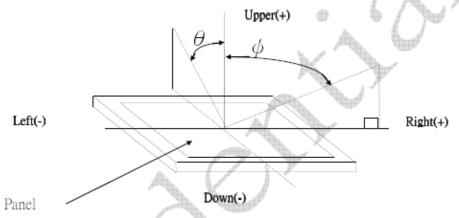



## 9. Optical Characteristics

| ITEM         |       | SYMBOL | CONDITION                   | MIN.  | TYP.  | MAX.  | UNIT | REMARK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------|-------|--------|-----------------------------|-------|-------|-------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transmitta   | ance  | T      |                             | 5.6   | 6.3   |       | %    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Contrast F   | Ratio | CR     | *1)                         | 350   | 500   | -     |      | Note 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Response     | Time  | Tr+ Tf | *3)                         | -     | 30    |       | ms   | Note 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              | U     | θ*2)   |                             | 45    | 55    | -     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Viewing      | D     | 0 2)   | CR≧10                       | 55    | 65    | 1     |      | Note 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Angle        | L     | *2\    | ON≥ IU                      | 55    | 65    | -     |      | Note 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              | R     | ψ*2)   |                             | 55    | 65    | -     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |       | х      |                             | 0.285 | 0.305 | 0.325 |      | $\mathbb{A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | White | y<br>Y | θ = φ= 0°                   | 0.314 | 0.334 | 0.354 |      | The state of the s |
|              |       | Y      |                             | 29.9  | 32.9  | 35.9  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |       | х      |                             | 0.588 | 0.608 | 0.628 | /    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | Red   | у      | $\theta = \phi = 0^{\circ}$ | 0.296 | 0.316 | 0.336 | 6    | The state of the s |
|              |       | Y      |                             | 17.8  | 20.8  | 23.8  | 4    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Color Filter |       | х      |                             | 0.285 | 0.305 | 0.325 | Ð    | Note 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Chromacicity | Green | y<br>Y | $\theta = \phi = 0^{\circ}$ | 0.536 | 0.556 | 0.576 | Ð    | Note 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              |       | Υ      |                             | 57.6  | 61.6  | 65.6  | 10   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |       | х      |                             | 0.115 | 0.135 | 0.155 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | Blue  | у      | $\theta = \phi = 0^{\circ}$ | 0.117 | 0.137 | 0.157 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |       | Ý      |                             | 13.2  | 16.2  | 19.2  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | NTSC  |        | -                           | -0    | 53%   | F .   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |


Note 1.Ambient condition : 25  $^{\circ}\text{C}\,\pm2^{\circ}\text{C}\,$   $\rightarrow$  60±10%RH  $\rightarrow$  under 10 Lunx in the darkroom  $^{\circ}$ 

Note 2.Measure device : BM-5A (TOPCON) , viewing cone=1° , IL=20mA .




Note 3. Definition of Contrast Ratio :
CR = White Luminance (ON) / Black Luminance (OFF)

Note 4. Definition of response time: The response time is defined as the time interval between the 10% and 90% amplitudes.



Note 5. Definition of view angle( $\theta$ ,  $\psi$ ):



Note 6. Light source: C light.





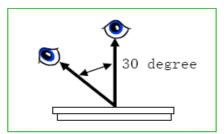
### 10. Reliability Test Conditions And Methods

| NO. | TEST ITEMS                    | TEST CONDITION                                                                                                                                               | INSPECTION AFTER TEST                                                                                       |
|-----|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| 1   | High Temperature Storage      | <b>8</b> 0℃±2℃×200Hours                                                                                                                                      |                                                                                                             |
| 2   | Low Temperature<br>Storage    | -30°C±2°C×200Hours                                                                                                                                           |                                                                                                             |
| 3   | High Temperature Operating    | <b>70</b> °C±2°C×120Hours                                                                                                                                    | Inapportion offer 2 Mayers                                                                                  |
| 4   | Low Temperature Operating     | -20℃±2℃/120Hours                                                                                                                                             | Inspection after 2~4hours storage at room temperature, the samples                                          |
| (5) | Temperature<br>Cycle(Storage) | - 30 °C ± 2 °C ← 25 °C<br>80 °C ± 2 °C (30min) (5min)<br>(30min) (1cycle) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                              | should be free from defects: 1,Air bublle in the LCD. 2,Sealleak. 3,Non-display. 4,Missing segments.        |
| 6   | Damp Proof Test               | $50^{\circ}\text{C} \pm 5^{\circ}\text{C} \times 90^{\circ}\text{RH} \times 120^{\circ}\text{Hours}$                                                         | 5,Glass crack.                                                                                              |
| 7   | Vibration Test                | Frequency:10Hz~55Hz~10Hz Amplitude:1.5M X,Y,Z direction for total 3hours (Packing Condition)                                                                 | 6,Current IDD is twice higher than initial value. 7, The surface shall be free from damage. 8, The electric |
| 8   | Drooping Test                 | Drop to the ground from 1M height one time every side of carton. (Packing Condition)                                                                         | Characteristics requirements shall be satisfied.                                                            |
| 9   | ESD Test                      | $\begin{array}{ccc} \textbf{Voltage:} & \pm & 8 \text{KV, R:} 330 \\ \Omega & & \text{, C:} 150 \text{PF, Air} \\ \text{Mode, } 10 \text{times} \end{array}$ |                                                                                                             |

#### REMARK:

- 1,The Test samples should be applied to only one test item.
- 2, Sample side for each test item is 5~10pcs.
- 3, For Damp Proof Test, Pure water (Resistance  $> 10 \text{M}\Omega$ ) should be used.
- 4, In case of malfunction defect caused by ESD damage, if it would be recovered to normal state after resetting, it would be judge as a good part.
- 5, EL evaluation should be excepted from reliability test with humidity and temperature: Some defects such as black spot/blemish can happen by natural chemical reaction with humidity and Fluorescence EL has.
- 6, Failure Judgment Criterion: Basic Specification Electrical Characteristic, Mechanical Characteristic, Optical Characteristic.






# 11.Inspection Standard

This standard apply to TFT module specification.

1. Inspection condition:

Under daylight lamp 20  $\sim\!40\text{W}_{\odot}$  product distance inspector'eye 30cm,incline degree 30  $^{\circ}$   $_{\circ}$ 



#### 2. Inspection standard

| NO. | Item |                                                                                                                                                                                                                                                                                                                                          | Rate                                                        |                   |                                |       |
|-----|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------|--------------------------------|-------|
| 2.1 | Dot  | Inspection standard  Case of Dot defect is below  ① Bright Dot (whit spot): "0"  ② Dark Dot (black spot): "0" (In case of Dark Dot on Main TFT LCD)  - NG if there's full Dot defect.  - Damaged less than the size of sub-pixel is not counted as defect  - Dots darker than the size of sub-pixel are not defined as bright dot defect |                                                             |                   |                                |       |
|     |      | area<br>size (mm)                                                                                                                                                                                                                                                                                                                        |                                                             | Acceptable number |                                |       |
|     |      | Ф ≤ 0.10                                                                                                                                                                                                                                                                                                                                 |                                                             | ignore            |                                |       |
|     |      | 0.10<Ф≤0.15                                                                                                                                                                                                                                                                                                                              |                                                             | 3                 |                                | minor |
|     |      | 0.15<Ф≤0.20                                                                                                                                                                                                                                                                                                                              |                                                             | 2                 |                                |       |
|     |      | 0.25< Ф ≤ 0.25                                                                                                                                                                                                                                                                                                                           |                                                             | 1                 |                                |       |
|     |      | 0.25<⊕                                                                                                                                                                                                                                                                                                                                   |                                                             | 0                 |                                |       |
|     | line |                                                                                                                                                                                                                                                                                                                                          |                                                             |                   |                                |       |
| 2.2 |      | Size (mm)                                                                                                                                                                                                                                                                                                                                |                                                             | )                 | Acceptable number              |       |
|     |      | ignore                                                                                                                                                                                                                                                                                                                                   | W≤0.03                                                      |                   | ignore                         |       |
|     |      | L≪4.0                                                                                                                                                                                                                                                                                                                                    | 0.03 <w≤0.04< td=""><td>2</td></w≤0.04<>                    |                   | 2                              |       |
|     |      | L≪4.0                                                                                                                                                                                                                                                                                                                                    | 0.04 <w≤0.05< td=""><td>1</td></w≤0.05<>                    |                   | 1                              |       |
|     |      |                                                                                                                                                                                                                                                                                                                                          | 0.05 <w< td=""><td>Treat with dot non-conformance</td></w<> |                   | Treat with dot non-conformance |       |



### 12. Handling Precautions

#### 12.1 Mounting method

The LCD panel of FORMIKE ELECTRONIC CO,.LTD. module consists of two thin glass plates with polarizes which easily be damaged. And since the module in so constructed as to be fixed by utilizing fitting holes in the printed circuit board.

Extreme care should be needed when handling the LCD modules.

#### 12.2 Caution of LCD handling and cleaning

When cleaning the display surface, Use soft cloth with solvent [recommended below] and wipe lightly

- İsopropyl alcohol
- Ethyl alcohol

Do not wipe the display surface with dry or hard materials that will damage the polarizer surface. Do not use the following solvent:

- Water
- Aromatics

Do not wipe ITO pad area with the dry or hard materials that will damage the ITO patterns Do not use the following solvent on the pad or prevent it from being contaminated:

- Soldering flux
- Chlorine (CI), Salfur (S)

If goods were sent without being sili8con coated on the pad, ITO patterns could be damaged due to the corrosion as time goes on.

If ITO corrosion happen by miss-handling or using some materials such as Chlorine (CI), Salfur (S) from customer, Responsibility is on customer.

#### 12.3 Caution against static charge

The LCD module use C-MOS LSI drivers, so we recommended that you:

Connect any unused input terminal to Vdd or Vss, do not input any signals before power is turned on, and ground your body, work/assembly areas, assembly equipment to protect against static electricity.

#### 12.4 packing

- Module employ LCD elements and must be treated as such.
- Avoid intense shock and falls from a height.
- To prevent modules from degradation, do not operate or store them exposed direct to sunshine or high temperature/humidity

#### 12.5 Caution for operation

- It is an indispensable condition to drive LCD's within the specified voltage limit since the higher voltage then the limit cause the shorter LCD life.
- An electrochemical reaction due to direct current causes LCD's undesirable deterioration, so that the use of direct current drive should be avoided.
- Response time will be extremely delayed at lower temperature then the operating temperature range and on the other hand at higher temperature LCD's how dark color in them. However those phenomena do not mean malfunction or out of order with LCD's, which will come back in the specified operation temperature.
- If the display area is pushed hard during operation, some font will be abnormally displayed but it resumes normal condition after turning off once.
- A slight dew depositing on terminals is a cause for electro-chemical reaction resulting in terminal open circuit.
   Usage under the maximum operating temperature, 50%Rh or less is required.



#### 12.6 storage

In the case of storing for a long period of time for instance, for years for the purpose or replacement use, the following ways are recommended.

- Storage in a polyethylene bag with the opening sealed so as not to enter fresh air outside in it. And with no
  desiccant.
- Placing in a dark place where neither exposure to direct sunlight nor light's keeping the storage temperature range.
- Storing with no touch on polarizer surface by the anything else.
   It is recommended to store them as they have been contained in the inner container at the time of delivery from us

#### 12.7 Safety

- It is recommendable to crash damaged or unnecessary LCD's into pieces and wash off liquid crystal by either of solvents such as acetone and ethanol, which should be burned up later.
- When any liquid leaked out of a damaged glass cell comes in contact with your hands, please wash it off well with soap and water

### 13. Precaution For Use

13.1

A limit sample should be provided by the both parties on an occasion when the both parties agreed its necessity. Judgment by a limit sample shall take effect after the limit sample has been established and confirmed by the both parties.

13.2

On the following occasions, the handing of problem should be decided through discussion and agreement between responsible of the both parties.

- When a question is arisen in this specification
- When a new problem is arisen which is not specified in this specifications
- When an inspection specifications change or operating condition change in customer is reported to FORMIKE ELECTRONIC CO, LTD, and some problem is arisen in this specification due to the change
- When a new problem is arisen at the customer's operating set for sample evaluation in the customer site.

